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ABSTRACT
We present a model-independent analysis of dark matter (DM) decoupling both ultrarelativisti-
cally (UR) and non-relativistically (NR) based on the DM phase-space densityD = ρDM/σ 3

DM.
We derive explicit formulae for the DM particle mass m and for the number of ultrarelativistic
degrees of freedom gd at decoupling. We find that for DM particles decoupling UR both at local
thermal equilibrium (LTE) and out of LTE, m turns out to be in the keV scale. For example,
for DM Majorana fermions decoupling at LTE the resulting mass is m � 0.85 keV. For DM
particles decoupling NR,

√
mTd results in the keV scale (Td is the decoupling temperature)

and the value of m is consistent with the keV scale. In all cases, DM turns out to be cold
DM (CDM). In addition, lower and upper bounds on the DM annihilation cross-section for
NR decoupling are derived. We evaluate the free-streaming (Jeans) wavelength and Jeans
mass: they are independent of the type of DM except for the DM self-gravity dynamics. The
free-streaming wavelength today turns to be in the kpc range. These results are based on our
theoretical analysis, on astronomical observations of dwarf spheroidal satellite galaxies in the
Milky Way and on N-body numerical simulations. We analyse and discuss the results for D
from analytic approximate formulae for both linear fluctuations and the (non-linear) spherical
model and from N-body simulations results. In this way we obtain upper bounds for the DM
particle mass, which are all below the 100-keV range.
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1 THE DARK MATTER PA RTICLE MASS

Although the existence of dark matter (DM) was proposed 75 years
ago (Zwicky 1933; Oort 1940, see van den Bergh 2001 for a history
of the research on dark matter) its nature is as yet unknown. It must
have been non-relativistic by the time of structure formation (z <

30) in order to reproduce the observed small structure at ∼2–3 kpc.
DM particles can decouple ultrarelativistically (UR) at T d � m

or non-relativistically (NR) at T d � m, where m is the mass of the
DM particles and Td the decoupling temperature. We consider in this
paper particles that decouple at or out of local thermal equilibrium
(LTE).

The DM distribution function Fd freezes out at decoupling. There-
fore, for all times after decoupling Fd coincides with its expression
at decoupling. Fd is a function of T d, m and the comoving momen-
tum of the DM particles pc.

Knowing the distribution function F d(pc), we can compute phys-
ical magnitudes as the DM velocity fluctuations and the DM energy

�E-mail: devega@lpthe.jussieu.fr (HJdV); Norma.Sanchez@obspm.fr
(NGS)

density. For the relevant times t during structure formation, when
the DM particles are non-relativistic, we have

〈V 2〉(t) =
〈

p 2
ph

m2

〉
(t) =

∫
d3pph

(2π)3

p 2
ph

m2
Fd[a(t)pph]∫

d3pph

(2π)3
Fd[a(t)pph]

, (1)

where we use the physical momentum of the DM particles pph(t) ≡
pc/a(t) as the integration variable. The scale factor a(t) is normal-
ized as usual:

a(t) = 1

1 + z(t)
, a(today) = 1; (2)

that is, the physical momentum pph(t) coincides today with the
comoving momentum pc at zero redshift.

We can relate the covariant decoupling temperature, Td, the ef-
fective number of UR degrees of freedom at decoupling, gd, and the
photon temperature today, T γ , using entropy conservation (Kolb &
Turner 1990; Börner 2003; Yao et al. 2006):

Td =
(

2

gd

)1/3

Tγ , where Tγ = 0.2348 meV (3)

and 1 meV = 10−3 eV.
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The DM energy density can be written as

ρDM(t) = g

∫
d3pph

(2π)3

√
m2 + p2

phFd[a(t)pph], (4)

where g is the number of internal degrees of freedom of the DM
particle, typically 1 ≤ g ≤ 4.

