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Outline

Idea is to look at some current cosmological questions,
particularly in the light of the CMB
Can pose these as:

Does ΛCDM explain everything we see in the CMB?
Is there structure in the primordial power spectrum coming out of
inflation?
Is late time evolution of the universe compatible with just a
cosmological constant?
What is the optical depth due to reionization?
Can we find the time history of reionization?
When will we discover the background of gravitational waves, either
directly, or indirectly via the CMB? (Update on BICEP)
Is the power spectrum of the matter distribution we see today
compatible with the CMB (First DES results)
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The standard model
ΛCDM model has 6 parameters

Physical density in baryons
Ωbh2

(h = H0/100 km s−1Mpc−1)
Physical density in cold dark
matter Ωch2

100× angular diameter of
sound horizon at last
scattering 100θ∗
Optical depth due to
reionisation τ
Slope of the primordial power
spectrum of fluctuations ns

Amplitude of the primordial
power spectrum (at a given
scale) As

Given these, can predict the power
spectrum of the CMB, both in
temperature and polarization
Can supplement this, with
measurements of effects of the same
scale (how far the sound waves
travelled by recombination) as traced
by matter (BAO)



Standard Model (contd.)

From the parameters, we can
calculate the Transfer Function
which goes between the initial
power spectrum (in k ) coming out
of inflation and the CMB power
spectrum in `

PolyChord in action
Primordial power spectrum PR(k) reconstruction

logPR(k)

log k

As

(
k
k∗

)ns−1

Planck Collaboration: Constraints on inflation 3

surements of Galactic dust properties (Planck Collaboration Int.
XIX, 2014), it was shown that the interpretation of the B-mode
polarization signal in terms of a primordial tensor signal plus a
lensing contribution was not statistically preferred to an expla-
nation based on the expected dust signal at 150 GHz plus a lens-
ing contribution (see also Flauger et al., 2014a; Mortonson &
Seljak, 2014). Subsequently, Planck Collaboration XXX (2014)
extrapolated the Planck B-mode power spectrum of dust polar-
ization at 353 GHz over the multipole range 40 < ` < 120 to
150 GHz, showing that the B-mode polarization signal detected
by BICEP2 could be entirely due to dust.

More recently, a BICEP2/Keck Array-Planck (BKP) joint
analysis (BICEP2/Keck Array and Planck Collaborations, 2015,
herafter BKP) combined the high sensitivity B-mode maps from
BICEP2 and Keck Array with the Planck maps at higher fre-
quencies where dust emission dominates. A study of the cross-
correlations of all these maps in the BICEP2 field found the
absence of any statistically significant evidence for primordial
gravitational waves, setting an upper limit of r < 0.12 at
95 % CL (BKP). Although this upper limit is numerically al-
most identical to the Planck 2013 result obtained combining
the nominal mission temperature data with WMAP polarization
to remove parameter degeneracies (Planck Collaboration XVI,
2014; Planck Collaboration XXII, 2014), the BKP upper bound
is much more robust against modifications of the inflationary
model, since B-modes are insensitive to the shape of the pre-
dicted scalar anisotropy pattern. In Sect. 13 we explore how the
recent BKP analysis constrains inflationary models.

This paper is organized as follows. Section 2 briefly re-
views the additional information on the primordial cosmologi-
cal fluctuations encoded in the polarization angular power spec-
trum. Section 3 describes the statistical methodology as well
as the Planck and other likelihoods used throughout the pa-
per. Sections 4 and 5 discuss the Planck 2015 constraints on
scalar and tensor fluctuations, respectively. Section 6 is dedi-
cated to constraints on the slow-roll parameters and provides a
Bayesian comparison of selected slow-roll inflationary models.
In Sect. 7 we reconstruct the inflaton potential and the Hubble
parameter as a Taylor expansion of the inflaton in the observ-
able range without relying on the slow-roll approximation. The
reconstruction of the curvature perturbation power spectrum is
presented in Sect. 8. The search for parameterized features is
presented in Sect. 9, and combined constraints from the Planck
2015 power spectrum and primordial non-Gaussianity derived
in Planck Collaboration XVII (2015) are presented in Sect. 10.
The analysis of isocurvature perturbations combined and corre-
lated with curvature perturbations is presented in Sect. 11. In
Sect. 12 we study the implications of relaxing the assumption
of the statistical isotropy of the power spectrum of primordial
fluctuations. We discuss two examples of anisotropic inflation in
light of the tests of isotropy performed in Planck Collaboration
XVI (2015). Section 14 presents some concluding remarks.

2. What new information does polarization
provide?

This section provides a short theoretical overview of the extra in-
formation provided by polarization data over that of temperature
alone. (More details can be found in White et al. (1994); Ma &
Bertschinger (1995); Bucher (2014), and references therein.) In
Sect. 2 of the Planck 2013 inflation paper (PCI13), we gave an
overview of the relation between the inflationary potential and
the three-dimensional primordial scalar and tensor power spec-
tra, denoted asPR(k) andPt(k), respectively. (The scalar variable
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Fig. 1. Comparison of transfer functions for the scalar and ten-
sor modes. The CMB transfer functions ∆s

`,A(k) and ∆t
`,A(k),

where A = T, E, B, define the linear transformations mapping
the primordial scalar and tensor cosmological perturbations to
the CMB anisotropies as seen by us on the sky today. These
functions are plotted for two representative values of the mul-
tipole number: ` = 2 (in black) and ` = 65 (in red).

R is defined precisely in Sect. 3). We shall not repeat the discus-
sion there, instead referring the reader to PCI13 and references
therein.

Under the assumption of statistical isotropy, which is pre-
dicted in all simple models of inflation, the two-point corre-
lations of the CMB anisotropies are described by the angular
power spectra CTT

` , CT E
` , CEE

` , and CBB
` , where ` is the multipole

number. (See Kamionkowski et al. (1997); Zaldarriaga & Seljak
(1997); Seljak & Zaldarriaga (1997); Hu & White (1997); Hu
et al. (1998) and references therein for early discussions elu-
cidating the role of polarization.) In principle, one could also
envisage measuring CBT

` and CBE
` , but in theories where parity

symmetry is not explicitly or spontaneously broken, the expecta-
tion values for these cross spectra (i.e., theoretical cross spectra)
vanish, although the observed realizations of the cross spectra
are not exactly zero because of cosmic variance.

The CMB angular power spectra are related to the three-
dimensional scalar and tensor power spectra via the transfer
functions ∆s

`,A(k) and ∆t
`,A(k), so that the contributions from

scalar and tensor perturbations are

CAB,s
`

=

∫ ∞

0

dk
k

∆s
`,A(k) ∆s

`,B(k) PR(k) (1)

Example transfer functions for ` = 2
(black) and ` = 65 (red)

(From Planck 2015 Inflation paper, 1502.0211)



Power spectrum

The measured Planck
power spectra contain
∼ 2500 independent
modes
They are overall in
extremely good agreement
with the predictions of the
6-parameter model!
However, hint of a possible
‘dip’ between ` = 25–30,
and general depression at
low `

2015 



Primordial power spectrum reconstruction

One can go about this either
in terms of fitting
parameterised features, or via
a free-form reconstruction
We did both in inflation paper,
but here want to look at latter
One way was a
(frequentist-style) Maximum
likelihood approach — can’t in
fact invert but can use a
regularised likelihood
incorporating penalty
functions
But what criteria can there be
for choosing the parameters
of the penalty function and
deciding on the significance of
the result

So we carried out a Bayesian
analysis, using a free-form
function, in which Bayesian
evidence is used to determine
the number of ‘features’
allowed
We have

P(M|D) =
P(D|M)P(M)

P(D)

where M = model and D =
data, so in comparing models
with the same data, and
assuming the same prior
probability of the models
themselves we can compare
their probability directly using

P(D|M) — the Evidence



Primordial power spectrum reconstruction (contd.)

