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The History of the Universe
It is a history of EXPANSION and cooling down.

EXPANSION: the space itself expands with the time.

ds2 = dt2 − a 2(t) d~x2 , a(t) = scale factor.

FRW: Homogeneous, isotropic and spatially flat geometry.

Cooling: temperature decreases as 1/a(t): T (t) ∼ 1/a(t).

The Universe underwent a succesion of phase transitions
towards the less symmetric phases.

Wavelenghts redshift as a(t) : λ(t) = a(t) λ(t0)
a(t0)

Redshift z : z + 1 = a(today)
a(t) , a(today) ≡ 1

The deeper you go in the past, the larger is the redshift and
the smaller is a(t).
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Standard Cosmological Model:ΛCDM

ΛCDM = Cold Dark Matter + Cosmological Constant

Begins by the inflationary era. Slow-Roll inflation
explains horizon and flatness.

Gravity is described by Einstein’s General Relativity.

Particle Physics described by the Standard Model of
Particle Physics: SU(3) ⊗ SU(2) ⊗ U(1) =
qcd+electroweak model.

CDM: dark matter is cold (non-relativistic) during the
matter dominated era where structure formation
happens.

Dark energy described by the cosmological constant Λ.
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Standard Cosmological Model:ΛCDM

Explains the Observations:

5 years WMAP data and previous CMB data

Light Elements Abundances: BBN.

Large Scale Structures (LSS) Observations. BAO.

Acceleration of the Universe expansion:
Supernova Luminosity/Distance and Radio Galaxies.

Gravitational Lensing Observations

Lyman α Forest Observations

Hubble Constant (H0) Measurements

Properties of Clusters of Galaxies

....
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Standard Cosmological Model: Concordance Model
ds2 = dt2 − a2(t) d~x 2: spatially flat geometry.
The Universe starts by an INFLATIONARY ERA .
Inflation = Accelerated Expansion: d2a

dt2 > 0.
During inflation the universe expands by at least 62 efolds
in order to explain the present entropy of the universe
(photons+neutrinos): e62 ≃ 1027.
Inflation lasts ≃ 10−36 sec and ends by z ∼ 1029 followed by
a radiation dominated era.
Energy scale when inflation starts ∼ 1016 GeV ( ⇐= CMB
anisotropies) which coincides with the GUT scale.
Matter can be effectively described during inflation by a
Scalar Field φ(t,x): the Inflaton.

Lagrangean: L = a3(t)
[

φ̇2

2 − (∇φ)2

2 a2(t) − V (φ)
]
.

plus General Relativity that describes the geometry of the
Universe in the presence of the Inflaton field.
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Plan of the Lectures
Inflation as an effective theory in the Ginsburg-Landau
sense. Fast-roll and slow-roll inflationary regimes.

Quantum fluctuations of the geometry and the matter
during inflation. Scalar and tensor primordial power of
these inflationary fluctuations.

Contrast with observed CMB anisotropies and LSS data
through Monte Carlo Markov Chains (MCMC) analysis.

The generic fast-roll stage before slow-roll can explain
the observed CMB quadrupole suppression.

Model independent approach to dark matter properties.
The DM particle mass in the keV scale.

Loop quantum corrections to observables in slow-roll
inflation.

Conclusions and future perspectives
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Physics during Inflation
Out of equilibrium evolution in a fastly expanding
geometry. Vacuum energy DOMINATES:

Friedmann equation: H2(t) = 1
3 M2

P l
ρ , for constant ρ

yields a de Sitter space-time:

a(t) = eH t , H = 1
MP l

√
ρ
3 . Natural solution!!

Extremely high energy density: scale . 1016GeV.

Explosive particle production due to spinodal or
parametric instabilities

Quantum non-linear phenomena eventually shut-off the
instabilities and stop inflation. RD era follows: a(t) =

√
t

Huge redshift classicalizes the dynamics: an assembly
of (superhorizon) quantum modes behave as a classical
and homogeneous inflaton field. Inflaton slow-roll.
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The Theory of Inflation

The inflaton is an effective field in the Ginsburg-Landau
sense.

Relevant effective theories in physics:

Ginsburg-Landau theory of superconductivity. It is an
effective theory for Cooper pairs in the microscopic
BCS theory of superconductivity.

The O(4) sigma model for pions, the sigma and photons
at energies . 1 GeV. The microscopic theory is QCD:
quarks and gluons. π ≃ q̄q , σ ≃ q̄q .

The theory of second order phase transitions à la
Landau-Kadanoff-Wilson... (ferromagnetic,
antiferromagnetic, liquid-gas, Helium 3 and 4, ...)

Fermi Theory of Weak Interactions (current-current).
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Slow Roll Inflation
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The field evolves towards the minimum of the potential.

V (Min) = V ′(Min) = 0 : inflation ends after a finite number
of efolds.

Slow-roll is needed to produce enough efolds of inflation
(≥ 62) to explain the entropy of the universe today
=⇒ the slope of the potential V (φ) must be small.
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Inflation Evolution Equations

Evolution equation for the Inflaton:
φ̈+ 3H(t) φ̇− 1

a2(t) ∇2φ+ V ′(φ) = 0 , H(t) ≡ ȧ(t)
a(t) = Hubble.

energy density = ρ = 1
2

[
φ̇2 + 1

a2(t) (∇φ)2
]

+ V (φ)

pressure = p = 1
2

[
φ̇2 − 1

3 a2(t) (∇φ)2
]
− V (φ)

The scale factor grows exponentially during inflation and
suppresses spatial gradient terms.

The inflaton field is therefore homogeneous: φ = φ(t).
φ̈+ 3H(t) φ̇+ V ′(φ) = 0 (1)

The Einstein equations reduce to a single equation: the
Friedmann equation:

H2(t) = 1
3 M2

P l
ρ = 1

3 M2
P l

[
φ̇2

2 + V (φ)
]

(2)
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Slow-roll evolution of the Inflaton
During slow-roll the inflaton derivatives are small and the
evolution equations (1) and (2) can be approximated by:

3H(t) φ̇+ V ′(φ) = 0 , H2(t) = V (φ)
3M2

P l

These first order equations can be solved in closed from as:

M2
Pl N [φ] = −

∫ φend

φ V (ϕ) dϕ
dV dϕ , eN [φ] = a(φend)/a(φ) ,

N [φ] = the number of e-folds since the field φ exits the
horizon till the end of inflation. N ∼ 60.
φend = absolute minimum of V (φ).

Therefore, φ2 = scales as N M2
Pl. We define:

χ ≡ φ√
N MP l

dimensionless and slow field.

Universal form of the slow-roll inflaton potential:
V (φ) = N M4 w(χ),M =energy scale of inflation,|w′′(0)| = 1
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SLOW and Dimensionless Variables

χ = φ√
N MP l

, τ = m t√
N

, H(τ) = H(t)

m
√

N
,

m ≡ M2

MP l
, |V ′′(0)| = m2 = inflaton mass,

slow inflaton, slow time, slow Hubble.

χ and w(χ) are of order one.

Evolution Equations:

H2(τ) = 1
3

[
1

2 N

(
dχ

dτ

)2

+ w(χ)

]

,

1
N

d2χ

dτ2
+ 3 H dχ

dτ
+ w′(χ) = 0 .

1/N terms: corrections to slow-roll

Higher orders in slow-roll are obtained systematically by
expanding the solutions in 1/N .
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Exact Inflaton Dynamics: w(χ) = y
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Exact Inflaton Dynamics: w(χ) = y

32
(χ2 − 8

y
)2
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H(τ) vs. τ

The Hubble parameter H(t) slowly decreases during
slow-roll:

Ḣ(t) = − φ̇2

2 M2
P l
< 0 and of the order O

(
1
N

)

H(end) ≃ H(begin)√
N

≃ 1
8 H(begin)
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Exact Inflaton Dynamics: w(χ) = y

32
(χ2 − 8

y
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The vacuum energy transforms into particles and inflation is
followed in this simplified approach by a matter dominated
stage.