By the time the DM particles are non-relativistic, the energy
density equation (4) has become

ρDM(t) = mg

2π2

T 3
d

a3(t)
I2 ≡ mn(t), (5)

where

I2 ≡
∫ ∞

0
y2Fd(y) dy,

n(t) is the number of DM particles per unit volume, and we have
used as integration variable

y ≡ pph(t)

Td(t)
= pc

Td
. (6)

From equation (5) at t = 0 and from the value observed today for
ρDM (Komatsu et al. 2009; Yao et al. 2006),

ρDM = �DMρc = 0.228ρc,

ρc = 3M2
PlH

2
0 = (2.518 meV)4,

(7)

and M2
Pl = 1/[8πG], we find the value of the DM mass particle:

m = π2�DM
ρc

T 3
γ

gd

gI2
= 6.986 eV

gd

gI2
, (8)

where ρc is the critical density.
Using y as the integration variable (equation 6), equation (1) for

the velocity fluctuations yields

〈V 2〉(t) =
[

Td

ma(t)

]2
I4

I2
, (9)

where

I4 ≡
∫ ∞

0
y4Fd(y) dy.

Expressing Td in terms of the cosmic microwave background
(CMB) temperature today according to equation (3) gives, for the
one-dimensional velocity dispersion,

σDM(z) =
√

1

3
〈V 2〉(z) = 21/3

√
3

1 + z

g
1/3
d

Tγ

m

√
I4

I2
(10)

= 0.05124
1 + z

g
1/3
d

keV

m

[
I4

I2

]1/2

km s−1. (11)

It is very useful to consider the invariant phase-space density under
universe expansion (Boyanovsky, de Vega & Sanchez 2008a; Hogan
& Dalcanton 2000; Dalcanton & Hogan 2001; Madsen 1990, 2001):

D(t) ≡ n(t)〈
p2

ph(t)
〉3/2

non−rel= 1

3
√

3m4

ρDM(t)

σ 3
DM(t)

, (12)

where we consider the relevant times t during structure formation
when the DM particles are non-relativistic. D(t) is a constant in the
absence of self-gravity. In the non-relativistic regime, D(t) can de-
crease only by collisionless phase mixing or self-gravity dynamics
(Lynden-Bell 1967; Tremaine, Henon & Lynden-Bell 1986).

We derive a useful expression for the phase-space densityD from
equations (5), (10) and (12), with the result

D = g

2π2

I
5/2
2

I
3/2
4

. (13)

Observations of dwarf spheroidal satellite galaxies (dSphs) in the
Milky Way yield for the phase-space density today (Wyse &
Gilmore 2007; Gilmore et al. 2007):

ρs

σ 3
s

∼ 5 × 103 keV cm−3

(km s−1)3
= (0.18 keV)4. (14)

The precision of these results is about a factor of 10.
After the radiation-dominated era, the phase-space density de-

creases by a factor that we denote by Z:

D(0) = 1

Z
D(z ∼ 3200). (15)

Recall that D(z) = ρDM/(3
√

3m4σ 3
DM) (according to equation 12) is

independent of z for z � 3200, as density fluctuations were �10−3

before the matter-dominated era (Dodelson 2003).
The range of values of Z (which is necessarily Z > 1) is analysed

in detail in Section 2.3 below.
We can express the phase-space density today from equations

(12) and (14) as

D(0) = 1

3
√

3m4

ρs

σ 3
s

. (16)

Therefore, equations (12), (15) and (16) yield

ρs

σ 3
s

= 1

Z

ρDM

σ 3
DM

(z ∼ 3200), (17)

where ρDM/σ 3
DM(z ∼ 3200) follows from equations (12) and (13):

ρDM

σ 3
DM

(z ∼ 3200) = 3
√

3m4

2π2
g

I
5/2
2

I
3/2
4

. (18)

We can express m from equations (14)–(18) in terms of D and
observable quantities as

m4 = Z

3
√

3

ρs

Dσ 3
s

= 2π2

3
√

3

Z

g

ρs

σ 3
s

I
3/2
4

I
5/2
2

, (19)

m = 0.2504

(
Z

g

)1/4
I

3/8
4

I
5/8
2

keV. (20)

