

European Research Council

Established by the European Commission

Non-Linear Small Scale Structure Formation in Non-Standard Dark Matter Cosmologies

Pier Stefano Corasaniti

CNRS & Observatoire de Paris

Collaboration:

Shankar Agarwal Yann Rasera Subinoy Das Doddy Marsh

Standard Cosmological Scenario

Dark Matter:

- Gravitational Collapse Initial Fluctuations
- Foster matter clustering
- Resides in virialized clumps

Halos:

- Building blocks of cosmic structure formation
- Shape baryon distribution
 & formation of visible
 structures

CDM Paradigm

Theoretical Bias:

- WIMP hypothesis/Neutralino

Large Scales

- Successful Description CMB spectra
- Clustering of Matter from galaxy surveys

Minimal Scenario - LCDM

- 6 parameter models: H_0 , $\Omega_m(1-\Omega_\Lambda)$, Ω_b , σ_8 , n_s , τ
- Censored Comments

Small Scales & Beyond CDM

DM Direct Searches:

- Negative/Contrasting Results
- No signal at LHC

CDM anomalies :

- Core vs Cusp Profiles
- Missing Satellites
- Too-big-too fail problem

Complex Physics:

- Baryonic Feedback
- Observational Selection Effects
- Uncertainties of Milky-Way Mass

Boylan-Kolchin et al. 2012

Alternative Scenarios

Warm Dark Matter

- Thermal Relic , $m_{WDM} \approx keV$
- Free-Stream ≤ 100 kpc
- Small-Scale Power Spectrum Cut-off

Self-Interacting DM

- DM scattering cross-section
- Interaction with radiation

Late Forming DM & Ultra-Light Axions

- LFDM: Before matter/radiation equality, decay of scalar field coupled to relativistic particles (w $\approx 1/3 \rightarrow$ w=0)
- ULA: Axion field transition from vacuum to matter (w=-1 -> w=0)

Observational Constraints

Warm Dark Matter*

- $m_{WDM} < 0.1 \text{ keV to core th} \text{ sAll} \text{ profiles} \text{ e.g. Maccio et al. 2012}$ $1.5 < m_{WDM} \text{ [keV]} < 2 \text{ gRANO} \text{ ve too-big-to-fail} \text{ Lowell et al. 2012, 2014}$ $m_{WDM} > 3.3 \text{ ke} \text{ Cun} \text{ Lyman-} \alpha \text{ power spectrum a z>2} \text{ Viel et al. 2012}$

Self-Interacting DM

- Lower density sub-halos and core profiles Vogelsberger et al. 2012; Zavala et al. 2013
- Low mass halo abundances unaltered

Late Forming DM

- Evade Lyman-alpha constraints (z_{t} >5 10⁵) Agarwal, Corasaniti, Das & Rasera 2015
- Suppressed halo abundances
- Flatter profiles than LCDM (not cored)

N-body Simulations

Monte Carlo Method

- Macro-particle sampling DM field
- Initial Conditions:
 - WDM thermal velocities negligible (?)
 - LFDM effectively collision-less
- Numerical integration trajectories

$$\frac{d\vec{p}_i}{da} = -\frac{\nabla\Phi}{\dot{a}}, \quad \frac{d\vec{x}_i}{da} = \frac{\vec{p}}{\dot{a}a^2}, \quad i = 1, N$$
$$\nabla^2\Phi = 4\pi G a^2 \bar{\rho}_m \delta_m$$

Analyze final macro-particle distribution

- Gravity Solver
- Cosmological Volume
- Mass Resolution
- Spatial Resolution

N-body Solver - AMR, TreePM, etc.

 L^3_{box}

 Δx

 $m_p = \rho_c \Omega_m L_{box}^3 / N_p$

Artificial Fragmentation (Mass Segregation)

Discretization Effect

- Sampling Poisson Noise (k > k_{cut-off})
- Spurious Numerical Halos
 Gotz & Sommer-Larsen 2002, 2003; Wang & White 2007

Example

RAMSES	- N _p =512 ³	- m _p ~ 10 ⁷ M _{sun} h⁻¹
AMR	- L _{box} = 27.5 Mpc h ⁻¹	- dx _{coarse} ~ 54 kpc ł

Spurious Halo Contamination

Halo Mass Function

- $N_{h-particles} > 100$
- Upturn at M<M*
- Simulation Dependent Slope

Proposed Cures

- Mass Cut: M_{min} = 10.1 ρ d k_p⁻² Wang & White 2007
- Select Unflatten Proto-Halos in Initial Lagrangian Patch & Apply Mass Cut Lowell et al. 2012
- Visual Inspection Angulo, Hahn, Abel 2013
- Tessellation 6-d phase-space folding (reduce but dosn't solve)

Hahn, Abel, Kaehler 2013

-
$$N_p = 1024^3$$
 - $m_p \sim 10^6 M_{sun} h^{-1}$
- $L_{box} = 27.5 Mpc h^{-1}$ - $dx_{coarse} \sim 26 kpc h^{-1}$