The equation of state is p/e = −1 during inflation.

p/e strongly oscillates between +1 and −1 during the matter
dominated stage. We have in average < p/e >= 0 .
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Exact Inflaton Dynamics: w(χ) = y
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(χ2 − 8

y
)2
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χ̇(τ) vs. τ

In these plots y = 1.26 and χmin =
√

8
y = 2.52.

We choose χ(0) = 0.73587, generic initial velocity
1

2 N χ̇2(0) = w(χ(0)) =⇒ χ̇(0) = 12.624

which ensure Ntot ≃ 66. Notice fast-roll followed by slow-roll.

We have here neglected spatial gradient terms:

(∇φ)2

2 a2(t)
since a(t) grows exponentially during inflation.
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The entropy of the universe today

The entropy of the universe today is
dominated by photons (the CMB) and neutrinos:

S ∼ d3
0 [sγ + sν ] = 0.97 × 1089 , huge number !

d0 ≃ 3/H0 = particle horizon today
(region in causal contact with us),

sγ , sν = photon and the neutrinos entropies per unit

comoving volume: sγ = 2 π2

45 gγ T
3
γ , sν = 7 π2

180 gν T
3
ν ,

gγ = 2 = number of photon polarizations,

gν = 6 = number of neutrino states,

Tγ = 2.725 K = CMB temperature today

Tν = (4/11)
1
3 Tγ = neutrino background temperature today.
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The conservation of the entropy of the universe
Let us consider the energy E(t) on a comoving volume Vc:

E(t) = ρ(t) a3(t) Vc (physical volume = V (t) = a3(t) Vc)

Using energy-momentum conservation in FRW space-time:
ρ̇+ 3 H(t) (ρ+ p) = 0 we obtain:

Vc a
3(t) [ρ̇+ 3 H(t) (ρ+ p)] = Ė(t) + p V̇ (t) = 0

Therefore, according to the first principle of
thermodynamics: 0 = dE + p dV = T dS

and entropy is conserved !!
Entropy remains constant according to the microscopic
evolution equations both classical and quantum.
Entropy grows upon coarse-graining of degrees of freedom
when quantum decoherence happens as it is the case
during inflation. Inflation stretches the lengths by an
enormous factor of at least ∼ e64 ∼ 1028 making classical
the quantum description of matter
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Entropy is created during inflation and reheating

Reheating: transition period from out of equilibrium inflation
to thermal equilibrium RD.

The horizon size by the end of inflation is d(tend) ∼ eNtot /H .

Ntot = total number of efolds of inflation.
By the end of reheating the horizon gets redshifted by a
factor ≃

√
H/Hreh since a ∼ 1/

√
H during RD and then

dreh ∼
√

H
Hreh

d(tend) ∼ eNtot√
H Hreh

The Friedmann equation gives: H2
reh = π2 greh

90 M2
P l
T 4

reh ,

greh = number of ultrarelativistic degrees of freedom
and we used that ρreh = π2

30 greh T
4
reh.

The entropy by the end of reheating is therefore,

Sreh ∼ 2 π2

45 grh T
3
reh d

3
reh and Treh =

√
Hreh MP l

π

(
90

greh

) 1
4
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Entropy bounds from below number of inflation efolds
Imposing that the entropy by the end of reheating accounts
for the entropy today, S ∼ 1089 yields:

Sreh ∼ 2
3
2

(
2 π2 greh

45

) 1
4

e3 Ntot
(

MP l

H

) 3
2 ≥ 1089 .

Therefore,

Ntot ≥ 62.4 − 1
2 log β − 1

12 log greh

1000 where β ≡
√

10−4 MP l

H

This number & 63 of inflation efolds also solves the:
Horizon problem: the particle horizon when photons
decoupled (last scattering surface) at z ≃ 1100 is subtended
today by an angle of 0.03 ≃ 1.7o. Why is the CMB
temperature isotropic up to 0.01% fluctuations?
Answer: modes horizon-sized today were in causal contact
when they exited the horizon...
Inflation is the only available solution to the flatness,
horizon and entropy problems in the universe.
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Quantum Fluctuations During Inflation and after

The Universe is homogeneous and isotropic after inflation
thanks to the fast and gigantic expansion stretching lenghts
by a factor e62 ≃ 1027.
The universe by the end of inflation is a extraordinarily hot
plasma at T ∼ 1014 GeV.

However, quantum fluctuations around the classical inflaton
and FRW geometry were of course present.

These inflationary quantum fluctuations are the seeds of
structure formation in the universe and the CMB
anisotropies today: galaxies, clusters, stars, planets, ...

That is, our present universe was built out of inflationary
quantum fluctuations.
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Fluctuations inside and outside the Hubble Radius

TODAY

Crossing IN

INFLATION

HORIZON

Crossing OUT

FRW

a(t) = eHt ,

FRW

a(t)=t 1/2 a(t)=t 2/3H=a/a

Log λλλλ    (t) phys

Log a(t)

Physical Length = a(t) λλλλcomoving

NGAL

NPH

10-30sectS~ tEQ~ 1400 yrNGAL ~ 45-50

NPH ~ 53-60

dH ~ t ~ a2 dH ~ t ~ a3/2

RADIATION MATTER

DOMINATEDDOMINATED

*Scales CROSS OUT the Horizon and Later COME BACK : UNIQUE for INFLATION

**LARGER  SCALES  CROSS  OUT  FIRST and CROSS  BACK LATER

S ~ 1088 within the Present Horizon (Today)

Scale Factor
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Quantum Fluctuations

Geometry: small fluctuations around the homogeneous and
isotropic FRW metric:

ds2 =
[1 +2 ψ̂(~x, t)] dt2 − a2(t) [1− 2 ψ(~x, t)] d~x2 + a2(t) hµν dx

µ dxν .

Inflaton field Φ: small fluctuations around the homogeneous
and isotropic expectation value φ(t) =< Φ(~x, t) >

Φ(~x, t) = φ(t) + δϕ(~x, t)

Gauge invariant scalar curvature perturbations:
R = −ψ − H

φ̇
δϕ where ψ̂ = ψ = Newtonian potential.

Gauge invariant tensor perturbations hµν :

h00 = hi
i = 0, h0i = ∂ihij = 0

Two independent polarization states called gravitons.
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Scalar Curvature Fluctuations

It is convenient to introduce, u(x, t) = −z(t) R(x, t)

where z ≡ a(t) φ̇(t)
H(t) .

The Einstein-Hilbert action for the gravitational field plus the
action for the inflaton in the cosmological space-time yields
to quadratic order and in conformal time η ≡

∫
dt/a(t)

S = 1
2

∫
dη d3x

[
(∂ηu)

2 − (∇u)2 +
∂2

ηz
z u2

]

Fourier expanding u(x, η) in creation and annihilation
operators yields, u(x, η) =
∫

d3k

(2 π)
3
2

[
αR(k) SR(k; η) eik·x + α†

R(k) S∗
R(k; η) e−ik·x

]
,

The operators obey canonical commutation relations:[
αR(k), α†

R(k′)
]

= δ(k − k
′) , and the αR(k) annihilate the

vacuum state |0 > where φ(t) =< Φ(~x, t) >.
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Evolution of the Scalar Curvature Fluctuations

The mode functions obey the Schrödinger-type differential
order equation[

d2

dη2 + k2 −WR(η)
]
SR(k; η) = 0 , WR(η) ≡ 1

z
d2z
dη2

Canonical commutation relations for the field u(x, t) entail
that the SR(k; η) are normalized by their Wronskian as

W [SR(k; η), S∗
R(k; η)] = SR(k; η)S∗′

R(k; η)−S′
R(k; η)S∗

R(k; η) = i

This Wronskian normalization entails that the field u(x, t)
obeys canonical commutation relations.