Method is to lay down N
‘nodes’ with N variable and
calculate evidence as a
function of N
Each node introduces two
additional parameters, and
resulting posterior
distributions are generally
multimodal
Previous samplers, like that in
COSMOMC, or MULTINEST
were not able to deal with the
high-dimensionality

So we introduced a new sampling
method: ‘POLYCHORD’ (Handley,
Hobson & Lasenby)
arXiv:1502.01856 and 1506.00171

Note (technical point) can deal
well with fast/slow parameters
Used in other parts of Planck
Inflation paper as well



PolyChord in action
Primordial power spectrum PR(k) reconstruction
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PolyChord in action
Primordial power spectrum PR(k) reconstruction

logPR(k)

log k

(k1,P1)

(k2,P2)



PolyChord in action
Primordial power spectrum PR(k) reconstruction
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PolyChord in action
Primordial power spectrum PR(k) reconstruction
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PolyChord in action
Primordial power spectrum PR(k) reconstruction
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0 internal nodes
Primordial power spectrum PR(k) reconstruction
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1 internal nodes
Primordial power spectrum PR(k) reconstruction
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2 internal nodes
Primordial power spectrum PR(k) reconstruction
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3 internal nodes
Primordial power spectrum PR(k) reconstruction
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4 internal nodes
Primordial power spectrum PR(k) reconstruction
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5 internal nodes
Primordial power spectrum PR(k) reconstruction
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6 internal nodes
Primordial power spectrum PR(k) reconstruction
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7 internal nodes
Primordial power spectrum PR(k) reconstruction
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8 internal nodes
Primordial power spectrum PR(k) reconstruction
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Bayes Factors
Primordial power spectrum PR(k) reconstruction
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Marginalised plot
Primordial power spectrum PR(k) reconstruction
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Model comparison

We have also been applying these methods to the equation of
state parameter w versus redshift
This is in Hee, Vazquez, Handley, Hobson & Lasenby, recently
submitted (arXiv:1607.00270)
Data used is Planck 2015, BOSS DR 11, JLA supernovae and
Font-Ribera et al. (2015) and Delubac et al. (2015) BOSS Lyα
data4 S. Hee, W. Handley, A.N. Lasenby, M.P. Hobson
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 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 high redshift

w
(z

)

z

An Example Nodal Reconstruction of w(z) - 2 Nodes Varying in z

Figure 1. The nodal reconstruction flexibly allows the parameter estimation process to define the preferred shape of w(z) from the

data by linearly interpolating nodes whose amplitudes and positions (for internal nodes) can vary as required. The figure shows the
interpolation process, and highlights how nodes can vary. Outside the prior space of x nodes (the grey areas), w(z) is set to constant.

needed to best fit the data, in other words the preferred com-
plexity inherent in the data. Reviewing a plot of Prob(y|x)
for the whole y(x) plane of this preferred model identifies
clearly the structure of the data constraints on y(x).

The key strength of the reconstruction is that the free-form
nature of the linear interpolation can capture any shape
of function in the y(x) plane by adding arbitrarily large
numbers of nodes. Providing the model selection criterion
penalises over complex models appropriately by weighing
‘goodness-of-fit’ against the numbers of parameters in the
model (Occam’s Razor), identifying how much complexity
the data supports is given in a clear and unambiguous man-
ner by the favoured number of nodes. Model selection tech-
niques can thus be used to solve questions on the constrain-
ing power of the data, as successfully shown in various cos-
mological applications (Vázquez et al. 2012a,b; Planck Col-
laboration et al. 2015).

The nodal reconstructions are nested models, and although
the algebra and calculations do not use this fact when calcu-
lating the Bayes factors, we explicitly validate the method
with a non-nested model selection problem for completeness,
by comparing a 4-node reconstruction with a sinusoidal re-
construction in the toy data fitting model. The rest of the
section contains the results of the applications and high-
lights further strengths and weaknesses of the Posterior(N)
method.

4.1 Fitting a function to data

A common situation in scientific experimentation is that one
has a set of jmax data points {(xj , yj), j=1, · · · , jmax} with
experimental errors {(σxj , σyj )} on each of the points. As-
suming there is a functional relationship between the inde-
pendent variable x and dependent variable y, captured by
y=f(x), then the likelihood of observing this data is given

by:

Prob({xj , yj}|{σxj , σyj}, f,X−, X+) =

jmax∏

j=1

X+∫

X−

dXj

exp

[
− (xj−Xj)

2

2σ2
xj

− (yj−f(Xj))2

2σ2
yj

]

2πσxjσyj (X+ −X−)
, (11)

where X−, X+ are the end points of the uniform region in
which the data points may be found a priori. A Bayesian
derivation of this likelihood can be found in Appendix A,
for more detail see Sivia & Skilling (2006).

The Bayesian approach is to invert this likelihood to find the
probability distribution of the function f , given the data.
Typically this is done by assuming some parametric form of
the function f , and sampling the posterior of the parameters
governing the shape of the function. In this context, we will
do this for the family of functions described at the beginning
of Section 4, and use Bayes factors to determine how many
nodes optimally reconstruct the function.

We test 4 different datasets, shown in Figure 2. The ev-
idences and Posterior(N) approaches for calculation Bayes
factors are compared for each dataset to clearly demonstrate
that the Posterior(N) method is valid. What can be said
about the constraints on the y(x) plane given the data is
also discussed, as this is important for the dark energy re-
construction problem.

Sets (a) and (b) are straight line functions constructed from
11 datapoints uniformly distributed in x and with error bars
of 0.05 in both x and y for dataset (a) and 0.1 for dataset
(b). Set (d) has 46 datapoints drawn from the function
y= sin(2πx) in the range x ∈ [0, 2], with each point adjusted
in x and y by random Gaussian noise with µ=0 and σ=0.05
(error bars on datapoints are σ). Set (c) has 48 datapoints
drawn as in (d) but from a function of 4 nodes coinciding
with the function y= sin(2πx) at x=0, 0.25, 0.75, 1, so that
it is very difficult by eye to distinguish the two datasets as
being drawn from different functions. We call the function
used in (c) line(2πx) for brevity.