Structural Properties of Halos

Agarwal & Corasaniti 2015

Halo Spin

- Spin parameter $\lambda' = \frac{J}{\sqrt{2}MVR}$
- -V = V(GM/R)
- 8 bins: $4 < M[10^9 M_{sun} h^{-1}] < 8$
- CDM: log-normal & mass independent
- non-CDM: deviations from lognormality/bimodality and mass dependent
- spurious halos have large spins

Structural Properties of Halos

Halo Shape

- Symmetric Mass Distribution Tensor

$$M_{\alpha\beta} = \frac{m_p}{M} \sum_{i=1}^{N_h} (r_{\alpha,i} - r_{\alpha,c}) (r_{\beta,i} - r_{\beta,c}),$$

- sphericity, ellipticity & prolatness
- CDM: mass independent & elliptical halos
- non-CDM: mass dependent
 highly non-spherical
 (elliptical & prolate, i.e.
 alignment with filaments)

Halo Dynamical State

Virial Condition

- proxy: η=2 K/|E|
- correlation λ' - η for η >1

Virial State Selection

Removing Spurious Halos

- $-0 < \eta = 2 \text{ K} / |\text{E}| < 1.5$
- recover halo triaxial distribution
- recover spin log-normality
- recover suppressed mass
 function at low mass (mass
 resolution convergence)
- spurious halos still present
 with simple mass-cut at M_{min}
- mass range larger than mass cut

Evolution of HMF in NDM models

Corasaniti et al. in preparation

- Low mass end saturates at z < 3
- Fitting function:

$$\left(\frac{dn}{d\ln M}\right)_{NDM} = 10^{A_0 + A_!M} \left(\frac{dn}{d\ln M}\right)_{LCDM} \left[1 - e^{-\frac{M}{m_*}}\right]^{-\alpha}$$

Abundance of Field Dwarf-Galaxies z=0

Velocity Function

- Abundance of galaxies with given circular velocity
- More sensitive to halo dynamics than gas physics
- Mostly individual halos rather than satellite

Caveats

Theory: circular velocity / Observations: line-of-sight velocity

- Inclination effect
- Baryons at high-velocity end
- Selection

CDM Overabundance

Velocity Function

High-Redshift Universe

Galaxy Luminosity Function

- Probe low mass end HMF evolution
- Depends on galaxy formation
- Several estimates at z > 4

Constraints on NDM

- m_{WDM} > 0.8 keV from HAM of LCDM Schultz et al. (2014)

- $m_{\psi} > 10^{-22}$ eV from HAM assuming parametrize $L_{UV}(M)$ relation

Schive et al. (2016)

Cumulative Number Density

Abundance Matching

Empirical Approach:

$$\int_{M} d\tilde{M} \, \frac{d\mathbf{n}}{d\tilde{M}} = \int_{M_{UV}} d\tilde{M}_{UV} \phi(\tilde{M}_{UV})$$

- Rely on approximate analytical form of HMF
- Extrapolate LCDM relation to NDM models
- Redshift evolution may be driven by extinction

What can we learn?

- About galaxy formation in NDM models?
- What high-z can tell about NDM under minimal assumptions?

HAM & SFR

UV-Luminosity to SFR

- Account for dust extinction
- Convert M_{UV} corrected to SFR (Kennicut relation)
- Derive SFR-density functions (see Mashian, Oesch, Loeb 2015 for LCDM)

Extinction Correction

$$\langle A_{UV} \rangle = 4.43 + 0.79 \ln 10\sigma_{\beta}^2 + 1.99 \langle \beta \rangle$$

Meurer et al. (1999)

$$\left< \beta(M_{UV}, z) \right> = \begin{cases} \left[\beta_{M_0}(z) - C \right] e^{\beta'(z) \frac{M_{UV} - M_0}{\beta_{M_0}(z) - C}} M_{UV} \ge M_0 \\ \beta'(z) \left[M_{UV} - M_0 \right] + \beta_{M_0}(z) \end{cases}$$

Tacchella et al. (2013), Mason, Trenti & Treu (2015)

- Changes UV-mag bin size
- Shift toward higher luminosities

SFR density function

Φ(SFR) at 4<z<6

- Fit $\Phi(SFR)$ with Press-Schechter function

- SFR-M_h evolves in amplitude
- Redshift average

Average SFR-M_h

Modeling Luminosity Function at z > 6

Intrinsic Scatter SFR-M_h relation

- Compute

$$\phi(SFR,z) = \frac{1}{\sigma_{\text{int}}^2 \sqrt{2\pi} SFR} \int dM_h \frac{dn}{dM_h} (M_h,z) \ e^{-\frac{\log_{10}^2 \left[SFR/(\varepsilon \langle SFR(M_h) \rangle\right]}{2\sigma_{\text{int}}^2}}$$

- Convert to UV luminosities
- Add extinction effect
- Estimate Φ (M_{UV})
- Fit against the data $\epsilon,\,\sigma_{_{int}}$

Fitting Galaxy Luminosity Function at z > 6

Conclusions

- Small scale clustering of matter as probe of nonstandard DM models (*free your mind*)
- Artificial fragmentation in simulation of models with suppressed spectrum at small scales needs to be accounted for (*be inquisitive*)
- Galaxy formation cannot occur in the same way in NCDM models (*question your believes*)
- Testing SFR halo mass relation can provide key insights (truth arises more from error than confusion)