The potential WR(η) felt by the fluctuations takes the form

WR(η) = a2(η) H2(η)
[
2 − 7 ǫv + 2 ǫ2v −

√
8 ǫv V ′(φ)
MP l H2 − ηv(3 − ǫv)

]

where ǫv ≡ 1
2 M2

P l

φ̇2

H2
, ηv ≡M2

Pl

V ′′(φ)

V (φ)
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Evolution of the Fluctuations during Slow-Roll

In the slow and dimensionless variables χ = φ/[
√
N MPl],

ǫv = 1
2 N

1
H2

(
dχ

dτ

)2

= 1
2 N

[
w′(χ)
w(χ)

]2
+O

(
1

N2

)
, ηv = 1

N
w′′(χ)
w(χ)

ǫv and ηv are always of order 1/N ∼ 0.02 for all slow-roll
models. ǫv and ηv are called slow-roll parameters.

During slow-roll a(η) = − 1
η H [1−ǫv+O( 1

N2 )]
and

WR(η) = 2
η2

[
1 + 3

2 (3 ǫv − ηv) + O
(

1
N2

)]
=

ν2
R− 1

4

η2

νR = 3
2 + 3 ǫv − ηv + O

(
1

N2

)

General solution of the scalar fluctuations equation:

SR(k; η) = AR(k) gνR
(η) +BR(k) g∗νR

(η) ,

gν(k; η) = 1
2 i

ν+ 1
2
√−πη H(1)

ν (−k η), g 3
2
(k; η) = e−i k η

√
2k

[1 − i
k η ]

H
(1)
ν (z) = Hankel function, νR = 3/2 + O (1/N)
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Initial Conditions for the Fluctuations
Deep inside the Hubble radius
|kphys/H| = |k/(a H)| ≃ |k η| ≫ 1:

gν(k; η)
η→−∞

= 1√
2 k

e−i k η .

These are Vacuum or Bunch-Davies initial conditions.

Primordial Scalar Curvature Power =< R2(x, η) > .

Using αR(k)|0 >= 0,

< R2(x, η) >=<
u2(x, η)

z2(η)
>=

∫ ∞

0

|SR(k; η)|2
z2(η)

k2 dk

2π2
.

Define the power per unit logarithmic interval in log k:

PR(k, η) ≡ k3

2 π2

|SR(k; η)|2
z2(η)

⇒< R2(x, η) >=

∫ ∞

0

dk

k
PR(k, η)

General Solution: SR(k; η) = AR(k) gνR
(η) + BR(k) g∗νR

(η)

Constancy of the Wronskian implies:|AR(k)|2 − |BR(k)|2 = 1
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Primordial Scalar Power
By the end of inflation η → 0− :

gν(k; η)
η→0−

= Γ(ν)√
2 π k

(
2

i k η

)ν− 1
2

.

Then, the scalar power by the end of inflation:

PR(k) = lim
η→0−

PR(k, η) = lim
η→0−

k3

2 π2

|SR(k; η)|2
z2(η)

=

= PBD
R (k) [1 +DR(k)] ,

DR(k) = 2 |BR(k)|2 − 2 Re
[
AR(k) B∗

R(k) i1−ns
]

is the transfer function and

PBD
R (k) = |∆R

k ad|2
(

k
k0

)ns−1
, ns − 1 = 2 ηv − 6 ǫv = O

(
1
N

)

ns = spectral index, k0 = pivot scale and

|∆R
k ad|2 = 1

8 π2 ǫv

(
H

MPl

)2

to leading order in 1/N
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Primordial Power Spectrum for BD initial conditions

We used that during slow-roll,

WR(η) = 1
z

d2z
dη2 =

ν2
R− 1

4

η2 ⇒ z(η) =
(
a φ̇

H

)

exit
(−k0 η)

1
2
−νR .

since −k0 η = k0/[H a] = 1 at horizon exit.

PBD
R (k) corresponds to BD initial conditions on SR(k; η)

imposed asymptotically for η → −∞:

AR(k) = 1, BR(k) = 0, SR(k; η) = gνR
(k; η) ⇒ DR(k) = 0

Only BD initial conditions reproduce the data!!

To leading order in 1/N :

|∆R
k ad|2 = 1

8 π2 ǫv

(
H

MP l

)2
= N2

12 π2

(
M

MP l

)4
w3(χ)
w′2(χ)

χ stands for the inflaton field at horizon exit.
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Energy Scale of Inflation from CMB anisotropy amplitude

For all slow-roll inflation models w(χ) = O(1) = w′(χ):

|∆(S)
k ad| ∼ N

2 π
√

3

(
M

MP l

)2

The WMAP5 result: |∆(S)
k ad| = (0.494 ± 0.1) × 10−4

determines the scale of inflation M (using N ≃ 60)
(

M
MP l

)2
= 0.85 × 10−5 −→ M = 0.70 × 1016 GeV

The inflation energy scale turns to be the grand unification
energy scale !!

The scale M is independent of the shape of w(χ).

We find the scale of inflation without knowing the
tensor/scalar ratio r !!
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Tensor Fluctuations
The Einstein-Hilbert action for the gravitational field yields to
quadratic order for the tensor fluctuations in conformal time:

S = 1
2

(
MP l

2

)2 ∫
dη d3x a2(η) ∂µh

i
j ∂

µhj
i

Fourier expanding hi
j(~x, η) in creation and annihilation

operators yields,
hi

j(~x, η) = 2
a(η) MP l

∑
λ=×,+

∫
d3k

(2 π)
3
2
ǫij(λ,

~k) [

ei
~k·~x αT,λ(k) ST (k, η) + e−i~k·~x α†

T,λ(k) S∗
T (k, η)

]

where λ labels the two standard transverse and traceless
polarizations × and +.

The mode functions ST (k; η) obey the differential equation:

S
′′

T (k; η) +
[
k2 − a′′(η)

a(η)

]
ST (k; η) = 0.

In the slow-roll regime: a′′(η)
a(η) =

ν2
T− 1

4

η2 , νT = 3
2 + ǫv +O

(
1

N2

)
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Tensor power
Tensor power by the end of inflation:

PT (k) = lim
η→0−

PT (k, η) = lim
η→0−

4 k3

M2
P l π2

∣∣∣ST (k;η)
a(η)

∣∣∣
2

= PBD
T (k) [1 +DT (k)] .

DT (k) = 2 |BT (k)|2 − 2 Re
[
AT (k) B∗

T (k) i−nT
]

is the transfer function and

PBD
T (k) = |∆T

k |2
(

k
k0

)nT

, nT = −2 ǫv = O
(

1
N

)
.

|∆T
k |2 = 2

π2
H2

M2
P l

[
1 + O

(
1
N

)]
, nT = tensor spectral index,

PBD
T (k) corresponds to BD initial conditions on ST (k; η):
AT (k) = 1, BT (k) = 0, ST (k; η) = gνT (k; η) ⇒ DT (k) = 0.

Ratio of tensor to scalar fluctuations r:
r = |∆T

k |2
|∆R

k ad|2
= 16 ǫv + O

(
1

N2

)
= O

(
1
N

)
.

Tensor fluctuations = primordial gravitons.
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Spectral indexns, its running dns/d ln k and the ratio r

ns − 1 = 3 − 2 νR = 2 ηv − 6 ǫv = − 3
N

[
w′(χ)
w(χ)

]2
+ 2

N
w′′(χ)
w(χ)

r = 16 ǫv = 8
N

[
w′(χ)
w(χ)

]2
. The HZ point is: ns = 1 , r = 0 .

dns

d ln k = − 2
N2

w′(χ) w′′′(χ)
w2(χ) − 6

N2

[w′(χ)]4

w4(χ) + 8
N2

[w′(χ)]2 w′′(χ)
w3(χ)

χ is the inflaton field at horizon exit k = a(χ) H(χ).

ns −1 and r are always of order 1/N ∼ 0.02 (model indep.)

