

Galaxies properties lead to WDM

PAOLO SALUCCI E. Karukes, R. Aversa

SISSA

Dedicated to my friend Hector

Outline

Dark Matter is a main protagonist in the Universe

We weigh the mass of the Universe in several independent ways

Atoms alone cannot cosmologically develop the structures

In these structures we detect in several independent ways a dark massive component

Standard Model of Elementary particles requires an extension involving a dark particle

3 TYPES OF GALAXIES

The Realm of Galaxies

The range of galaxies in magnitudes, types and central surface densities : 15 mag, 4 types, 16 mag arsec⁻²

Central surface brightness vs galaxy magnitude

Spirals : stellar disk +bulge +HI disk

The distribution of luminous matter :

Ellipticals & dwarfs E: stellar spheroid

What is Dark Matter ?

In a galaxy, the radial profile of the gravitating matter M(r) does not match that of the luminous component $M_L(r)$.

A MASSIVE DARK COMPONENT is then introduced to account for the disagreement: Its profile $M_{H}(r)$ must obey:

$$\frac{d\log M(r)}{d\log r} = \frac{M_L(r)}{M(r)} \frac{d\log M_L(r)}{d\log r} + \frac{M_H(r)}{M(r)} \frac{d\log M_H(r)}{d\log r}$$

M(r), $M_{L}(r)$, $d\log M_{L}(r)/d\log r$, $d\log M(r)/d\log r$ **observed**

THEORY AND SIMULATIONS CDM: the simplest theory

Straighforward predictions

Aquarius N-Body simulations

Navarro et al +10

density

circular velocity

ACDM Dark Matter Density Profiles from N-body simulations

The density of virialized DM halos of any mass is empirically described at all times by an Universal profile (Navarro+96, 97, NFW).

$$\rho_{NFW}(r) = \delta \rho_c \frac{r_s}{r} \frac{1}{(1 + r/r_s)^2}$$

$$c = \frac{R_{vir}}{r_s}$$

$$R_{vir} = 260 \left(\frac{M_{vir}}{10^{12} M_{\odot}}\right)^{1/3} kpc$$

$$c(M_{vir}) = 9.35 \left(\frac{M_{vir}}{10^{12} M_{\odot}}\right)^{-0.09}$$
Klypin, 2010
Klypin, 2010
Klypin, 2010
PURE DM LCDM \Rightarrow Occam razor

Stellar Disks

M33 disk very smooth, truncated at 4 scale-lengths

NGC 300 exponential disk for at least 10 scale-lengths

 $I(r) = I_0 e^{-r/R_D}$

ESO PR Photo 18a/02 (7 August 2002)

) D. European Southern Observation

$R_{\rm D}$ lenght scale of the disk

(MPG/ESO 2.2-m + WFI

Freeman, 1970

Bland-Hawthorn et al 2005

Circular velocities from spectroscopy

- Optical emission lines (H α , Na)
- Neutral hydrogen (HI)-carbon monoxide (CO)

Tracer	angular resolution	spectral resolution
HI	7" 30"	2 10 km s ⁻¹
СО	1.5" 8"	2 … 10 km s ⁻¹
Ηα,	0.5" 1.5"	10 … 30 km s ⁻¹

Non-ten on an an an an an an an an an an

ROTATION CURVES

artist impression

Symmetric circular rotation of a disk characterized by

- Sky coordinates of the galaxy centre
- Systemic velocity V_{sys}
- Circular velocity V(R)
- Inclination angle

UGC2405 HIGH QUALITY ROTATION CURVE

Rotation Curves

TYPICAL INDIVIDUAL RCs OF INCREASING LUMINOSITY

The Concept of the Universal Rotation Curve (URC) Every RC can be represented by: V(x,L) x=R/R_D

The URC out to 6 R_D is derived di

Rotation curve analysis From data to mass models

Dark halos with central constant density (Burkert, Isothermal) Dark halos with central cusps (NFW, Einasto)

GALAXY HALOS: AN UNIFIED VISION

Core radii between 0.1 kpc to 100 kpc

Small scale LCDM problems New recently obtained galaxy properties go further Clear lead to WDM

1-Objects in which NFW seem to work.2-The smallest galaxies of the Universe.3-Outer DM density profiles.

The DM distribution in NGC 3198,a crucial test case

 $V \sim \frac{1}{\sqrt{R}}$

NGC 3198

NGC 3198: most extended flat RC

Not possible to discriminate between the two DM profiles ?!