For each of the datasets we test models with 1 internal node
up to 7 internal nodes (3 total nodes up to 9 total nodes;
2 lines up to 8 lines), using PolyChord (Handley et al.

c© 2015 RAS, MNRAS 000, 1–15

So we set up cases with (a) no internal node and two end points
the same (fixed w), (b) no internal nodes and end points can
move (a ‘tilt’), (c) 1 internal node, etc.



flat, variable w
w(z) reconstruction
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tilted
w(z) reconstruction
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1 internal node
w(z) reconstruction
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2 internal nodes
w(z) reconstruction
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3 internal nodes
w(z) reconstruction
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marginalised plot - just extension models
w(z) reconstruction
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marginalised plot - including LCDM
w(z) reconstruction
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prior
w(z) reconstruction
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Kullback–Leibler divergence

So ΛCDM wins in all cases (Bayes factors range from −2.3 to
−3.4 over the examples considered), but preference for
‘supernegative’ values at higher z of interest
We have also been looking at a quantitative measure of the
information and constraining power in a given dataset
The Kullback–Leibler divergence of a posterior distribution
Pr(w |z) from a prior π(w |z) is

DKL(z) =

∫
Pr(w |z) ln

[
Pr(w |z)

π(w |z)

]
dw

This provides the gain in information on w at each z. (We
marginalise both the priors and posteriors over all other
parameters before doing this.)
By doing this with different datasets added/removed, provides an
interesting way of understanding where (and which) data sets
are most constraining in z
Think this could be useful in survey design as well as analysis



Reconstruction of xe history

Planck Collaboration: Planck constraints on reionization history
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Fig. 4. Left: Evolution of the ionization fraction for several functions, all having the same optical depth, τ = 0.06: green and blue are
for redshift-symmetric instantaneous (δz = 0.05) and extended reionization (δz = 0.7), respectively; red is an example of a redshift-
asymmetric parameterization; and light blue and magenta are examples of an ionization fraction defined in redshift bins, with two
bins inverted between these two examples. Right: corresponding EE power spectra with cosmic variance in grey. All models have
the same optical depth τ = 0.06 and are essentially indistinguishable at the reionization bump scale.

panded around a given fiducial model for CEE
` . Moreover, the po-

tential bias on the τ measurement when analysing a more com-
plex reionization history using a simple sharp transition model
(Holder et al. 2003; Colombo & Pierpaoli 2009) is considerably
reduced for the (lower) τ values as suggested by the Planck re-
sults. Consequently, we do not consider the non-parametric ap-
proach further.

4. Measuring reionization observables

Reionization leaves imprints in the CMB power spectra, both
in polarization at very large scales and in intensity via the sup-
pression of TT power at higher `. Reionization also affects the
kSZ effect, due to the re-scattering of photons off newly liberated
electrons.

4.1. Large-scale CMB polarization

Thomson scattering between the CMB photons and free elec-
trons generates linear polarization from the quadrupole moment
of the CMB radiation field at the scattering epoch. This occurs
at recombination and also during the epoch of reionization. Re-
scattering of the CMB photons at reionization generates an ad-
ditional polarization anisotropy at large angular scales, because
the horizon size at this epoch subtends a much larger angular
size. The multipole location of this additional anisotropy (essen-
tially a bump) in the EE and T E angular power spectra relates to
the horizon size at the new “last-rescattering surface” and thus
depends on the redshift of reionization. The height of the bump
is a function of the optical depth or, in other words, of the history
of the reionization process. Such a signature (i.e., a polarization
bump at large scales) was first observed by WMAP, initially in
the T E angular power spectrum (Kogut et al. 2003), and later in
combination with all power spectra (Hinshaw et al. 2013).

In Fig. 3 we show for the “instantaneous” reionization case
(specifically the redshift-symmetric parameterization with δz =
0.5) power spectra for the E-mode polarization power spec-
trum CEE

` and the temperature-polarization cross-power spec-
trum CT E

` . The curves are computed with the CLASS Boltzmann

solver (Lesgourgues 2011) using τ values ranging from 0.04 to
0.08. For the range of optical depth considered here and given
the amount of cosmic variance, the T E spectrum has only a
marginal sensitivity to τ, while in EE the ability to distinguish
different values of τ is considerably stronger.

In Fig. 4 (left panel), the evolution of the ionized fraction
xe during the EoR is shown for five different parameterizations
of the reionization history, all yielding the same optical depth
τ = 0.06. Despite the differences in the evolution of the ioniza-
tion fraction, the associated CEE

` curves (Fig. 4, right panel) are
almost indistinguishable. This illustrates that while CMB large-
scale anisotropies in polarization are only weakly sensitive to the
details of the reionization history, they can nevertheless be used
to measure the reionization optical depth, which is directly re-
lated to the amplitude of the low-` bump in the E-mode power
spectrum.

We use the Planck data to provide constraints on the
Thomson scattering optical depth for “instantaneous” reioniza-
tion. Figure 5 shows the posterior distributions for τ obtained
with the different data sets described in Sect. 2 and compared
to the 2015 PlanckTT+lowP results (Planck Collaboration XIII
2016). We show the posterior distribution for the low-` Planck
polarized likelihood (lollipop) and in combination with the
high-` Planck likelihood in temperature (PlanckTT). We also
consider the effect of adding the SPT and ACT likelihoods
(VHL) and the Planck lensing likelihood, as described in
Planck Collaboration XV (2016).

The different data sets show compatible constraints on the
optical depth τ. The comparison between posteriors indicates
that the optical depth measurement is driven by the low-` like-
lihood in polarization (i.e., lollipop). The Planck constraints
on τ for a ΛCDM model when considering the standard “instan-
taneous” reionization assumption (symmetric model with fixed

6

Method also seems
well-adapted to attempts to
reconstruct the reionization
history
Above is from the recent
Planck paper on ‘Planck
constraints on reionisation
history’, arXiv:1605.03507

The different histories at the
left all have the same τ
(= 0.06) and give rise to the
different EE spectra shown at
the right
Grey band is cosmic variance



Reconstruction of xe history

Point about our method is that
since evidence is used to
determine the number of
nodes, it’s still of interest to
attempt a reconstruction, just
to see the ‘confidence band’
of models consistent with the
data
We use similar data as for the
w(z) reconstruction, including
the Planck 2015 likelihoods
and this time with Planck
lensing as well (should help
break the Ase−2τ

degeneracy)

z

xe

Note this attempt just preliminary —
known things wrong with it
As HI reionization era data starts to
come in from the experiments, will be
very interesting to incorporate this
data in such an approach



τ history

Planck Collaboration: Large-scale polarization and reionization

Fig. 41. History of τ determination with WMAP and Planck. We have omitted the first WMAP determination (τ = 0.17 ± 0.04,
Bennett et al. 2003), which was based on T E alone.

Table 8. Parameter constraints for the base ΛCDM cosmology (as defined in Planck Collaboration XVI 2014), illustrating the impact
of replacing the LFI-based lowP likelihood (used in the 2015 Planck papers) with the HFI-based SimLow likelihood discussed in
the text. We also present here the change when including the high-` polarization.

PlanckTT+lowP PlanckTT+SIMlow PlanckTTTEEE+lowP PlanckTTTEEE+SIMlow
Parameter 68 % limits 68 % limits 68 % limits 68 % limits

Ωbh2 . . . . . . . . . . 0.02222 ± 0.00023 0.02214 ± 0.00022 0.02225 ± 0.00016 0.02218 ± 0.00015

Ωch2 . . . . . . . . . . 0.1197 ± 0.0022 0.1207 ± 0.0021 0.1198 ± 0.0015 0.1205 ± 0.0014

100θMC . . . . . . . . 1.04085 ± 0.00047 1.04075 ± 0.00047 1.04077 ± 0.00032 1.04069 ± 0.00031

τ . . . . . . . . . . . . 0.078 ± 0.019 0.0581 ± 0.0094 0.079 ± 0.017 0.0596 ± 0.0089

ln(1010As) . . . . . . . 3.089 ± 0.036 3.053 ± 0.019 3.094 ± 0.034 3.056 ± 0.018

ns . . . . . . . . . . . 0.9655 ± 0.0062 0.9624 ± 0.0057 0.9645 ± 0.0049 0.9619 ± 0.0045