Combining this with equation (8) for m we obtain the number of
ultrarelativistic degrees of freedom at decoupling as

gd = 21/4

33/8 π3/2

g3/4

�DM

T 3
γ

ρc

(
Zρs

σ 3
s

)1/4

[I2I4]3/8

= 35.96 Z1/4 g3/4[I2I4]3/8. (21)

If we assume that DM today is a self-gravitating gas in thermal
equilibrium described by an isothermal sphere solution of the Lane–
Emden equation, the relevant quantity characterizing the dynamics
is the dimensionless variable

η = Gm2N

LT
= 2

3
GL2 ρs

σ 2
s

(22)

(de Vega & Sánchez 2002a,b; Destri & de Vega 2007), which is
bound to be η � 1.6 to prevent the gravitational collapse of the
gas (de Vega & Sánchez 2002a,b; Destri & de Vega 2007). Here,
V = L3 denotes the volume occupied by the gas, N the number
of particles, G Newton’s constant, and T = (3/2) mσ 2 is the gas
temperature. [The length L is similar to the so-called King radius
(Binney & Tremaine 1987). Note, however, that the King radius
follows from the singular isothermal sphere solution whereas L
is the characteristic size of a stable isothermal sphere solution
(de Vega & Sánchez 2002a,b; Destri & de Vega 2007).]
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The compilation of recent photometric and kinematic data from
10 Milky Way dSphs satellites (Wyse & Gilmore 2007; Gilmore
et al. 2007) yields values for the one-dimensional velocity disper-
sion σ s and the radius L in the ranges

0.5 kpc ≤ L ≤ 1.8 kpc, 6.6 km s−1 ≤ σs ≤ 11.1 km s−1. (23)

Combining equations (12), (17) and (22) yields an explicit expres-
sion for the DM particle mass:

m4 ∼ 1

2
√

3G
η

Z

L2Dσs
= 4π√

3
M2

Plη
Z

L2Dσs

= 0.5279 × 10−4 ηZ

D
10 km s−1

σs

(
kpc

L

)2

(keV)4. (24)

This formula provides an expression for the DM particle mass in-
dependent of equation (19). We shall see below that equations (19)
and (24) yield similar results.

In the subsequent sections we investigate cases in which DM
particles decouple UR or NR both at LTE and out of LTE. We
compute m and gd explicitly in the various cases according to the
general formulae (20), (21) and (24).

1.1 Jeans (free-streaming) wavelength and Jeans mass

It is important to evaluate the Jeans length and Jeans mass in the
present context (Börner 2003; Gilbert 1968; Bond & Szalay 1983).
The Jeans length is analogous to the free-streaming wavelength.
The free-streaming wavevector is the largest wavevector exhibiting
gravitational instability and characterizes the scale of suppression
of the DM transfer function T(k) (Boyanovsky, de Vega & Sanchez
2008b).

The physical free-streaming wavelength can be expressed as
(Börner 2003; Boyanovsky et al. 2008b)

λfs(t) = λJ(t) = 2π

kfs(t)
, (25)

where kfs(t) = kJ(t) is the physical free-streaming wavenumber
given by

k2
fs(t) = 4πGρDM(t)

〈V 2〉(t) = 3

2
[1 + z(t)]

H 2
0 �DM

〈V 2〉(0)
, (26)

where we used that ρDM(t) = ρDM(0) (1 + z)3 and equation (7).
We obtain the primordial DM dispersion velocity σ DM from equa-

tions (5), (7) and (17):√
1

3
〈V 2〉(0) = σDM =

(
3M2

PlH
2
0 �DM

1

Z

σ 3
s

ρs

)1/3

. (27)

This expression is valid for any kind of DM particle. Inserting
equation (27) into equation (26) yields the following expression for
the physical free-streaming wavelength:

λfs(z) = 2
√

2π

�
1/6
DM

(
3M2

Pl

H0

)1/3 (
σ 3

s

Zρs

)1/3 1√
1 + z

= 16.3

Z1/3

1√
1 + z

kpc, (28)

where we used 1 keV = 1.563738 × 1029 (kpc)−1.
Note that λfs and therefore λJ are independent of the nature of the

DM particle except for the factor Z.
The approximated analytic evaluations in Section 2 together

with the results of N-body simulations (Peirani, Durier & de
Freitas Pacheco 2006; Hoffman et al. 2007; Lapi & Cavaliere 2009;
Romano-Diaz et al. 2006, 2007; Vass et al. 2009) indicate that, for
dSphs, Z is in the range

1 < Z < 10000.

