Searching for Sterile and Relic Neutrinos at PTOLEMY

Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield (PTOLEMY)

> Chris Tully Princeton University

19th Paris Chalonge Colloquium July 22-24, 2015

Looking Back in Time

$$n_v = \left(\frac{3}{4}\right) \left(\frac{4}{11}\right) n_\gamma = 112 \,/\,\mathrm{cm}^3$$

per neutrino species (neutrino+antineutrino)

$$T_{v}(t) = \left(\frac{4}{11}\right)^{1/3} T_{CMB}$$

start of nucleosynthesis n/p~0.15*0.74~0.11

$$\frac{\lambda(p \to n)}{\lambda(n \to p)} = e^{-Q/kT}$$

Relic velocity depends on mass

 $\langle v_{rms} \rangle \propto T/m_{v}$ instead of $\propto \sqrt{T/m_{v}}$

 $\langle v_{rms} \rangle = 160 \text{ km/s} (1 \text{ eV}/m_v)$

Dicke, Peebles, Roll, Wilkinson (1965)

IAS Sabbatical (2010)

Precision Cosmology Projections

Dark Energy Spectroscopic Instrument (DESI) Baryon Acoustic Oscillations

Veutrino Counting

Produce ~1M Z bosons at an e⁺e⁻ collider

Scan the line shape in center-of-mass energy

Count the number of hadronic Z decays

Compute the total width from visible decays and add an invisible width scaled by the SM couplings to neutrinos

eutrino Masses from Oscillations

An incredible phenomenon appeared when neutrinos were measured from different sources: solar, atmospheric, reactor, accelerator.

A neutrino created with a definite lepton flavor (in this case, electron or muon) would arrive with a lower probability to be detected with the same flavor and a non-zero probability to have mixed into another flavor.

 $\mathbf{v}_{e}[|U_{ei}|^{2}] \qquad \mathbf{v}_{\mu}[|U_{\mu i}|^{2}] \qquad \mathbf{v}_{\tau}[|U_{\tau i}|^{2}]$

Tritician

Tritium β-decay (12.3 yr half-life)

Neutrino capture on Tritium

6

Relic Neutrino Detection

- Basic concepts for relic neutrino detection were laid out in a paper by Steven Weinberg in 1962 [*Phys. Rev.* 128:3, 1457]
 - Look for relic neutrino capture on tritium by measuring electrons at or above the endpoint spectrum of tritium beta-decay

Figure 1: Emitted electron density of states vs kinetic energy for neutrino capture on beta decaying nuclei. The spike at Q + 2m is the CNB signal

Tritium and other isotopes studied for relic neutrino capture in this paper: JCAP 0706 (2007)015, hep-ph/0703075 by Cocco, Mangano, Messina

Relic Neutrino Capture Rates

- Target mass: 100 grams of tritium (2 x 10²⁵ nuclei)
- Capture cross section * (v/c) ~ 10⁻⁴⁴ cm² (flat up to 10 keV)
- (Very Rough) Estimate of Relic Neutrino Capture Rate:
- (56 v_e /cm³) (2 x 10²⁵ nuclei) (10⁻⁴⁴ cm²) (3 x 10¹⁰ cm/s) (3 x10⁷s)

Lazauskas, Vogel, Volpe: J.Phys.G G35 (2008) 025001 Cocco, Mangano, Messina: JCAP 0706 (2007) 015

$\sigma(v/c)=(7.84\pm0.03)x10^{-45}cm^2$ Known to better than 0.5%

Gravitational clumping could potentially increase the local number of relic neutrinos. For low masses ~0.15eV, the local enhancement is ~x1.5

Ringwald and Wong (2004)

~ 10 events/yr

Dirac versus Majorana Neutrinos

Relic neutrinos are uniquely the largest source of non-relativistic neutrinos

Long, Lunardini, Sabancilar: arXiv:1405.7654 **Factor of 2 difference in capture rate**

- Neutrinos decouple at relativistic energies

- Helicity (not chirality) is conserved as the universe expands and the relic neutrinos become non-relativistic

Dirac: after expansion, only ~half of left-handed helical Dirac neutrinos are left-handed chiral (active) and antineutrinos are not captured Majorana: ~half of left-handed helical neutrinos are chiral left-handed and

half of right-handed helical neutrinos are chiral left-handed (active)

If neutrinos are Majorana, lepton number is not conserved → Leptogenesis

Sterile Neutrinos

where sensitivities down to $|U_{e4}|^2 \sim 10^{-8}$ may be possible.