H0 . . . . . . . . . . . 67.31 ± 0.96 66.88 ± 0.91 67.27 ± 0.66 66.93 ± 0.62

Ωm . . . . . . . . . . . 0.315 ± 0.013 0.321 ± 0.013 0.3156 ± 0.0091 0.3202 ± 0.0087

σ8 . . . . . . . . . . . 0.829 ± 0.014 0.8167 ± 0.0095 0.831 ± 0.013 0.8174 ± 0.0081

σ8Ω0.5
m . . . . . . . . . 0.466 ± 0.013 0.463 ± 0.013 0.4668 ± 0.0098 0.4625 ± 0.0091

σ8Ω0.25
m . . . . . . . . 0.621 ± 0.013 0.615 ± 0.012 0.623 ± 0.011 0.6148 ± 0.0086

zre . . . . . . . . . . . 9.891.8
−1.6 8.11 ± 0.93 10.01.7

−1.5 8.24 ± 0.88

109Ase−2τ . . . . . . . 1.880 ± 0.014 1.885 ± 0.014 1.882 ± 0.012 1.886 ± 0.012

Age/Gyr . . . . . . . 13.813 ± 0.038 13.829 ± 0.036 13.813 ± 0.026 13.826 ± 0.025

the ΛCDM model predicts. The high-multipole peak smooth-
ing is compatible with a slightly stronger lensing amplitude,
and translates into a roughly 2σ-high phenomenological pa-
rameter AL value. The AΦΦ

L = 0.95 ± 0.04 value derived from
the lensing power spectrum (Planck Collaboration XIII 2016)
supports that this would just be a statistical fluctuation, rather
than a peculiar feature of the lensing power spectrum itself.
Nevertheless, the preference for a larger lensing amplitude at

high multipoles pushes the normalization and the optical depth
values up. The lowP likelihood was not statistically powerful
enough to counteract this trend, and so in the PlanckTT+lowP
analysis τ is driven upwards compared to Eq. (13). This effect
is discussed at length in Planck Collaboration XVI (2014) and
Planck Collaboration XIII (2016).

Adding the Planck lensing measurements, which are com-
patible with lower values of As, drives τ down again, close to the

30

τ

WMAP 1 (TE)

Plot is from ‘Planck intermediate results. XLVI. Reduction of
large-scale systematic effects in HFI polarization maps and estimation
of the reionization optical depth’, arXiv:1605.02985

WMAP first year point (TE only) has been added in



Cosmic reionization constraints

2 Robertson et al.

2. CONTRIBUTION OF Z < 10 GALAXIES TO LATE
REIONIZATION

2.1. Cosmic Star Formation History

If Lyman continuum photons from star-forming galax-
ies dominate the reionization process, an accounting of
the evolving SFR density will provide a measure of the
time-dependent cosmic ionization rate

ṅion = fescξionρSFR, (1)

where fesc is the fraction of photons produced by stel-
lar populations that escape to ionize the IGM, ξion
is the number of Lyman continuum photons per sec-
ond produced per unit SFR for a typical stellar pop-
ulation, and ρSFR is the cosmic SFR density. Fol-
lowing Robertson et al. (2013), we adopt a fiducial es-
cape fraction of fesc = 0.2 and, motivated by the rest-
frame UV spectral energy distributions of z ∼ 7 − 8
galaxies (Dunlop et al. 2013), a fiducial Lyman con-
tinuum photon production efficiency of log10 ξion =
53.14 [Lyc photons s−1M−1

⊙ yr]. Somewhat larger val-
ues of ξion may also be acceptable (e.g., Topping & Shull
2015).
The observed infrared and rest-frame UV luminos-

ity functions (LFs) provide a means to estimate ρSFR.
We use the recent compilation of IR and UV LFs pro-
vided in Table 1 of MD14 and references therein to com-
pute luminosity densities ρL to a minimum luminosity
of Lmin = 0.001L⋆, where L⋆(z) is the characteristic
luminosity of each relevant LF parameterization (e.g.,
Schechter or broken power law models)5. We supple-
ment the MD14 compilation by including ρSFR values
computed from the LF determinations at z ∼ 8 by
Schenker et al. (2013), at z ∼ 7 − 8 by McLure et al.
(2013), and estimates at z ∼ 10 by Oesch et al. (2014)
and Bouwens et al. (2014). We include new HST Fron-
tier Fields LF constraints at z ∼ 7 by Atek et al. (2014)
and at z ∼ 9 by McLeod et al. (2014), incorporating
cosmic variance estimates from Robertson et al. (2014).
We also updated the MD14 estimates derived from the
Bouwens et al. (2012) LFs at z ∼ 3− 8 with newer mea-
surements by Bouwens et al. (2014). All data were con-
verted to the adopted Planck cosmology.
We adopted the conversion ρSFR = κρL supplied

by MD14 for IR and UV luminosity densities, i.e.
κIR = 1.73 × 10−10 M⊙ yr−1 L−1

⊙ and κUV = 2.5 ×
10−10 M⊙ yr L−1

⊙ respectively, as well as their redshift-
dependent dust corrections and a Salpeter initial mass
function. Uncertainties on ρSFR are computed using
faint-end slope uncertainties where available, and other-
wise we increased the uncertainties reported by MD14
by the ratio of the luminosity densities integrated to
L = 0.03L⋆ and L = 0.001L⋆. The data points in Fig-
ure 1 show the updated SFR densities and uncertainties
determined from the IR (dark red) and UV (blue) LFs,
each extrapolated to Lmin = 0.001L⋆.
Since we are interested in the reionization history both

up to and beyond the limit of the current observational
data, we adopt the four-parameter fitting function from

5 We adopt this limit since it corresponds to Mmax ≈ −13 at
z ∼ 7, which Robertson et al. (2013) found was required to reionize
the Universe by z ∼ 6. It corresponds to Mmax = M⋆ + 7.5.

Fig. 1.— Star formation rate density ρSFR with redshift. Shown
are the SFR densities from Madau & Dickinson (2014) determined
from infrared (dark red points) and ultraviolet (blue points) lumi-
nosity densities, updated for recent results and extrapolated to a
minimum luminosity Lmin = 0.001L⋆. A parameterized model for
the evolving SFR density (Equation 2) is fit to the data under the
constraint that the Thomson optical depth τ to electron scatter-
ing measured by Planck is reproduced. The maximum likelihood
model (white line) and 68% credibility interval on ρSFR (red re-
gion) are shown. A consistent SFR density history is found even
if the Planck τ constraint is ignored (dotted black line). These
inferences can be compared with a model forced to reproduce the
previous WMAP τ (orange region), which requires a much larger
ρSFR at redshifts z > 5.

MD14 to model ρSFR(z),

ρSFR(z) = ap
(1 + z)bp

1 + [(1 + z)/cp]dp
(2)

and perform a maximum likelihood (ML) determination
of the parameter values using Bayesian methods (i.e.,
Multinest; Feroz et al. 2009) assuming Gaussian errors.
If we fit to the data and uncertainties reported by MD14,
we recover similar ML values for the parameters of Equa-
tion 2. The range of credible SFR histories can then be
computed from the marginalized likelihood of ρSFR by
integrating over the full model parameter likelihoods.