The k dependence of ns is subleading in slow-roll (1/N ):
running of ns of order 1/N2 ∼ 0.0003 (model independent).

Tensor fluctuations suppressed with respect to scalar
because scalar fluctuations are quantum fluctuations
around the classical inflaton while tensor fluctuations are
quantum zero-point fluctuations.
Matter distribution (inflaton) homogeneous and isotropic
can only produce scalar fluctuations and not tensor ones
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Ginsburg-Landau Approach
Ginsburg-Landau potentials:
polynomials in the field starting by a constant term.

Linear terms can always be eliminated by a constant shift of
the inflaton field.

The quadratic term can have a positive or a negative sign:{
w′′(0) > 0 → single well potential → large field (chaotic) inflation

w′′(0) < 0 → double well potential → small field (new) inflation

The inflaton potential must be bounded from below =⇒
highest order term must be even with a positive coefficient.

Renormalizability =⇒ degree of the inflaton potential ≤ 4.

The theory of inflation is an effective theory =⇒
higher degree potentials are acceptable
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Fourth order Ginsburg-Landau inflationary models

w(χ) = wo ± χ2

2 +G3 χ
3 +G4 χ

4 , G3 = O(1) = G4

V (φ) = N M4 w
(

φ√
N MP l

)
= Vo ± m2

2 φ2 + g φ3 + λ φ4 .

m = M2

MP l
, g = m√

N

(
M

MP l

)2
G3 , λ = G4

N

(
M

MP l

)4

Notice that
(

M
MP l

)2
≃ 10−5 ,

(
M

MP l

)4
≃ 10−10 , N ≃ 60 .

Small couplings arise naturally as ratio of two energy
scales: inflation and Planck.

The inflaton is a light particle:
m = M2

MP l
≃ 0.003 M , m = 2.5 × 1013 GeV

H ∼
√
N m ≃ 2 × 1014 GeV.
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The Fourth order Double Well inflationary potential
The spontaneously broken symmetric potential:

w(χ) = y
32

(
χ2 − 8

y

)2

produces inflation with 0 <
√
y χinitial ≪ 1 and χend =

√
8
y .

This is small field inflation.

The number of e-folds N [χ] since the field χ exits the
horizon [when k/a(χ) = H(χ)] till the end of inflation is:

N [χ] = N
∫ χ
χend

w(χ)
w′(χ) dχ. We choose then N = N [χ].

Computing the above integral: y = z − 1 − log z

where z ≡ y χ2/8 and

we have 0 < z < 1 for 0 < χ < χend =
√

8
y .

Spectral index ns and the ratio r as functions of z:
ns = 1− 1

N (z− 1− log z) 3 z+1
(z−1)2 , r = 16

N (z− 1− log z) z
(z−1)2
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Fourth order Double Well Inflation: ( y = coupling).
r decreases monotonically with y :
(strong coupling) 0 < r < 8

N = 0.133 . . . (zero coupling).

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

(ns - 1)  vs. y

r vs. y

ns first grows with y, reaches a maximum value
ns,maximum = 0.96139 . . . at y = 0.2387 . . . and then ns

decreases monotonically with y. ns(y = 0) − 1 = −2/N .
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Fourth order Double Well New Inflation
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r = 8
N = 0.133 . . . and ns = 1 − 2

N = 0.966 . . . at y = 0.

r is a double valued function of ns.
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WMAP 5 years data set plus other CMB data

Theory and observations nicely agree except for the lowest
multipoles: the quadrupole suppression.
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Monte Carlo Markov Chains Analysis of Data: MCMC.

MCMC is an efficient stochastic numerical method to find
the probability distribution of the theoretical parameters that
describe a set of empirical data.

We found ns and r and the couplings y and h by MCMC.
NEW: We imposed as a hard constraint that r and ns are
given by the inflaton potential.
Our analysis differs in this crucial aspect from previous
MCMC studies of the WMAP data.

The color–filled areas correspond to 12%, 27%, 45%, 68%
and 95% confidence levels according to the WMAP3 and
Sloan data.
The color of the areas goes from the darker to the lighter for
increasing CL.
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MCMC Results for the double–well inflaton potential

n
s

r

 

 

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04
0

0.05

0.1

0.15

0.2

0.25

0.3

Solid line for N = 50 and dashed line for N = 60
White dots: z = 0.01 + 0.11 ∗ n, n = 0, 1, . . . , 9,
y increases from the uppermost dot y = 0, z = 1.
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MCMC Results for double–well inflaton potential

Bounds: r > 0.023 (95% CL) , r > 0.046 (68% CL)
Most probable values: ns ≃ 0.964, r ≃ 0.051 ⇐measurable!!
The most probable double–well inflaton potential has a
moderate nonlinearity with the quartic coupling y ≃ 1.26 . . ..
The χ→ −χ symmetry is here spontaneously broken
since the absolute minimum of the potential is at χ 6= 0

w(χ) = y
32

(
χ2 − 8

y

)2

MCMC analysis calls for w′′(χ) < 0 at horizon exit
=⇒ double well potential favoured.

C. Destri, H. J. de Vega, N. Sanchez, MCMC analysis of
WMAP3 data points to broken symmetry inflaton potentials
and provides a lower bound on the tensor to scalar ratio,
Phys. Rev. D77, 043509 (2008), astro-ph/0703417.
Similar results from WMAP5 data.
Acbar08 data slightly increases ns < 1 and r.
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Higher Order Inflaton Potentials
Till here we considered fourth degree inflaton potentials.
Can higher order terms modify the physical results and the
observable predictions?

We systematically study the effects produced by higher
order terms (n > 4) in the inflationary potential on the
observables ns and r.
All coefficients in the potential w become order one using
the field χ within the Ginsburg-Landau approach:
w(χ) = c0 − 1

2 χ
2 +

∑∞
n=2

cn

n χ2 n , cn = O(1) .

All r = r(ns) curves for double–well potentials of arbitrary
high order fall inside a universal banana-shaped region B.
Moreover, the r = r(ns) curves for double–well potentials
even for arbitrary positive higher order terms lie inside the
banana region B.
C. Destri, H. J. de Vega, N. G. Sanchez, arXiv:0906.4102.
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The 100th degree polynomial inflaton potential

0.91 0.92 0.93 0.94 0.95 0.96 0.97
0
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r
2n = 100

c
4
 = 1, c

2k
 = 0 for 3<=k<=50

c
2k

 = 0 for 2<=k<50, c
100

 = 1

2kξ
k
 uniformely random in [0,1]

ξ
k
 uniformely random in [0,1]

w(χ) = 4
y − 1

2 χ
2 + 4

y

∑n
k=2

c2k

k

(
yk

8k χ
2k − 1

)

The coefficients c2k were extracted at random.
The lower border of the banana-shaped region is given by
the potential:

w(χ) = 4
y − 1

2 χ
2 + 4

n y

(
yn

8n χ2n − 1
)

with n = 50.
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The inflaton potential from a fermion condensate
Inflaton coupled to Dirac fermions Ψ during inflation:

L = Ψ
[
i γµ Dµ −mf − gY φ

]
Ψ

gY = Yukawa coupling, γµ = curved space-time γ-matrices.
Hubble parameter H = constant. Effective potential ≡
fermions energy for a constant inflaton φ during inflation.
Dynamically generated inflaton potential:

Vf (φ) = V0 + 1
2 µ

2 φ2 + 1
4 λ φ

4 +H4Q
(
gY

φ
H

)
, where

µ2 = −m2 < 0 mass squared, λ = quartic coupling,

Q(x) = x2

8 π2

{
(1 + x2) [γ + Reψ(1 + i x)] − ζ(3)x2

}
=

= x4

8 π2

[
(1 + x2)

∑∞
n=1

1

n (n2 + x2)
− ζ(3)

]
, x ≡ gY

φ
H

Q(x)
x→∞
= x4

8 π2

[
log x+ γ − ζ(3) + O

(
1
x

)]

Minkowski limit (Coleman-Weinberg potential)
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Effective fermionic inflaton potential and r vs.ns
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The universal banana region
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We find that all r = r(ns) curves for double–well inflaton
potentials in the Ginsburg-Landau spirit fall inside the
universal banana region B.
The lower border of B corresponds to the limiting potential:

w(χ) = 4
y − 1

2 χ
2 for χ <

√
8
y , w(χ) = +∞ for χ >

√
8
y

This gives a lower bound for r for all potentials in the
Ginsburg-Landau class: r > 0.021 for the current best value
of the spectral index ns = 0.964.
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The Energy Scale of Inflation

Grand Unification Idea (GUT)

Renormalization group running of electromagnetic,
weak and strong couplings shows that they all meet at
EGUT ≃ 2 × 1016 GeV

Neutrino masses are explained by the see-saw

mechanism: mν ∼ M2
Fermi

MR
with MR ∼ 1016 GeV.

