

KATRIN

Ecole Internationale Daniel Chalonge 19th Paris Cosmology Colloquium July 24th, 2015

Guido Drexlin, KCETA

in memoriam of Hector J. de Vega

KATRIN

Ecole Internationale Daniel Chalonge 19th Paris Cosmology Colloquium July 24th, 2015

Guido Drexlin, KCETA

- introduction: ß-spectrosopy & v-mass
- MAC-E filters & previous approaches
- KATRIN design & status
- searching for keV-mass sterile neutrinos
- conclusions

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

hunting neutrino masses

v-mass & ß-spectroscopy

Review: G.D., V. Hannen, S. Mertens, C. Weinheimer, Current Direct Neutrino Mass Experiments, Advances in High Energy Physics Vol. 2013, ID293986

ß-decay: kinematics

model independent measurement of $m(v_e)$

- based only on kinematic parameters & energy conservation

ß-decay: kinematics

model independent measurement of $m(v_e)$

- based only on kinematic parameters & energy conservation

ß-decay: relative shape modification

MAC-E filter & previous T2 experiments

MAC-E principle: Mainz, Troitsk, KATRIN

Magnetic Adiabatic Collimation & Electrostatic Filter

9 July 24, 2015 G. Drexlin – KATRIN

KIT-KCETA

MAC-E principle: Mainz, Troitsk, KATRIN

Magnetic Adiabatic Collimation & Electrostatic Filter

MAC-E principle: Mainz, Troitsk, KATRIN

Magnetic Adiabatic Collimation & Electrostatic Filter = magnetic bottle

Troitsk & Mainz experiments

Troitsk experiment

windowless gaseous tritium source

2011 re-analysis of selected data from 1994-2004: no evidence for Troitsk anomaly

 $m^2(v_e) = (-0.67 \pm 1.89 \pm 1.68) eV^2$

 $m(v_e) < 2.05 \ eV$

V.N. Aseev et al., Phys. Rev. D 84 (2011) 112003

Mainz experiment

quench condensed tritium source

2004 final analysis of Mainz phase II data from 1998-2001: analysis of last 70 eV

 $m^2(v_e) = (-0.6 \pm 2.2 \pm 2.1) eV^2$

 $m(v_{e}) < 2.3 \, eV$

C. Kraus et al., Eur. Phys. J. C 40 (2005) 447

KATRIN – design & status

KATRIN experiment

Karlsruhe Tritium Neutrino Experiment

- next-generation direct v-mass experiment at KIT
- International Collaboration: ~120 members
 15 institutions in 5 countries: D, US, CZ, RUS, ES

KATRIN experiment – science case

physics programme

- measure effective electron neutrino mass: $m(v_e) = 200 \text{ meV}$ (90% CL)
- search for sterile neutrinos from sub-eV ... keV mass scale
- constrain local relic-v density, search for RH currents/Lorentz violation

KATRIN overview: 70 m beamline

(= LHC particle production)

(≡ low level @ 1 mwe)

tritium source: **10¹¹ ß-decays/s**

 $(\equiv LHC particle production)$

experimental challenges

- ₩ 10-3 isotope content in source
- ♦ 10-5 non-adiabaticity in electron transport
- ♦ 10-6 monitoring of HV-fluctuations
- ₩ 10-8 remaining ions after source
- ⓑ 10-14 remaining flux of molecular tritium

total background: 10⁻² cps

 $(\equiv low level @ 1 mwe)$

reached or exceeded

KATRIN – challenges and solutions

required: source fluctuation: $\Delta T < 10^{-3}$

required: HV-fluctuations: $\Delta U < 60 \text{ mV}$

21 July 24, 2015 G. Drexlin – KATRIN

- **TLK**: unique large research facility at KIT for KATRIN and fusion (ITER) 20 years of experience in tritium handling and processing, 20 g on-site

B. Bornschein et al., Fusion Sci. Techn. 60 (2011) 1088

LARA – Laser Raman Spectroscopy

electrostatic spectrometers & detector

LFCS low-field fine-tuning EMCS earth field compensation

main spectrometer vessel

2011: fully commissioned large Helmholtz coil system

January 2012: Inner electrode system (24.000 wires) completely mounted (precision: 200 µm!)

spectrometer commissioning

two long-term commissioning phases SDS-I/SDS-II in 2013-15 to verify:

- concepts & functionality of all components: UHV, HV, SC, DAQ,...
- MAC-E filter characteristics via egun-transmission studies
- background model (electrons) & optimise bg-suppression methods

transmission studies & mapping

transmission studies & mapping

de-magnetisation of hall

background sources - I

background sources - I

KIT-KCETA

background sources - I

background sources - II

KATRIN – future steps

mid-end '16: first exploratory with small T2 column densities, ramp up

early 17: operate with nominal T2 column densities, egun runs, v-mass, .

spectral shape modification & MTD

shape modification: information on m²(v_e) mainly from region 4 eV below E₀ Solution of the second second

spectral shape - integral measurement

only relative spectral shape is measured, no absolute measurement

4 parameters:

 m_v^2 (eV²)

0.05

0.00

- background rate R_{bg}
- signal amplitude Asig
- endpoint energy E₀
- neutrino mass $m^2(v_e)$

 $\rho = 0.67$

0.00

E₀ - 18575 (eV)

- parameter correlations:

-0.01

KATRIN neutrino mass sensitivity

light sterile neutrinos: reactor anomaly

shape modification below E_0 by active $(m_a)^2$ and sterile $(m_s)^2$ neutrinos

light sterile neutrinos: reactor-v-anomaly

KATRIN sensitivity reevaluated for light (ev-scale) sterile neutrinos parameter region Δm² ~ 1 eV, sin² 2θ_s ~ 0.1 has been suggested by reactor anti-neutrino anomaly

keV-mass sterile neutrinos

shape modification by keV-mass sterile neutrino with mass m_s

KATRIN-a novel detector system (TRISTAN)

 main spectrometer operated at variable retarding potential (0-18.6 keV) huge signal rates O(10¹⁰ cps)

cover entire phase-space of T2 ß-decay

search for kink-like structure

- need detectors with energy resolution of $\Delta E \sim 300 \text{ eV}$ for kink identification

KATRIN-a novel detector system (TRISTAN)

 promising differential read-out technology for kink-search:
 p-type point contact detectors (miniaturized from 0vßß)
 \$\overline\$ array with ~10⁴ pixels

KIT-KCETA

Sensitivity studies (S. Mertens et al.)

- Investigation of theoretical uncertainties (state-of-the-art description of tritium ß-spectrum) on spectral fit & novel wavelet transform (indep. of shape)

Conclusion

2015/16: integration of source components – lots of work to be done...

2016: initial runs as preparation of long-term data taking (2017-...)

R&D on detection of kink-like structure in T2 ß-spectrum

exciting times ahead in measuring neutrino masses from meV-keV