NGC 3198

where

- e DM density at large radii
- The local density at large radii feels no influence of the stellar disk and the HI disk

The equation of centrifugal equilibrium holding in spiral arms is (see Fall & Efstathiou 1980):

$$rac{V^2}{r} \!=\! a_{\scriptscriptstyle H} \!+\! a_{\scriptscriptstyle D} \!+\! a_{\scriptscriptstyle HI}$$

where u_{H} , u_{D} and u_{HI} are the radial acceleration, generated, respectively, by the halo, stellar disk and HI disk mass distribution.

$$a_{H} = 4\pi G r^{-2} \int_{0}^{r} \rho_{H}(R) R^{2} dR$$
spherical DM
halo
$$\rho_{H}(r) = \frac{X_{q}}{4\pi G r^{2}} \frac{d}{dr} \left[r^{2} \left(\frac{V^{2}(r)}{r} - a_{D}(r) - \frac{V^{2}_{HI}}{r} \right) \right]$$

$$X q$$
a factor correction the spherical Gauss low. We assume

The Halo Dark Matter density at large radii

$$\rho_{H}(r) = \frac{1}{4\pi G} \left[\frac{V^{2}(r)}{r^{2}} (1+2\alpha) - \frac{GM_{D}}{R_{D}^{3}} H\left(\frac{r}{R_{D}}\right) - \frac{V^{2}_{HI}(r)}{r^{2}} (1+2\gamma) \right]$$

NFW profile in terms of $c-M_{vir}$:

$$\rho_{s} = \frac{100}{3} \frac{c^{3}}{\log(1+c) - \left(\frac{c}{1+c}\right)} \rho_{crit}$$

From Klypin et al. 2011
$$r_{s} = \frac{1}{c} \left(\frac{3 \times M_{vir}}{4\pi 100 \rho_{crit}}\right)^{\frac{1}{3}}$$

The DM density at large radii

NFW mass model must accomplish:

-reduced chisquare <1
-disk mass inside physical values
-halo mass inside physical values
-concentration-mass relation as from simulations

No spiral with suitable kinematics passes the test. NFW always fails

RCs of the smallest spirals

- UGC8508
- DDO125
- DDO53
- ▲ DDO99
- CGCG269-049
- UGC6456
- UGC8638
- UGC11583
- △ UGC4305
- ▼ UGC7559

- UGC7232
- UGC7866
- UGC7916
- ▲ UGC8837
- UGC5918
- o UGC7047
- UGC5272

inside 10 Mpc

Universal Mass Distribution

URC

The URC 07 and new data

The Universal Velocity profile V²(r, Mvir)=Vg²(r,Mvir)+ VURCH²(r,Mvir)+ VD²(r,Mvir)

$$V_{URCH}^{2}(r) = 6.4G \frac{\rho_{0} r_{0}^{3}}{r} \left(\ln \left(1 + \frac{r}{r_{0}} \right) - \tan^{-1} \left(\frac{r}{r_{0}} \right) + \frac{1}{2} \ln \left[1 + \left(\frac{r}{r_{0}} \right)^{2} \right] \right)$$

$$\log\left(\frac{\rho_0}{g/cm^3}\right) = -22.515 - 0.964\left(\frac{M_D}{10^{11}M_{sun}}\right)$$

$$M_{D} = 2.3 \times 10^{10} M_{sun} \frac{\left[M_{vir} / (3 \times 10^{11} M_{sun})\right]^{3.1}}{1 + \left[M_{vir} / (3 \times 10^{11} M_{sun})\right]^{2.2}}$$

Shankar et al. 2006

For more details see P. Salucci et al. 2007

$$\log\left(\frac{r_0}{kpc}\right) \approx 0.66 + 0.58 \log\left(\frac{M_{vir}}{10^{11}M_{sun}}\right)$$

Late-Type Dwarf

The URC holds from 6 x 10⁹ M_{sun} to 3 x 10¹² M_{sun} Small masses, large number of objects, RC profiles directly incompatible with NFW DM density profiles

Gentile et al. 2007

Outer DM log densities profiles NFW =LCDM = -2.4 OBSERVATIONS = -1.7,-3 WDM= ?

CONCLUSIONS

facts:

ALL SPIRALS SHOW A FLAT CENTRAL DM DENSITY PROFILE NFW MASS MODELS FAIL IN EVERY SPIRAL

WDM MASS MODELS OK

- CDM must repair its bad predictions in every single object. It loses the status of the simplest theory. It requires fine tunig
- WDM is much MORE than CDM with a finite free streeming lenght.
- Next step: lead -> imply. Requirement: study Ellipticals (1 PhD student), Low Surface Brightness galaxies (1 PhD student), dSph, Giant spirals (1 PhD student).