Inflation energy scale: M ≃ 1016 GeV.

Conclusion: the GUT energy scale appears in at least three
independent ways.

Moreover, moduli potentials: Vmoduli = M4
SUSY v

(
φ

MP l

)

ressemble inflation potentials provided MSUSY ∼ 1016 GeV.
First observation of SUSY in nature??
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Quadrupole suppression and Fast-roll Inflation
The observed CMB-quadrupole (COBE,WMAP5) is six
times smaller than the ΛCDM-slowroll model value.

In the best ΛCDM fit the probability that the quadrupole is
as low or lower than the observed value is only 3%.

It is hence relevant to find a cosmological explanation of the
quadrupole suppression.

Generically, the classical evolution of the inflaton has a brief
fast-roll stage where φ̇2 ∼ V (φ) before the slow-roll regime.
Fast-roll typically lasts 1 efold.

The slow-roll regime is an attractor with a large basin of
attraction.
In case the quadrupole CMB mode (∼ Hubble radius today)
leaves the horizon by the end of fast roll (beginning of
slow-roll), then the quadrupole modes get suppresed in
agreement with the CMB observations.
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REFERENCES on QUADRUPOLE SUPPRESSION

D. Boyanovsky, H. J. de Vega, N. G. Sanchez,
CMB quadrupole suppression:
I. Initial conditions of inflationary perturbations,
II. The early fast roll stage.
Phys. Rev. D74, 123006 and 123007 (2006),
astro-ph/0607508 and astro-ph/0607487.

C. Destri, H. J. de Vega, N. G. Sanchez,
The CMB Quadrupole depression produced by early
fast-roll inflation: MCMC analysis of WMAP and SDSS data.
Phys. Rev. D78, 023013 (2008), arXiv:0804.2387.

and references therein.
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Evolution of Curvature Fluctuations during Fast-Roll
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VR(τ) vs. τ

VR(τ) ≡ WR(η)
a2(η) slowly decreases during slow-roll as

VR(τ) ≃ 2 N H2(τ) + 1 +O(1/N)

VR(τ) < 0, attractive for earlier times τ .
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The fast-roll transfer function D(k)
Two essential effects:

The inflaton evolution starts at a finite time in the past.
(Not at η = −∞!). Initial conditions on the fluctuations
can be imposed at a finite time in the past too.

The potential felt by the fluctuations VR(τ) is not
constant neither positive during fast-roll.

All this produces as primordial power:

PR(k) = lim
η→0−

k3

2 π2

|SR(k; η)|2

z2(η)
= PBD

R (k) [1 +DR(k)]

where the transfer function DR(k) is determined by the
evolution during fast-roll and

PBD
R (k) = |∆R

k ad|2
(

k
k0

)ns−1
, 1 +DR(0) = 0 , DR(∞) = 0
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The Fast-Roll Transfer Function
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MCMC analysis of WMAP+SDSS data forΛCDM+fast-roll
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Marginalized distributions for ΛCDM+fast-roll
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Comparison, with the experimental WMAP5 data
of the theoretical CTT

ℓ multipoles
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Comparison, with the experimental WMAP5 data
of the theoretical CTE

ℓ multipoles
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Comparison, with the experimental WMAP-5 data
of the theoretical CEE

ℓ multipoles
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Real space TT correlation functionCTT (θ)
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CTT (θ) for ΛCDM, sharp cutoff and fast-roll models vs. the
angle θ. The ΛCDM correlator differs from the two others
only for large angles θ & 1.
Low multipoles dominate large angle correlations.
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Fixing the Total Number of Inflation e-folds
The CMB Quadrupole suppression is explained if the
quadrupole modes (horizon size today) exit the horizon by
the end of fast-roll.

That is, by redshift 0.9 × 1056 ≃ e129 = (1 + zr) e
Ntot

We can compute 1 + zr = redshift by the beginning of RD.

In RD a(t) =
√
t/tr, H(t) = 1/(2 t). In inflation: Hr = H/

√
N

Thus, ar = aeq

√
Heq

Hr
, r = beginning of RD era,

eq = equilibration = RD → MD eras.

H2
eq = 2

3 M2
P l
ρM (eq) , ρM (eq) = ρM (today) (1 + zeq)

3 ,

ρM (today) = ΩM ρc = 3 ΩM H2
0 M

2
Pl, H0 = Hubble today.

ar =
(

2 ΩM N
1+zeq

) 1
4
√

H0

H
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Fixing the Total Number of Inflation e-folds

It is convenient to define β ≡
√

10−4 MP l

H ∼ 1,

(recall that H ∼ 1014 GeV).

Therefore, ar = 100 β
(

2 ΩM N
1+zeq

) 1
4
√

H0

MP l

and 1 + zr = 1
ar

= 4 × 1028 1
β .

Since (1 + zr) e
Ntot = 0.9 × 1056 =⇒ eNtot = 0.229 1028 β

and Ntot = 63 + log β.

Recall our result for the quartic double–well using cmb+lss
data: β ≃ 2 , log β ≃ 0.7

This value for Ntot is remarkably close to the lower bound
on Ntot obtained from the entropy of the universe today.
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The Universe is made of radiation, matter and dark energy
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End of inflation: z ∼ 1029, Treh . 1016 GeV, t ∼ 10−36 sec.
E-W phase transition: z ∼ 1015, TEW ∼ 100 GeV, t ∼ 10−11 s.
QCD conf. transition: z ∼ 1012, TQCD ∼ 170 MeV, t ∼ 10−5 s.
BBN: z ∼ 109 , T ≃ 0.1 MeV, t ∼ 20 sec.
Rad-Mat equality: z ≃ 3200, T ≃ 0.7 eV, t ∼ 57000 yr.
CMB last scattering: z ≃ 1100, T ≃ 0.25 eV , t ∼ 370000 yr.
Mat-DE equality: z ≃ 0.47, T ≃ 0.345 meV , t ∼ 8.9 Gyr.
Today: z = 0, T = 2.725K = 0.2348 meV t = 13.72 Gyr.
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Dark Matter
DM must be non-relativistic by structure formation (z < 30)
in order to reproduce the observed small structures at
∼ 2 − 3 kpc.
DM particles can decouple being ultrarelativistic (UR) at
Td ≫ m or non-relativistic Td ≪ m.
Consider particles that decouple at or out of LTE
(LTE = local thermal equilibrium).
Distribution function:
Fd[a(t) Pf (t)] = Fd[pc] freezes out at decoupling.
Pf (t) = pc/a(t) = Physical momentum.
pc = comoving momentum.