2.2. Thomson Optical Depth

If photons from star forming galaxies drive the reion-
ization process, measures of the Thomson optical depth
inferred from the CMB place additional constraints on
ρSFR. The Thomson optical depth is given by

τ(z) = c〈nH〉σT

∫ z

0

feQHII(z
′)H−1(z′)(1 + z′)2dz′ (3)

where c is the speed of light. The comoving hydrogen
density 〈nH〉 = XpΩbρc involves the hydrogen mass frac-
tion Xp, the baryon density Ωb, and the critical density
ρc. The Thomson scattering cross section is σT . The
number of free electrons per hydrogen nucleus is calcu-
lated following Kuhlen & Faucher-Giguère (2012) assum-
ing doubly ionized helium at z ≤ 4.
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Fig. 2.— Thomson optical depth to electron scattering τ , in-
tegrated over redshift. Shown is the Planck constraint τ =
0.066 ± 0.012 (gray area), along with the marginalized 68% credi-
bility interval (red region) computed from the SFR histories ρSFR
shown in Figure 1. The corresponding inferences of τ(z) from
Robertson et al. (2013) (dark blue region), a model forced to re-
produce the 9-year WMAP τ constraints (orange region), and a
model with ρSFR truncated at z > 8 (light blue region) following
Oesch et al. (2014) are shown for comparison.

The IGM ionized fraction QHII(z) is computed by
evolving the differential equation

Q̇HII =
ṅion

〈nH〉
− QHII

trec
(4)

where the IGM recombination time

trec = [CHIIαB(T )(1 + Yp/4Xp)〈nH〉(1 + z)3]−1 (5)

is calculated by evaluating the case B recombination co-
efficient αB at an IGM temperature T = 20, 000K and
a clumping fraction CHII = 3 (e.g., Pawlik et al. 2009;
Shull et al. 2012). We incorporate the Planck Thomson
optical depth constraints (τ = 0.066± 0.012, treated as
a Gaussian) by computing the reionization history for
every value of the ρSFR model parameters, evaluating
Equation 3, and then calculating the likelihood of the
model parameters given the SFR history data and the
marginalized Thomson optical depth.
Figure 1 shows the ML and 68% credibility interval

(red region) on ρSFR(z) given the ρSFR constraints and
the newly-reported Planck Thomson optical depth. We
find the parameters of Equation 2 to be ap = 0.01376±
0.001 M⊙ yr Mpc−3, bp = 3.26± 0.21, cp = 2.59± 0.14,
and dp = 5.68 ± 0.19. Without the Thomson optical
depth constraint, the values change by less than 1%.
These inferences can be compared with a SFR history
(Figure 1, orange region) forced to match the previous
WMAP measurement (τ = 0.088 ± 0.014) by upweight-
ing the contribution of the derived τ value relative to the
ρSFR data. The model’s ML parameters (ap = 0.01306,
bp = 3.66, cp = 2.28, and dp = 5.29) lie well outside
the range of models that reproduce jointly ρSFR(z) and

the Planck τ . Fitting to only data at z > 3 or only in-
dependent data points at z > 6 changes our credibility
intervals by ∼ 25%.
We can now address the important question of the

redshift-dependent contribution of galaxies to the Planck
τ = 0.066 ± 0.012 in Figure 2. The red region shows
a history which is consistent with the SFR densities
shown in Figure 1 given our simple assumptions for the
escape fraction fesc, early stellar populations, and the
clumpiness of the IGM. Importantly, the reduction in τ
by Planck (compared to WMAP) largely eliminates the
tension between ρSFR(z) and τ that was discussed by
many authors, including Robertson et al. (2013). That
a SFR history consistent with the ρSFR(z) data easily
reproduces the Planck τ strengthens the conclusions of
Robertson et al. (2013) that the bulk of the ionizing pho-
tons emerged from galaxies. Figure 2 shows that the ob-
served galaxy population at z < 10 can easily reach the
68% credibility intervals of τ with plausible assumptions
about fesc and Lmin. As a consequence, the reduced τ
eliminates the need for very high-redshift (z ≫ 10) star
formation (see section 3 below). We note the dust cor-
rection used in computing ρSFR at z ∼ 6 permits an
equivalently lower fesc without significant change in the
derived τ . We note that to reach τ & 0.08 given the
ρSFR(z) constraints requires fesc & 0.3 or CHII . 1.
Figure 2 also shows τ(z) computed with the 9−year

WMAP τ marginalized likelihood as a constraint on the
high-redshift SFR density (blue region; Robertson et al.
2013), which favored a relatively low τ ∼ 0.07. If, in-
stead, the SFR density rapidly declines as ρSFR ∝ (1 +
z)−10.9 beyond z ∼ 8 as suggested by, e.g., Oesch et al.
(2014), the Planck τ is not reached (light blue region).
Lastly, if we force the model to reproduce the best-fit
WMAP τ (orange region), the increased ionization at
high redshifts requires a dramatic increase in the z > 7.5
SFR (see Figure 1) and poses difficulties in matching
other data on the IGM ionization state, as we discuss
next.

2.3. Ionization History

Similarly, we can update our understanding of the
evolving ionization fraction QHII(z) computed during
the integration of Equation 4. Valuable observational
progress in this area made in recent years exploits
the fraction of star forming galaxies showing Lyman-
α emission (e.g., Stark et al. 2010) now extended to
z ∼ 7 − 8 from Treu et al. (2013), Pentericci et al.
(2014) and Schenker et al. (2014), the Lyman-α damping
wing absorption constraints from GRB host galaxies by
Chornock et al. (2013), and the number of dark pixels
in Lyman-α forest observations of background quasars
(McGreer et al. 2015). While most of these results re-
quire model-dependent inferences to relate observables
to QHII , they collectively give strong support for reion-
ization ending rapidly near z ≃6.
Figure 3 shows these constraints, along with the in-

ferred 68% credibility interval (red region; ML model
shown in white) on the marginalized distribution of the
neutral fraction 1 − QHII from the SFR histories shown
in Figure 1 and the Planck constraints on τ . Although
our model did not use these observations to constrain the
computed reionization history, we nonetheless find good

Plots from ‘Cosmic reionization and early star-forming galaxies: a joint
analysis of new constraints from Planck and Hubble space telescope’,

Robertson et al., 2015 (arXiv:1502.02024)



Clustering
Cosmology sample for 2015 release of Planck SZ clusters used
439 clusters versus 189 in 2013
Still tensions between primordial CMB constraints and those
from clusters, but very dependent on mass scaling usedPlanck Collaboration: Cosmology from SZ cluster counts
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Fig. 7: Comparison of constraints from the CMB to those from
the cluster counts in the (Ωm, σ8)-plane. The green, blue and
violet contours give the cluster constraints (two-dimensional
likelihood) at 1 and 2σ for the WtG, CCCP, and CMB lens-
ing mass calibrations, respectively, as listed in Table 2. These
constraints are obtained from the MMF3 catalogue with the
SZ+BAO+BBN data set and α free. Constraints from the Planck
TT, TE, EE+lowP CMB likelihood (hereafter, Planck primary
CMB) are shown as the dashed contours enclosing 1 and 2σ con-
fidence regions (Planck Collaboration XIII 2015), while the grey
shaded region also include BAO. The red contours give results
from a joint analysis of the cluster counts, primary CMB and
the Planck lensing power spectrum (Planck Collaboration XV
2015), leaving the mass bias parameter free and α constrained
by the X-ray prior.