Relevant Parameter Space

Sterile neutrino (inverse) lifetime

$$\frac{1}{\tau} = (6 \times 10^{-33} \text{s}^{-1}) \left[\frac{\sin^2(2\theta)}{10^{-10}} \right] \left[\frac{m_s}{\text{keV}} \right]^5$$

10 keV: $sin^{2}(2\theta) \sim 10^{-2}$ (~ age of universe) → WDM overdensity $sin^{2}(2\theta) \sim 10^{-5}$ → Too bright $sin^{2}(2\theta) < \sim 10^{-7}$ → Dim enough to be (yet) undiscovered

7 keV: $\sin^2(2\theta) < \sim 10^{-6}$ 4 keV: $\sin^2(2\theta) < \sim 10^{-5}$ 2.5 keV: $\sin^2(2\theta) < \sim 10^{-4}$ Rough estimates of current X-Ray observation sensitivities (Please see other presentations)

Sterile Neutrino Kink Finding

Mixing of keV-neutrinos and light neutrinos with mixing angle θ :

Sensitivity Scan

Fractional Uncertainty in Fitted Heavy Neutrino $\sin^2 \theta$

13

Limiting Systematics

Expected versus Observed Calorimeter Resolution
 – Single most important systematic:

Energy Resolution Uncertainty

 Scanning Base Calorimeter Resolution from 0.1eV to 50eV and fitting with the correct resolution had less effect than using 50eV resolution and applying a 10% shift up and

down in the fit

Sensitivity completely lost

Limiting Systematics

Expected versus Observed Calorimeter Resolution

 Single most important systematic:

Energy Resolution Uncertainty

 Scanning Base Calorimeter Resolution from 0.1eV to 50eV and fitting with the correct resolution had less effect than using 50eV resolution and applying a 10% shift up and

down in the fit

Higher absolute energy resolution visibly important

Fractional Difference in Fitted Heavy Neutrino $\sin^2 \theta$

5

Hydrogen (Isotope) Bonding

Tritium experiments typically use diatomic tritium T² where the bond strength is approximately 4eV. But what happens when one T atom decays?

Bodine, Parno, Robertson: arXiv:1502.03497 Answer:

Quantum Mechanics tells us that the outgoing electron energy depends on the change in the binding energy of T² to $(T-^{3}He)^{*}$ - smearing >0.4eV

Graphene

Tritium on Graphene

- In the hunt for alternative energies, there has been a great focus on the development of Hydrogen storage systems
 - Hydrogen binds to the surface of graphene in a solid form (6%wt) at room temperature, but with a weak enough binding that the hydrogen can be readily released

 Single-sided-hydrogenated Graphene
 Planar (uniform bond length)
 Semiconductor (~Si gap)
 Polarized tritium(?)

~3x10¹³ T/mm² (~80kHz of decays/mm²)

Different forms of hydrogenated graphene have a hydrogen binding energy less than 3eV with potentially no binding for He³

THE Challenge

- The largest and nearly insurmountable problem of relic neutrino detection is to provide a large enough surface area to hold at least 100 grams of weakly bound atomic tritium
 - The trajectory of the outgoing electrons from tritium decay must have a clear vacuum path to the calorimeter (up to one or two atomic layers of carbon or up to a few hundred layers of tritium)
 - Need approximately 10⁶ m² of expose surface area, that's ~200 football fields
 - Cannot be achieved with a flat planar surface needs nanotechnology and micro-pattern fabrication to solve