Velocity fluctuations: y = Pf (t)/Td(t) = pc/Td

〈~V 2(t)〉 = 〈
~P 2

f (t)
m2 〉 =

R d3Pf

(2π)3

~P2
f

m2 Fd[a(t)Pf ]

R d3Pf

(2π)3
Fd[a(t)Pf ]

=
[

Td

m a(t)

]2 R ∞

0
y4Fd(y)dy

R

∞

0
y2Fd(y)dy

.
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Dark Matter density and DM velocity dispersion
Energy Density: ρDM (t) = g

∫ d3Pf

(2π)3

√
m2 + P 2

f Fd[a(t)Pf ]

g : # of internal degrees of freedom of the DM particle,
1 ≤ g ≤ 4. For z . 30 ⇒ DM particles are non-relativistic:

ρDM (t) = m g
2π2

T 3
d

a3(t)

∫∞
0 y2 Fd(y) dy ,

Using entropy conservation: Td =
(

2
gd

) 1
3

TCMB,

gd = effective # of UR degrees of freedom at decoupling,
TCMB = 0.2348 10−3 eV, and

ρDM (today) = m g
π2 gd

T 3
CMB

∫∞
0 y2 Fd(y) dy = 1.107 keV

cm3 (1)

We obtain for the primordial velocity dispersion:

σDM (z) =
√

1
3 〈~V 2〉(z) = 0.05124 1+z

g
1
3
d

[R

∞

0
y4 Fd(y) dy

R ∞

0
y2 Fd(y) dy

] 1
2 keV

m
km
s

Goal: determine m and gd. We need TWO constraints.
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The Phase-space densityρ/σ3 and its decrease factorZ

The phase-space density ρ
σ3 is invariant under the

cosmological expansion and can only decrease under
self-gravity interactions (gravitational clustering).

The phase-space density today follows observing dwarf
spheroidal satellite galaxies of the Milky Way (dSphs)

ρs

σ3
s
∼ 5 × 103 keV/cm3

(km/s)3
= (0.18 keV)4 Gilmore et al. 07 and 08.

During structure formation (z . 30), ρ/σ3 decreases by a
factor that we call Z.

ρs

σ3
s

=
1

Z

ρDM

σ3
DM

(2)

N -body simulations results: 1000 > Z > 1.

Constraints: First ρDM (today), Second ρ/σ3(today) = ρs/σ
3
s
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Mass Estimates for DM particles
Combining the previous expressions lead to general
formulas for m and gd:

m = 0.2504 keV
(

Z
g

) 1
4

"

∫ ∞

0
y4 Fd(y) dy

#

3
8

"

∫ ∞

0
y2 Fd(y) dy

#

5
8

gd = 35.96Z
1
4 g

3
4

[∫∞
0 y4 Fd(y) dy

∫∞
0 y2 Fd(y) dy

] 3
8

These formulas yield for relics decoupling UR at LTE:

m =
(

Z
g

) 1
4

keV

{
0.568

0.484
, gd = g

3
4 Z

1
4

{
155 Fermions

180 Bosons
.

Since g = 1 − 4, we see that gd > 100 ⇒ Td > 100 GeV.

1 < Z
1
4 < 5.6 for 1 < Z < 1000. Example: for DM Majorana

fermions (g = 2) m ≃ 0.85 keV.
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Out of thermal equilibrium decoupling

Results for m and gd on the same scales for DM particles
decoupling UR out of thermal equilibrium.

Particle physics candidates for UR decoupling in the keV
scale: sterile neutrinos, gravitinos, ...

D. Boyanovsky, H. J. de Vega, N. Sanchez,
Phys. Rev. D 77, 043518 (2008), arXiv:0710.5180.
H. J. de Vega, N. G. Sanchez,
arXiv:0901.0922 and arXiv:0907.0006
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Relics decoupling non-relativistic

FNR
d (pc) = 2

5
2 π

7
2

45 gd Y∞
(

Td

m

) 3
2 e

− p2
c

2 m Td = 2
5
2 π

7
2

45
gd Y∞

x
3
2

e−
y2

2 x

Y (t) = n(t)/s(t), n(t) number of DM particles per unit
volume, s(t) entropy per unit volume, x ≡ m/Td, Td < m.

Y∞ = 1
π

√
45
8

1√
gd Td σ0 MP l

late time limit of Boltzmann.

σ0: thermally averaged total annihilation cross-section times
the velocity.

From our previous general equations for m and gd:

m = 45
4 π2

ΩDM ρc

g T 3
γ Y∞

= 0.748
g Y∞

eV and m
5
2 T

3
2

d = 45
2 π2

1
g gd Y∞

Z ρs

σ3
s

Finally:
√
m Td = 1.47

(
Z
gd

) 1
3

keV

We used ρDM today and the decrease of the phase space
density by a factor Z.
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Relics decoupling non-relativistic 2

Allowed ranges for m and Td.

m > Td > b eV where b > 1 or b≫ 1 for DM decoupling in
the RD era
(

Z
gd

) 1
3

1.47 keV < m < 2.16
b MeV

(
Z
gd

) 2
3

gd ≃ 3 for 1 eV < Td < 100 keV and 1 < Z < 103

1.02 keV < m < 104
b MeV , Td < 10.2 keV.

Only using ρDM today (ignoring the phase space density
information) gives one equation with three unknowns:
m, Td and σ0,

σ0 = 0.16 pbarn
g√
gd

m

Td
http://pdg.lbl.gov

WIMPS with m = 100 GeV and Td = 5 GeV require Z ∼ 1023.
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The constant surface density in dark matter galaxies
Surface density of dark matter (DM) halos µ0D ≡ r0 ρ0,
r0 = halo core radius, ρ0 = central density

µ0D ≃ 140 M⊙

pc2 = 6400 MeV3 = (18.6 Mev)3 Donato et al.09

Universal value for µ0D: independent of galaxy luminosity
for a large number of galactic systems (spirals, dwarf
irregular and spheroidals, elliptics) spanning over 14
magnitudes in luminosity and of different Hubble types.

Similar values µ0D ≃ 80 M⊙

pc2 in interstellar molecular clouds
of size r0 of different type and composition over scales
0.001 pc < r0 < 100 pc (Larson laws, 1981).

Density profile in Galaxies: ρ(r) = ρ0 F
(

r
r0

)
, F (0) = 1.

Profiles: FBurkert(x) = 1
(1+x)(1+x2) , FSersic(x) = e−x

1
n , x ≡ r

r0

Same 1/r3 tail as cuspy NFW profile FNFW (x) = 4
x (1+x)2

– p. 71/93



Virial theorem plus extensivity of energy=⇒ µ0D = constant
Virial theorem for self-gravitating systems:

E = 1
2 〈U〉 = −〈K〉, E = total energy,

U = potential energy, K = kinetic energy. Therefore,

E = −G
4

∫
d3r d3r′

|~r−~r′| 〈ρ(r) ρ(r′)〉 = −G
4 ρ

2
0 r

5
0

∫
d3x d3x′

|x−x′| 〈F (x) F (x′)〉
Energy divided by the characteristic volume r30 goes as

−E
r3
0
∼ G ρ2

0 r
2
0 = G µ2

0D

Energy extensivity requires E/r30 fixed for large values of r0
=⇒ µ0D must take the same constant value for all r0

Estimating 〈K〉 yields 〈K〉 = 1
2

∫
d3r 〈ρ(r)〉 〈v2〉 =

= 1
2 ρ0 r

3
0 〈v2〉

∫
d3x 〈F (x)〉 ∼ ρ0 r

3
0 〈v2〉 =⇒ 〈v2〉 ∼ G µ0D r0

This is true both for molecular clouds and for galaxies.
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DM surface density from linear Boltzmann-Vlasov eq
The distribution function of the decoupled DM particles:
f(~x, ~p; t) = g f0(p) + F1(~x, ~p; t)

f0(p) = thermal equilibrium function at temperature Td

m g
∫ d3p

(2π)3 f0(p) = ρDM = ΩM ρc = 3 ΩM M2
Pl H

2
0

The linearized Boltzmann-Vlasov equation in the MD era
can be recasted as the Gilbert integral equation (Volterra
equation of 2nd kind) for

∆(k, t) ≡ m
∫ d3p

(2π)3

∫
d3x e−i ~x·~k F1(~x, ~p; t)

We evolve the fluctuations during the MD era using as initial
conditions the density fluctuations by the end of the RD era,
∆(k, teq) = ΩM ρc V δ(k, teq) , teq = equilibration time,

V ∼ 1/k3
eq ≃ f

H3
0
, keq ≃ 42.04 H0 = 9.88 Gpc−1, f ≃ 1.35 10−5

Fluctuations k > keq inside the horizon by teq are relevant
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Density Profiles from the Gilbert equation

At the end of the RD era t = teq:

δ(k, teq) = 24 |φk| log
(
0.116 k

keq

)

[W. Hu and N. Sugiyama (1996).]

|φk| = primordial inflationary fluctuations:

|φk| =
√

2 π |∆0|
(

k
k0

)ns/2−2
,

where |∆0| ≃ 4.94 10−5, ns ≃ 0.964, k0 = 2 Gpc−1.