Therefore, 1 < Z1/3 < 21.5 and the free-streaming wavelength is in
the range

0.757
1√

1 + z
kpc < λfs(z) < 16.3

1√
1 + z

kpc.

These values at z = 0 are consistent with the N-body simulations
reported in Gao & Theuns (2007) and are of the order of the small
DM structures observed today (Wyse & Gilmore 2007; Gilmore
et al. 2007).

The Jeans mass is given by

MJ(t) = 4

3
πλ3

J (t) ρDM(t), (29)

and provides the smallest unstable mass by gravitational collapse
(Kolb & Turner 1990; Börner 2003). Inserting equation (5) for the
DM density and equation (28) for λJ(t) = λfs(t) yields

MJ(z) = 192
√

2π4
√

�DMM4
PlH0

σ 3
s

Zρs
(1 + z)3/2

= 0.4464

Z
107 M (1 + z)3/2. (30)

Taking into account the range of Z-values yields

0.4464 × 103M < MJ(z) (1 + z)−3/2 < 0.4464 × 107 M.

This gives masses of the order of galactic masses ∼1011 M by the
beginning of the matter-dominated (MD) era z ∼ 3200. In addition,
the comoving free-streaming wavelength at z ∼ 3200,

3200 × λfs(z ∼ 3200) ∼ 100 kpc,

turns out to be of the order of the size of galaxies today.

2 THE PHASE-SPAC E D ENSITY D F RO M
ANALYTI C APPROX I MATI ON METHODS
A N D F RO M N- B O DY SI M U L AT I O N S

We now analytically derive formulae for the reduction factor Z
defined by equation (15) in the linear approximation and in the
spherical model. The results obtained (see Table 1) are in fact upper
bounds for Z. We analyse the results for D from N-body simula-
tions.

2.1 Linear perturbations

The simplest calculation of D follows by considering linear pertur-
bations around the homogeneous distribution ρDM(z) as

ρ = ρDM(z)[1 + δ(z, k)]. (31)

We have ρDM(z) = ρDM(0) (1 + z)3, and in a MD universe

δ(z, k) ∼ δi
1 + z

1 + zi
. (32)

The peculiar velocity in the MD universe behaves as (Dodelson
2003)

v ∼ aHδ ∼ 1/
√

1 + z. (33)

We can thus relate the phase-space density D(z) ∼ ρ/v3 at redshift
z (equation 12) to the phase-space density at redshift zi as

D(z) ∼ D(zi)

(
1 + z

1 + zi

)9/2

. (34)

Because the linear approximation is valid for |δ|2 � 1, we find from
equation (32) that equation (34) applies in the redshift range (zi, z),
where

1 + z � (1 + zi) δi. (35)
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Table 1. Upper bounds for the Z factor (defined by equation 15) and for the mass of the
DM particle obtained for two different approximation methods. Note that only the spherical
model takes into account non-linear self-gravity effects. The mass m depends weakly on Z
through the power 1/4. In both cases m is in the keV range.

Approximation used Upper limit on Z Upper limit on m � 0.5 Z1/4 keV

Linear fluctuations ∼1.3 × 1011 96 keV

Spherical model ∼1.29 × δ
−3/2
i � 4.1 × 104 7.1 keV

We can apply equation (34) to relate D(z) at equilibration (z =
zi � 3200) and D(z) at the beginning of structure formation, z ∼
30, as δi ∼ 10−3 is a scale average of the density fluctuations at
the end of the radiation-dominated (RD) era (Dodelson 2003) and
equation (35) is satisfied. We thus obtain from equation (34) in the
linear approximation that

D(z � 3200)

D(z � 30)
∼ 1.3 × 109. (36)

Note that equation (35) does not hold for z ∼ 0. Therefore, in
order to evaluate Z, we should combine the linear approximation
result (equation 36) for 30 � z � 3200 with the results of N-body
simulations for 0 � z � 30. This is done in Section 2.4 to obtain
upper bounds for Z.