6.3. Constraints on Ωm and σ8: comparison to primary CMB

Our 2013 analysis brought to light tension between constraints
on Ωm andσ8 from the cluster counts and those from the primary
CMB in the base ΛCDM model. In that analysis, we adopted a
flat prior on the mass bias over the range 1 − b = [0.7, 1.0], with
a reference model defined by 1 − b = 0.8 (see discussion in the
Appendix of Planck Collaboration XX 2014). Given the good
consistency between the 2013 and 2015 cluster results (Fig. 3),
we expect the tension to remain under the same assumptions con-
cerning the mass bias.

Figure 7 compares our 2015 cluster constraints (MMF3
SZ+BAO+BBN) to those for the base ΛCDM model from the
Planck CMB anisotropies. The cluster constraints, given the
three different priors on the mass bias, are shown by the filled
contours at 1 and 2σ, while the dashed black contours give the
Planck TT, TE, EE+lowP constraints (hereafter Planck primary
CMB, Planck Collaboration XIII 2015); the grey shaded regions
add BAO to the CMB. The central value of the WtG mass prior
lies at the extreme end of the range used in 2013 (i.e., 1-b=0.7);
with its uncertainty range extending even lower, the tension with
primary CMB is greatly reduced, as pointed out by von der Lin-
den et al. (2014b). With similar uncertainty but a central value
shifted to 1 − b = 0.78, the CCCP mass prior results in greater
tension with the primary CMB. The lensing mass prior, finally,
implies little bias and hence much greater tension.

6.4. Joint Planck 2014 primary CMB and cluster constraints

We now turn to a joint analysis of the cluster counts and primary
CMB. We begin by finding the mass bias required to remove ten-
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Fig. 8: Comparison of cluster and primary CMB constraints in
the base ΛCDM model expressed in terms of the mass bias,
1 − b. The solid black curve shows the distribution of values re-
quired to reconcile the counts and primary CMB in ΛCDM; it
is found as the posterior on the 1 − b from a joint analysis of
the Planck cluster counts and primary CMB when leaving the
mass bias free. The coloured dashed curves show the three prior
distributions on the mass bias listed in Tab. 2.

sion with the primary CMB, and then consider one-parameter
extensions to the base ΛCDM model, varying the curvature, the
Thomson optical depth to reionization, the dark energy equation-
of-state, and the neutrino mass scale. Unless otherwise stated,
"CMB" in the following means Planck TT, TE, EE+lowP as de-
fined in Planck Collaboration XIII (2015). All intervals are 68%
confidence and all upper/lower limits are 95%.

6.4.1. Mass bias required by CMB

In Fig. 8 we compare the three prior distributions to the mass
bias required by the primary CMB. The latter is obtained as the
posterior on (1 − b) from a joint analysis of the MMF3 cluster
counts and the CMB with the mass bias as a free parameter. The
best-fit value in this case is (1 − b) = 0.58 ± 0.04, more than 1σ
below the central WtG value. Perfect agreement with the primary
CMB would imply that clusters are even more massive than the
WtG calibration. This figure most clearly quantifies the tension
between the Planck cluster counts and primary CMB.

6.4.2. Curvature

By itself the CMB only poorly determines the spatial curvature
(Sect. 6.2.4 of Planck Collaboration XIII 2015), but by including
another astrophysical observation, such as cluster counts, it can
be tightly constrained. Our joint cluster and CMB analysis, with-
out external data, yields Ωk = −0.012 ± 0.008, consistent with
the constraint from Planck CMB and BAO Ωk = 0.000 ± 0.002.

6.4.3. Reionization optical depth

Primary CMB temperature anisotropies also provide a precise
measurement of the parameter combination Ase−2τ, where τ is
the optical depth from Thomson scatter after reionization and As
is the power spectrum normalization on large scales (Planck Col-
laboration XIII 2015). Low-` polarization anisotropies break the
degeneracy by constraining τ, but this measurement is delicate
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WTG = Weighing the Giants, CCCP = Canadian Cluster Comparison Project, LENS = CMB lensing
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Planck seems likely. Since submission of this paper, Raveri
2015 used a Bayesian data concordance test to judge
agreement between the constraints from different data sets,
including Planck and CFHTLenS. They apply ultracon-
servative cuts to the CFHTLenS data, resulting in much
enlarged contours in the Ωm-σ8 plane, which appear to be in
agreement with Planck, however their data concordance test
still suggests disagreement between the two data sets. A
natural question is whether the converse situation is also be
possible—where 2d marginalised contours disagree, but a
data concordance test will not show tension. It is clear that
cautionmust be exercised when judging agreement based on
2d marginalized contours.
At the time of writing, the Planck 2015 likelihood code

has not been released, but chains derived from it are
publicly available. As we therefore cannot calculate like-
lihoods for general parameter choices, we must instead
combine Planck with DES SV data using importance
sampling: each sample in the Planck chain is given an
additional weight according to their likelihood under DES
SV data. Since the Planck chains do not, of course, include
our nuisance parameters we must also generate a sample of
each of those from our prior to append to each Planck
sample. In this approach we must also then not apply the
nuisance parameter priors again when computing our
posteriors during sampling, since that would count the
prior twice. As usual in importance sampling for a finite
number of samples this procedure is only valid when the
distributions are broadly in agreement, as in this case.
Table I shows that the Planck uncertainties on S8 are
reduced by 10% on combining with DES SV, and the
central value moves down by about 10% of the error bar.
This can be compared to the combination of Planck with
Planck lensing, which brings S8 down further and tightens
the error bar more.
Galaxy cluster counts are a long-standing probe of the

matter density and the amplitude of fluctuations (see Mantz
et al. [102] for a recent review). The constraints from the
Sunyayev–Zel’dovich effect measured by Planck [107] are
at the lower end of the amplitudes allowed by the DES SV
cosmic shear constraints and are in some tension with those
from the Planck TTþ lowP primordial constraints,
depending on the choice of mass calibration used. X-ray
cluster counts also rely on a mass calibration to constrain
cosmology and tend to fall at the lower end of the
normalization range (see e.g. Vikhlinin et al. [108]).
Finally, optical and X-ray surveys can use lensing to
measure cluster masses and abundances; there are several
ongoing analyses in DES to place constraints on the cluster
mass calibration. Figure 10 includes a constraint in white
from an analysis of X-ray clusters with masses calibrated
using weak lensing from Mantz et al. [102]. This is clearly
in good agreement with the DES SV results presented here.
Spectroscopic large-scale structure measurements with

anisotropic clustering, such as the CMASS data presented

in Chuang et al. [103], can be used to constrain the growth
rate of fluctuations, and are shown in green in Fig. 10.
There is a broad region of overlap between that data and
DES SV.
The Planck 2015 data release contains chains that have

been importance sampled with large scale structure data
from 6dFGS, SDSS-MGS and BOSS-LOWZ [109–111],
supernova data from the Joint Likelihood Analysis [112],
and a reanalysis of theRiess et al. [113]HSTCepheid data by
Efstathiou [114]. In Table I and Fig. 3 we refer to this
combination as “ext” and include it in our importance
sampling. Planck alone measures σ8ðΩm=0.3Þ0.5 ¼ 0.850�
0.024, while Planckþextmeasures σ8ðΩm=0.3Þ0.5 ¼
0.824� 0.013.
Figure 11 shows the DES SV, CFHTLenS and Planck

data points translated onto the matter power spectrum
assuming a ΛCDM cosmology. This uses the method
described in MacCrann et al. [27] which follows
Tegmark and Zaldarriaga [115] in translating the
central θ and l values of the measurements into wave
number values k. The wave number of the point is the
median of the window function of the PðkÞ integral used
to predict the observable (ξþ or Cl). The height of the
point is given by the ratio of the observed to predicted
observable, multiplied by the theory power spectrum
at that wave number. For simplicity we use the no-
tomography results from each of DES SV and
CFHTLenS (K13). The results are therefore cosmology
dependent, and we use the Planck best fit cosmology for
the version shown here. The CFHTLenS results are
below the Planck best fit at almost all scales (see also

FIG. 11. Nontomographic DES SV (blue circles), CFHTLenS
K13 (orange squares) and Planck (red) data points projected onto
the matter power spectrum (black line). This projection is
cosmology-dependent and assumes the Planck best fit cosmology
inΛCDM. The Planck error bars change size abruptly because the
Cls are binned in larger l bins above l ¼ 50.
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discussion in MacCrann et al. [27]). The DES results
agree relatively well with Planck up to the maximum
wave number probed by Planck, and then drop toward
the CFHTLenS results.