Charcoal

Charcoal Surface Area ~7x10⁵ m²/kg

21

CMS Magnet at the LHC

With this "Charcoal"-like structure, 10⁶ m² fits within the CMS solenoid volume (left) with ~0.5mm layer spacing

Lyman Sptizer, Jr. (1950's), Van Allen 22

PTOLEMY Experimental Layout

Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield

23

Transition-Edge Sensors for Calorimetry

 ANL Group (Clarence Chang) estimates ~0.55eV at 1keV and ~0.15eV at 0.1keV operating at 70-100mK

Bandwidths of ~1 MHz to record ~10kHz of electrons hitting the individual sensors

Bill Jones

30.0kV X90.0 333.m

(working with Jack Sadleir, Harvey Moseley, Elmer Sharp and others at Goddard GSFC)

Highly Multiplexed SQUID Readout

Microwave-readout Massive SQUID Multiplexer

- Change in flux changes SQUID inductance
- at 1-10 GHz, can support ~1 MHz of bandwidth with ~1000 channels per line
- Originally developed for CMB measurements, recently demonstrated successful operation with X-ray u-cals

Kent Irwin

TES

PTOLEMY MAC-E Filter

PTOLEMY

N374

OLAN

PPPL February 2013

N374

Calorimeter Interface to MAC-E Filter

Recent Progress

Side View (PPPL)

Supported by: The Simons Foundation

End on View (May 11, 2015)

30

Recent Progress

Dilution Refridgerator in prep – waiting for custom dewar from KADEL Electrodes poilshed and prep'd – following discussions with V. Pantuyev (Troisk) NASA Goddard potential collaborator with C. Chang (ANL) on calorimeter

Tritrated-Graphene expect by end of summer from P. Cloessner (SRNL) Simulations of atomically smeared endpoint spectra show graphene improvement Project 8 has independently achieved 1st single electron RF detection Precision e-source under development by AdvEnergySystems (Forrestal campus)

Upcoming milestone (summer 2015): Demonstrate graphene resolution improvements on tritium endpoin

> Side View (PPPL)

Supported by: The Simons Foundation

31

End on View (May 11, 2015)

Sensitivity to Shifts and Smearing

Direct measurement of systematic uncertainties from e⁻ energy smearing

~10¹⁴ electrons from GEANT4 simulation (perfect resolution, ~1 month of data with 1µg ³H)

Goals: Measure relative endpoint shifts of graphene compared to T² and determined relative energy smearing

Future: Ultra-weak surface binding below the room temperature stability limit.

Liouville's Theorem

• "Parallel" and "Orthogonal" MAC-E Filters – KATRIN $\nabla \vec{B} \parallel \vec{B}$

- Magnetic flux expands in fringe field between pair of solenoids
- All electrons pass through one Area aperture
- PTOLEMY $\nabla \vec{B} \perp \vec{B}$
 - Adiabatic invariant conserved under transverse drift
 - Electrons drift orthogonal to B field under ExB
 - Equivalent Area aperture is replicated many-fold

Semi-relativistic Electron Identification

Project 8 has first detection of ~18keV single electron signal!

Asner et al., "Single electron detection and spectroscopy via relativistic cyclotron radiation", arXiv:1408.5362

• RF tracking (p_T and transit time) and time-of-flight

Q-Band Waveguide "Magic Tee" WMAP HEMT

Annual Modulation of Cosmic Relic Neutrinos

Sensitivity to relic neutrino velocity and direction through annual **modulation** amplitude (0.1-1%) and phase

B. Safdi, M. Lisanti, et al. http://arxiv.org/pdf/1404.0680.pdf

CMB rest frame = Relic Neutrino Rest Frame?

Polarized Tritium Nucleus http://arxiv.org/abs/1407.0393 Safdi, Lisanti, CGT

Velocity sensitivity provides possibility to measure: Relic Neutrino Rest Frame, and potentially, 36 Relic Neutrino Temperature (from velocity and mass)

Overview of Neutrino Experiments

Summary