2.2 The spherical model

Let us now consider the spherical model in which particles move
only in the radial direction but in which the non-linear evolu-
tion is exactly solved (Fillmore & Goldrich 1984a,b; Bertschinger
1985a,b; Peebles 1993; Padmanabhan 2000). The proper radius of
the spherical shell obeys the equation

R̈ = −GM

R2
, (37)

where G is the gravitational constant and M is the (constant) mass
enclosed by the shell. Equation (37) can be solved in close form
with the solution (Bertschinger 1985a,b; Peebles 1993)

t = 3ti

4δ
3/2
i

(θ − sin θ ) ,

R = Ri

2δi
(1 − cos θ ),

2R3
i

9t2
i

= GM,

Ṙ = 2Ri
√

δi

3ti

sin θ

1 − cos θ
,

1 + z = (1 + zi) δi

(
4

3

)2/3 1

(θ − sin θ )2/3
,

ρ = ρDM(z)
9

2

(θ − sin θ )2

(1 − cos θ )3
.

(38)

Here, Ri and zi are the radius and the redshift at the initial time ti,
and θ is an auxiliary time-dependent parameter.

Choosing the initial time by equilibration with zi � 1 we have
θ i � 1, and we find from equations (38) that

θi = 2
√

δi, Ṙ(ti) = 2Ri

3ti
, ρi = ρDM(zi). (39)

The spherical shell reaches its maximum radius of expansion Rm =
Ri/δi at θ = π and then it turns around and collapses to a point at θ =
2π. However, well before that, the approximation that matter only
moves radially and that random particle velocities are small will
break down. In fact, the DM relaxes to a virialized configuration

in which the velocity and the virial radius follow from the virial
theorem (Padmanabhan 2000)

v2 = 6GM

5Rm
, Rv = 1

2
Rm. (40)

We can now compute the initial phase-space density (at zi) and the
phase-space density at virialization. At zi we can use equations (12)
and (39) to obtain

Di = ρDM(0)

3
√

3m4
(1 + zi)

3

(
3ti

2Ri

)3

, (41)

and at virialization for θ = 2π we obtain from equations (12) and
(40) that

Dv = ρDM(0)

3
√

3m4
(1 + zi)

3

(
ti

Ri

)3 32

9π2

(
15

4
δi

)3/2

. (42)

Therefore, the Z factor in the spherical model takes the value

Z = Di

Dv
= 9π2

32

(
3

5δi

)3/2

= 1.29009

δ
3/2
i

.

Setting δi ∼ 10−3 as a scale average of the density fluctuations at
the end of the RD era (Dodelson 2003) yields

Z ∼ 4.08 × 104. (43)

The spherical model approximates the evolution as a purely radial
expansion followed by a radial collapse. Because no transverse
motion is allowed, nor mergers, the spherical model result for Z
(equation 43) is actually an upper bound on Z.

2.3 The phase-space density D from N-body simulations

The phase-space density D(z) is invariant under universe expan-
sion except for the self-gravity dynamics that diminish D(z) in
its evolution (Lynden-Bell 1967; Tremaine et al. 1986). Numerical
simulations show that D(z) decreases sharply during phases of vio-
lent mergers which are followed by quiescent phases (Peirani et al.
2006; Hoffman et al. 2007; Lapi & Cavaliere 2009; Romano-Diaz
et al. 2006, 2007; Vass et al. 2009). D(z) decreases during these
violent phases by a factor of the order �1. (See fig. 3 in Peirani
et al. 2006; fig. 1 in Hoffman et al. 2007; fig. 6 in Lapi & Cavaliere
2009 and fig. 5 in Vass et al. 2009.) These sharp decreases in D
are in agreement with the linear approximation of Section 2.1, as
shown below.