B. Dark energy

The DES SV data is only 3% of the total area of the full
DES survey, so we do not expect to be able to significantly
constrain dark energy with this data. Nonetheless, we have
recomputed the fiducial DES SV constraints for the second
simplest dark energy model, wCDM, which has a free (but
constant with redshift) equation of state parameter w, in
addition to the other cosmological and fiducial nuisance
parameters (see Sec. III). The purple contours in Fig. 12
show constraints on w versus the main cosmic shear
parameter S8; we find DES SV has a slight preference
for lower values of w, with w < −0.68 at 95% confidence.
There is a small positive correlation between w and
S8, but our constraints on S8 are generally robust to
variation in w.
The Planck constraints (the red contours in Figure 12)

agree well with the DES SV constraints: combining DES
SV with Planck gives negligibly different results to Planck
alone. This is also the case when combining with the
Planckþ ext results shown in grey. Planck Collaboration
et al. [24] discuss that while Planck CMB temperature data
alone do not strongly constrain w, they do appear to show
close to a 2σ preference for w < −1. However, they
attribute it partly to a parameter volume effect, and note
that the values of other cosmological parameters in much of
the w < −1 region are ruled out by other data sets (such as
those used in the “ext” combination).

Planck CMB data combined with CFHTLenS also show
a preference for w < −1 [24]. The CFHTLenS constraints
(orange contours) in Fig. 12 show a similar degeneracy
direction to the DES SV results, although with a preference
for slightly higher values of w and lower S8. The tension
between Planck and CFHTLenS in ΛCDM is visible at
w ¼ −1, and interestingly, is not fully resolved at any value
of w in Fig. 12. This casts doubt on the validity of
combining the two data sets in wCDM.

VII. CONCLUSIONS

We have presented the first constraints on cosmology
from the Dark Energy Survey. Using 139 square degrees of
Science Verification data we have constrained the matter
density of the Universe Ωm and the amplitude of fluctua-
tions σ8, and find that the tightest constraints are placed on
the degenerate combination S8 ≡ σ8ðΩm=0.3Þ0.5, which we
measure to 7% accuracy to be S8 ¼ 0.81� 0.06.
DES SV alone places weak constraints on the dark

energy equation of state: w < −0.68 (95%). These do not
significantly change constraints on w compared to Planck
alone, and the cosmological constant remains within
marginalized DES SVþ Planck contours.
The state of the art in cosmic shear, CFHTLenS, gives

rise to some tension when compared with the most power-
ful dataset in cosmology, Planck [100]. Our constraints are
in agreement with both Planck and CFHTLenS results, and
we cannot rule either out due to larger uncertainties caused
by a smaller effective number density of galaxies and our
propagation of uncertainties in the two most significant
lensing systematics into our constraints.
We have investigated the sensitivity of our results to

variation in a wide range of aspects of our analysis, and
found our fiducial constraints to be remarkably robust. Our
results are stable to switching to our alternative shear
catalogue, IM3SHAPE, or to any of our alternative photo-
metric redshift catalogues, TPZ, ANNZ2 and BPZ.
Nonetheless, to account for any residual systematic error
we marginalize over 5% uncertainties on shear and photo-
metric redshift calibration in each of three redshift bins in
our fiducial analysis; this inflates the error bar by 9%.
Our results are also robust to the choice of data vector:

constraints from Fourier space Cl are consistent with those
from real space ξ�ðθÞ. As expected, a 2D analysis is less
powerful than one split into redshift bins; the biggest
benefit of tomography comes from its constraints on
intrinsic alignments.
In the future, DES will be an excellent tool for learning

about the nature of IAs. In this current analysis we only aim
to show that the details of IA modeling do not affect the
cosmological conclusions drawn from the SV data set.
We investigated four alternatives to our fiducial intrinsic
alignment model and found the results to be stable, even
when including an additional free parameter adding
redshift dependence. Similarly, the similarity in parameter

FIG. 12. Constraints on the dark energy equation of state w and
S8 ≡ σ8ðΩm=0.3Þ0.5, from DES SV (purple), Planck (red),
CFHTLenS (orange), and Planckþ ext (grey). DES SV is
consistent with Planck at w ¼ −1. The constraints on S8 from
DES SV alone are also generally robust to variation in w.

T. ABBOTT et al. PHYSICAL REVIEW D 94, 022001 (2016)

022001-18

From ‘Cosmology from cosmic shear with Dark Energy Survey Science
Verification data’ arXiv:1507.05552



Sky with and without tensors
http://www.astro.caltech.edu/~lgg/spider_front.htm

No Tensor

SPIDER Tensor Signal
• Simulation of large scale polarization signal

GW/scalar curvature: current from CMB+LSS: r < 0.3 95%; good shot at 0.02 95% 
CL with BB polarization (+- .02 PL2.5+Spider), .01 target; Bpol .001 BUT 
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Amplitude of tensor (gravity wave) component, is measured by
the ratio r of tensor to scalar mode at some given scale
This comparison is for r = 0.1



Sky with and without tensors
http://www.astro.caltech.edu/~lgg/spider_front.htm

SPIDER Tensor Signal

Tensor

• Simulation of large scale polarization signal

GW/scalar curvature: current from CMB+LSS: r < 0.3 95%; good shot at 0.02 95% 
CL with BB polarization (+- .02 PL2.5+Spider), .01 target; Bpol .001 BUT 
foregrounds/systematics? But r(k), low Energy inflation

Pillar 7 
Gravity Waves from Inflation 

http://www.astro.caltech.edu/ lgg/

Amplitude of tensor (gravity wave) component, is measured by
the ratio r of tensor to scalar mode at some given scale
This comparison is for r = 0.1



Update on BICEP



Latest BICEP results

Six hours of BICEP 3 data
compared to 9 years of WMAP
(on a single patch)
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FIG. 5. Likelihood results on r for several intermediate steps
between the BKP (previous) and BK14 (current) analyses.
See text for details.

larized bands of Planck. The baseline analysis yields
r0.05 = 0.028+0.026

−0.025 and r0.05 < 0.09 at 95% confidence,
constraints that are robust to the variations explored
in analysis and priors. With this result, B-modes now
offer the most powerful limits on inflationary gravita-
tional waves, surpassing constraints from temperature
anisotropies and other evidence for the first time. With
upcoming multifrequency data the B-mode constraints
can be expected to steadily improve.
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The decomposition is calculated independently in each band-
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as the baseline analysis. Error bars denote 68% credible inter-
vals, with the point marking the most probable value. If the
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ΛCDM with the dashed line adding on top an r0.05 = 0.05
tensor contribution. The blue curve shows a dust model con-
sistent with the baseline analysis (Ad,353 = 4.3µK2, βd = 1.6,
αd = −0.4).
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New proposal for initial conditions in inflation