Density profile today in the linear approximation:

ρlin(r) = 1
2 π2 r

∫∞
0 k dk sin(k r) ∆(k, ttoday)

H. J. de Vega, N. G. Sanchez,
On the constant surface density in dark matter galaxies and
interstellar molecular clouds, arXiv:0907.0006
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The Gilbert equation
Define: ∆̂(k, t) ≡ ∆(k, t)/∆(k, teq).

The Gilbert equation takes the form:

∆̂(k, u) − 6
α

∫ u
0 Π[α (u− u′)]

b∆(k,u′)
[1−u′]2 du

′ = I[αu]

where,

Π[z] = 1
I2

∫∞
0 dy y f0(y) sin(y z), I[z] = 1

I2

∫∞
0 dy y f0(y)

sin(y z)
z

y ≡ p
Td
, z ≡ α u, α ≡ 2 k

H0

√
1+zeq

ΩM

Td

m ,

I2 =
∫∞
0 dy y2 f0(y), 1 + zeq = 1

aeq
≃ 3200,

u = dimensionless time variable,

u = 1 −
√

aeq

a , 0 ≤ u ≤ utoday = 1 −√
aeq ≃ 0.982

a(u) = aeq

(1−u)2 , a(today) = 1 .

∆̂(k, t)
t→ttoday

= 3
5 T (k) (1 + zeq), T (k) = transfer function.
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The solution of the Gilbert equation today
Transfer function: T (0) = 1 and T (k → ∞) = 0 .

The solution of the Gilbert equation ∆̂(k, t) for k < kfs grows
proportional to the scale factor.
kfs = free-streaming (Jeans) comoving wavenumber.

kfs = characteristic scale for the decreasing of T (k) with k
=⇒ the natural variable here is γ ≡ k rlin

rlin ≡
√

2
kfs

= 2
H0

σDM

√
1+zeq

ΩM
and

σDM =
(
3 M2

Pl H
2
0 ΩDM

1
Z

σ3
s

ρs

) 1
3

=⇒ rlin = 125.1
(

10
Z

)1
3 kpc

Collecting all formulas we obtain for the fluctuations today

∆(k, ttoday) = 1.926 M2
P l

H0
|∆0| T (k)

(
k
k0

)ns/2−2
log
(
0.116 k

keq

)
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Density profiles in the linear approximation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Profiles ρlin(r)/ρlin(0) vs. x ≡ r/rlin

Fermions and Bosons decoupling ultrarelativistically and
particles decoupling non-relativistically (Maxwell-Boltzmann
statistics)
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Density profiles in the linear approximation
The Fourier transform of the fluctuations today yield

ρlin(r) = (5.826 Mev)3 Zns/6

r ×
×
∫∞
0 γns/2−1 log

(
ĉ Z

1
3 γ
)

sin
(
γ r

rlin

)
T (γ) dγ ,

µ0D = rlin ρlin(0) =

= (5.826 Mev)3 Zns/6
∫∞
0 γns/2 log

(
ĉ Z

1
3 γ
)
T (γ) dγ ,

where:
ns/2 − 1 = −0.518, ns/2 = 0.482, ns/6 = 0.160 and ĉ = 43.6

Particle Statistics µ0D = rlin ρlin(0)

Bose-Einstein (16.71 Mev)3 (Z/10)0.16

Fermi-Dirac (15.65 Mev)3 (Z/10)0.16

Maxwell-Boltzmann (14.73 Mev)3 (Z/10)0.16

Observed value: µ0D ≃ (18.6 Mev)3 ⇒ Z ∼ 10 − 100
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Linear results for µ0D and the profile vs. observations
Since the surface density r0 ρ(0) should be universal, we
can identify rlin ρlin(0) from a spherically symmetric solution
of the linearized Boltzmann-Vlasov equation.
The linear profiles obtained are cored since T (k) decays for
k > kfs ∼ 1/rlin ∼ 0.008 (Z/10)

1
3 (kpc)−1.

ρlin(r) scales with the primordial spectral index ns:

ρlin(r)
r≫rlin= r−1−ns/2 = r−1.482,

in agreement with the universal empirical behaviour
r−1.6±0.4, M. G. Walker et al., (2009).
For larger scales nonlinear effects from small k should give
the customary r−3 tail.
The agreement between the linear theory and the
observations is remarkable.
The comparison of our theoretical values for µ0D and the
observational value indicates that Z ∼ 10 − 100.
This implies that the DM particle mass is in the keV range.
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Dark Energy

76 ± 5% of the present energy of the Universe is Dark !
Current observed value:
ρΛ = ΩΛ ρc = (2.39 meV)4 , 1 meV = 10−3 eV.
Equation of state pΛ = −ρΛ within observational errors.
Quantum zero point energy. Renormalized value is finite.
Bosons (fermions) give positive (negative) contributions.
Mass of the lightest particles ∼ 1 meV is in the right scale.
Spontaneous symmetry breaking of continuous symmetries
produces massless scalars as Goldstone bosons. A small
symmetry breaking provide light scalars: axions,majorons...
Observational Axion window 10−3 meV . Maxion . 10 meV.
Dark energy can be a cosmological zero point effect. (As
the Casimir effect in Minkowski with non-trivial boundaries).
We need to learn the physics of light particles (< 1 MeV),
also to understand dark matter !!
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Loop Quantum Corrections to Slow-Roll Inflation

φ(~x, t) = Φ0(t)+ϕ(~x, t), Φ0(t) ≡< φ(~x, t) >, < ϕ(~x, t) >= 0

ϕ(~x, t) = 1
a(η)

∫
d3k

(2 π)3

[
a~k
χk(η) e

i~k·~x + h.c.
]
,

a†~k, a~k
are creation/annihilation operators,

χk(η) are mode functions. η = conformal time.
To one loop order the equation of motion for the inflaton is

Φ̈0(t) + 3H Φ̇0(t) + V ′(Φ0) + g(Φ0) 〈[ϕ(x, t)]2〉 = 0

where g(Φ0) = 1
2 V

′′′

(Φ0).
The mode functions obey:

χ
′′

k(η) +

[
k2 +M2(Φ0) a

2(η) − a
′′

(η)
a(η)

]
χk(η) = 0

where M2(Φ0) = V ′′(Φ0) = 3 H2
0 ηV + O(1/N2)
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Quantum Corrections to the Friedmann Equation

The mode functions equations for slow-roll become,

χ
′′

k(η)+
[
k2 − ν2− 1

4

η2

]
χk(η) = 0 , ν = 3

2 + ǫV −ηV +O(1/N2).

The scale factor during slow roll is a(η) = − 1
H0 η (1−ǫV ) .

Scale invariant case: ν = 3
2 . ∆ ≡ 3

2 − ν = ηV − ǫV = O (1/N)

controls the departure from scale invariance.
Explicit solutions in slow-roll:

χk(η) = 1
2

√−πη iν+ 1
2 H

(1)
ν (−k η), H(1)

ν (z) = Hankel function

Quantum fluctuations: 〈[ϕ(x, t)]2〉 = 1
a2(η)

∫
d3k

(2π)3 |χk(η)|2
1
2〈[ϕ(x, t)]2〉 =

(
H0

4 π

)2 [
Λ2 + ln(4 Λ2) + 1

∆ + 2 γ − 4 + O(∆)
]

UV cutoff Λ = physical cutoff/H0,
1
∆ = infrared pole.

〈
ϕ̇2
〉

,
〈
(∇ϕ)2

〉
are infrared finite
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The one-loop calculation near∆ = 0

〈[ϕ(x, t)]2〉 = H2
0 (−η)3

8 π

∫
k2 dk |H(1)

ν (−kη)|2
where we used that a = −1/[H0 η]. New integration variable:

q ≡ −k η = k
H0 a = kphys

H0
, 〈[ϕ(x, t)]2〉 = H2

0

8 π

∫ Λ
0 q2 dq |H(1)

ν (q)|2 .
Exactly at the scale invariant point ∆ = 0 , ν = 3

2 :

q2
∣∣∣H(1)

3
2

(q)
∣∣∣
2

= 2
π [1q + q] . Near the origin at arbitrary ∆:

q2
∣∣∣H(1)

ν (q)
∣∣∣
2 q→0

=
[

2ν Γ(ν)
π

]2
q2 ∆−1 , ν = 3

2 − ∆ ≃ 3
2

We now split the integral (0,Λ) into the integral (0, µ) plus
the integral (µ,Λ) where µ≪ 1:
∫ µ
0 dq q2

∣∣∣H(1)
ν (q)

∣∣∣
2

= 1
π

[
1
∆ + µ2 + 2 γ − 4 + 2 ln(2 µ) + O(∆)

]

∫ Λ
µ dq q2

∣∣∣H(1)
ν (q)

∣∣∣
2

= 1
π

[
Λ2 − µ2 + log Λ2

µ2 + O(∆)
]

Summing up both integrals gives a µ independent result.

– p. 83/93



Quantum Corrections to the Inflaton Potential

Upon UV renormalization the Friedmann equation results

H2 = 1
3 M2

P l

[
1
2 Φ̇0

2
+ VR(Φ0) +

(
H0

4 π

)2 V
′′

R (Φ0)
∆ + O

(
1
N

)]

Quantum corrections are proportional to
(

H
MP l

)2
∼ 10−9 !!

The Friedmann equation gives for the effective potential:

Veff (Φ0) = VR(Φ0) +
(

H0

4 π

)2 V
′′

R (Φ0)
∆

Veff (Φ0) = VR(Φ0)

[
1 +

(
H0

4 π MP l

)2
ηV

ηV −ǫV

]

in terms of slow-roll parameters

Very DIFFERENT from the one-loop effective potential in
Minkowski space-time:

Veff (Φ0) = VR(Φ0) + [V
′′

R (Φ0)]
2

64 π2 ln V
′′

R (Φ0)
M2
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Quantum Fluctuations:
Scalar Curvature, Tensor, Fermion, Light Scalar.
All these quantum fluctuations contribute to the inflaton
potential and to the primordial power spectra.

In de Sitter space-time: < Tµ ν >= 1
4 gµ ν < Tα

α >

Hence, Veff = VR+ < T 0
0 >= VR + 1

4 < Tα
α >

Sub-horizon (Ultraviolet) contributions appear through the
trace anomaly and only depend on the spin of the particle.
Superhorizon (Infrared) contributions are of the order N0

and can be expressed in terms of the slow-roll parameters.

Veff (Φ0) = V (Φ0)

[
1 + H2

0

3 (4π)2 M2
P l

(
ηv−4 ǫv

ηv−3 ǫv
+ 3 ησ

ησ−ǫv
+ T

)]

T = TΦ + Ts + Tt + TF = −2903
20 is the total trace anomaly.

TΦ = Ts = −29
30 , Tt = −717

5 , TF = 11
60

−→ the graviton (t) dominates.
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Corrections to the Primordial Scalar and Tensor Power

|∆(S)
k,eff |2 = |∆(S)

k |2 {1+

+2
3

(
H0

4 π MP l

)2 [
1 +

3
8

r (ns−1)+2 dns
d ln k

(ns−1)2 + 2903
40

]}

|∆(T )
k,eff |2 = |∆(T )

k |2
{

1 − 1
3

(
H0

4 π MP l

)2 [
−1 + 1

8
r

ns−1 + 2903
20

]}
.

The anomaly contribution −2903
20 = −145.15 DOMINATES

as long as the number of fermions less than 783.

The scalar curvature fluctuations |∆(S)
k |2 are ENHANCED

and the tensor fluctuations |∆(T )
k |2 REDUCED.

However,
(

H
MP l

)2
∼ 10−9.

D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Phys. Rev. D
72, 103006 (2005), astro-ph/0507596.
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Summary and Conclusions
We formulate inflation as an effective field theory in the
Ginsburg-Landau spirit with energy scale
M ∼MGUT ∼ 1016 GeV ≪MPl. Inflaton mass small:
m ∼ H/

√
N ∼M2/MPl ≪M . Infrared regime !!

For all slow-roll models ns − 1 and r are 1/N, N ∼ 60.

MCMC analysis of WMAP+LSS data plus this theory
input indicates a spontaneously broken inflaton

potential: w(χ) = y
32

(
χ2 − 8

y

)2
, y ≃ 1.26.

Lower Bounds: r > 0.023 (95% CL) , r > 0.046 (68% CL).
The most probable values are r ≃ 0.051(⇐ measurable
!!) ns ≃ 0.964 .

Model independent analysis of dark matter points to a
particle mass at the keV scale. Td may be > 100 GeV.
DM is cold.
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Summary and Conclusions 2

CMB quadrupole suppression can be explained by the
effect of fast-roll inflation provided the today’s horizon
size modes exited by the end of fast-roll inflation.

Quantum (loop) corrections in the effective theory are of
the order (H/MPl)

2 ∼ 10−9. Same order of magnitude
as loop graviton corrections.

D. Boyanovsky, H. J. de Vega, N. G. Sanchez,

Quantum corrections to the inflaton potential and the power
spectra from superhorizon modes and trace anomalies,
Phys. Rev. D 72, 103006 (2005), astro-ph/0507596.

Quantum corrections to slow roll inflation and new scaling
of superhorizon fluctuations. Nucl. Phys. B 747, 25 (2006),
astro-ph/0503669.
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Future Perspectives
The Golden Age of Cosmology and Astrophysics continues.

A wealth of data from WMAP (7 yr), Planck, Atacama
Cosmology Tel and further experiments are coming.

Galaxy and Star formation. DM properties from
astronomical observations. Better bounds on DM
cross-sections.

DM in planets and the earth. Flyby and Pioneer anomalies?

The Dark Ages...Reionisation...the 21cm line...

Nature of Dark Energy? 76% of the energy of the universe.

Nature of Dark Matter? 83% of the matter in the universe.

Light DM particles are strongly favoured mDM ∼ keV.

Sterile neutrinos? Some unknown light particle ??

Need to learn about the physics of light particles (< 1 MeV).
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t  ~ 10-39 sec

Fast roll inflation  
10-39 sec ~<  t  ~< 10-38 sec
Slow roll in flation  
10-38 sec ~<  t  ~< 10-36 sec

Planck  time:  t ~ 10-44 sec 

COSMIC HISTORY AND CMB QUADRUPOLE SUPPRESSION

Fast roll inflation produces
the CMB quadrupole 

suppression
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Transfer Function for different initial times of fluctuatio ns
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Transfer function 1 +D(k) for different initial times of
fluctuations: ∆τ from the begining of fast-roll. BD initial
conditions. ∆τ = 0.25: begining of slow-roll.
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∆CTT

ℓ vs. initial time of fluctuations
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amplitudes according to the starting time ∆τ chosen for the
fluctuations from the begining of fast-roll. BD initial
conditions. ∆τ = 0.25: begining of slow-roll.
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