An issue for the generation of
perturbations during inflation, is how
one lays down the initial conditions
Well within the horizon, i.e. for
everything except low k , different
methods, e.g. Hamiltonian
diagonalization, adiabatic method
. . . , give the same answer
Not true for low k modes in a rapidly
changing background, however
Last week, Handley, Lasenby &
Hobson (Phys.Rev. D, accepted,
arXiv:1607.04148) have proposed a
further method — minimization of the
local energy density of the
renormalised stress-energy tensor

5

set m = 0 and replace a with z:

|χk|2 =
1

2k
, χk

′ =

(
−ik +

z′

z

)
χk. (37)

This should now be compared with the more usual HD
conditions (23). Deep inside the horizon (k � −z′/z)
these two initial conditions are equivalent, but yield very
different answers for infra-red modes (small k). The sec-
ond of these equations may be re-written in a more illu-
minating form:

(χk

z

)′
= −ik

(χk

z

)
, (38)

which suggests that the co-moving curvature R = v/z is
set with a “positive frequency mode” independent from
any spacetime variation.

It is important to recognise setting these conditions at
η0 is equivalent to forcing the universe into a vacuum
state at that moment, but there is minimal theoretical
guidance as to when this should be[8]. Indeed, there is
little reason to imagine that the universe should be in
a vacuum state at any given moment. However, these
conditions could also be used to build a formalism of
excited states.

It is also important to realise that this vacuum does
not claim to be interpretable in terms of particles. It
is merely the mode function that minimises the renor-
malised stress tensor. In the language of Hamiltonian
diagonalisation, or adiabatic vacuums, it would be a su-
perposition of “particle states”.

Reference [9] provides a review (particularly in the ap-
pendix) of various choices of initial conditions analogous
to (23) and (37). It is interesting to note that the Daniels-
son vacuum [10, 11] bears a striking similarity to the
renormalisation initial conditions (37) we have derived,
but is instead derived from phenomenological grounds by
imposing initial conditions around a high energy cutoff.

RENORMALISING THE KINETICALLY
DOMINATED UNIVERSE

We now consider these observations in the context of
the kinetically dominated universe. It was recently ob-
served [1] that the classical solutions to the evolution
equations (3) & (6) emerge almost always from a kinet-
ically dominated phase with φ̇2 � V (φ). In this regime,
there is a significant period of cosmic time in which the
theory of quantum fields in curved spacetime is valid.
In this semi-classical pre-inflationary context, one finds
that φ̇ ∝ H and hence z ∝ a. In the same manner as
a de-Sitter universe, quantising the co-moving curvature
perturbation is equivalent to quantising a massless scalar
field on the same background spacetime. In this case
though, the scale factor a ∝ η1/2, so the mode equations
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FIG. 1. The modulus of the Ak and Bk coefficients in a kinet-
ically dominated universe for the Hamiltonian diagonalising
vacuum (HD) and the vacuum from the renormalised stress
tensor (RST). Under these conditions, the universe will be in
a vacuum state at conformal time η0. Note that at large k,
the mode functions tend to Ak = 0, Bk = 1.

have the general solution:

χk(η) =
1

2

√
πη
(
AkH

(1)
0 (kη) +BkH

(2)
0 (kη)

)
,

1 = |Bk|2 − |Ak|2, (39)

where without loss of generality we assume Ak is real.
Applying HD conditions (23), or our new renormalised
stress tensor conditions (37) yields different values for
Ak and Bk, as indicated in Figure 1. This difference is
potentially observationally distinguishable, and will be
analysed in a following paper.

CONCLUSIONS

We have presented a novel procedure for setting the ini-
tial conditions on the Mukhanov-Sazaki equation. We de-
fine the vacuum state via the instantaneous minimisation
of the renormalised stress-energy tensor. This procedure
is valid for any background cosmology, independent of
the thorny issue of a particle-type concept. It reduces to
the Bunch-Davies vacuum in an asymptotically static re-
gion. Further, it makes theoretical predictions that may
be observationally testable.
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This gives different
predictions for the initial mode
amplitudes than Hamiltonian
diagonalization
We work with

χk (η) ∝
√
πη

(
Ak H(1)

0 (kη) + Bk H(1)
2 (kη)

)
Point is that such differences
are in principle accessible to
experiment



Direct Detection?

Top curve is for r = 0.1
From a talk on BBO by Gregory Harry (MIT)

Big problem is that most of portion of frequency space where we
want to look is taken out by background of Binary Stars (in our
and other galaxies)
However, could be a window near 1 milliHz to 1 Hz, which could
eventually be observed from space with required sensitivity if
r >∼ 0.001 (Big Bang Observer proposed to do this - at least 30
years away?)



GAIA and gravitational waves

Project with Gerry Gilmore, and
student Deyan Mihaylov, to
investigate use of GAIA proper
motion data for constraints on
gravitational wave background
Have started on simulation of
what could be observed as
gravitational waves cause
deflection of a screen of stars
and/or quasars

GAIA Satellite

Typical levels certainly too small
for detection of individual motions
(swamped by intrinsic proper
motions of stars anyway)
Question is whether a statistical
technique, tuned particularly to
large scales, may be able to work



QUIJOTE

QUIJOTE Spanish/UK
ground-based experiment
Currently one of only two
ground-based CMB experiments
with European leadership (other
is QUBIC, led by APC, Paris)
Tenerife, Santander, Manchester
and Cambridge collaboration
Two-fold aim: low frequency
foreground mapping in
polarization, plus in future
versions sensitive to r at about
0.05 level.
First telescope/receiver has 4
horns at 11, 13, 17 and 19GHz
and maps most of Northern sky
Second telescope/receiver adds
horns at 30GHz (currently being
commissioned)

Horns of first receiver

Installation of second telescope



QUIJOTE/Planck Radioforegrounds Project

Horizon 2020 project to use
combination of QUIJOTE and
Planck data to characterise
foreground emissions

QUIJOTE telescopes



QUIJOTE/Planck Radioforegrounds Project (contd.)

Combining Planck and QUIJOTE
is to:

Produce legacy maps of the
synchrotron and AME
(anomalous Microwave
Emission) emissions in the
Northern sky
Characterize the synchrotron
spectral index with high
accuracy, fitting for the
curvature of the synchrotron
spectrum to constrain
cosmic-rays electron physics
Study the large-scale
properties of the Galactic
magnetic field

11 GHz map from QUIJOTE

Model and characterize the
level of a possible contribution
of polarized anomalous
microwave emission (AME);
Characterize the population of
radio sources measured by
Planck by adding unique
information in the frequency
domain of 10-20 GHz;



Summary

Plain vanilla ΛCDM survives very well as
regards the CMB — (of course unfortunately
this means we still don’t know what about
95% of the universe is made of, but the
accuracy with which the relative proportions
have been determined continues to be
impressive)

Optical depth τ is somewhat lower than previously thought:
τ = 0.055± 0.009
Tensor ratio r is being constrained more tightly: r < 0.07 at 95%
confidence
This is starting to rule out mononomial inflation potentials φn for
any n > 1
Some evidence for a deficit in the level of clustering and matter
power spectrum at smaller scales relative to best fit CMB model
— possibly neutrino mass?