A succession of several violent phases occurs during the structure
formation stage (z � 30). Their cumulated effect, together with the
evolution of D for 3200 � z � 30, produces a range of values for
the Z factor that we can conservatively estimate on the basis of the
results of N-body simulations (Peirani et al. 2006; Hoffman et al.
2007; Lapi & Cavaliere 2009; Romano-Diaz et al. 2006, 2007; Vass
et al. 2009) and the approximation results of equations (36) and (43).
This gives a range of values 1 < Z < 10 000 for dSphs. A more
accurate analysis of N-body simulations should narrow this range
for Z, which depends on the type and size of the galaxy considered.
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The dSph observations, for which the best observational data on
DM dominated galaxies are available, take into account mostly the
cores of the structures, as dSphs have been stripped of their external
haloes. Hence, the observed values of ρs/σ

3
s may be higher than

the space-averaged values represented on the right-hand sides of
equations (15) and (17). Higher values for ρs/σ

3
s correspond to

lower values for Z.
The approximate formula (34) indicates a sharp decrease of the

phase-space density with redshift. This sharp decrease is in qualita-
tive agreement with simulations for the violent phases; see Peirani
et al. (2006); Hoffman et al. (2007); Lapi & Cavaliere (2009);
Romano-Diaz et al. (2006, 2007); Vass et al. (2009).

2.4 Synthetic discussion on the evaluation of Z
and its upper bounds

The DM particle mass scale is set by the phase-space density for
dSphs (equation 14). These galaxies are particularly dense and
exhibit larger values for ρs/σ

3
s than spiral galaxies. Because the

primordial phase-space density is a universal quantity depending
only on cosmological parameters, the Z factor must be galaxy-
dependent – larger for spiral galaxies than for dSphs.

We want to stress that the values of the relevant quantities m and
gd are weakly affected by the uncertainty of Z through the factor
Z1/4 (see equations 20 and 21).

Equation (34) provides an extreme high estimate for the decrease
of D, and hence an extreme high estimate for Z. The N-body simu-
lations show that the violent decrease of D is restricted to a factor of
order one in each violent phase (Peirani et al. 2006; Hoffman et al.
2007; Lapi & Cavaliere 2009; Romano-Diaz et al. 2006, 2007; Vass
et al. 2009).

In summary, the linear approximation suggests a reduction of D
at each violent phase by a factor �1, where such an approximation
is valid. Successive violent phases can reduce D by a factor of
up to ∼10 in the range 0 � z � 30, as shown in the simulations
(Peirani et al. 2006; Hoffman et al. 2007; Lapi & Cavaliere 2009;
Romano-Diaz et al. 2006, 2007; Vass et al. 2009).

Combining the approximate decrease of D(z) given by equa-
tion (36) with an upper bound of a decrease by a factor ∼100 for
the interval 0 � z � 30 yields in the linear approximation the upper
bound

Z < 1.3 × 1011 , (44)

and we have equation (43) for Z in the spherical model. The fact that
Z in the spherical model turns out to be several orders of magnitude
below the Z value in the linear approximation arises from the fact
that the spherical model includes non-linear effects and is therefore
more reliable than the linear approximation.

The range 1 < Z < 10 000 for dSphs from N-body simulations
corresponds to realistic initial conditions in the simulations.

The evolutions in the two approximations considered (see
Table 1) are simple spatially isotropic expansions, followed by a
collapse in the case of the spherical model. There is no possibility
of non-radial motion nor of mergers in these approximations, in
contrast to the case in N-body simulations. For such reasons, the Z
values in Table 1 are upper bounds to the true values of Z in galaxies.
The largest bound on Z yields DM particle masses below ∼100 keV.
Moreover, the more reliable spherical model yields 7.1 keV as an
upper bound for the DM particle mass.

In summary, with realistic initial conditions, D will not decrease
more than a factor �10 000, and it is therefore fair to assume that
Z < 10 000 for dSphs.

3 D M PARTI CLES DECOUPLI NG
ULTRARELATI VI STI CALLY

3.1 Decoupling at LTE

If DM particles of mass m decouple at a temperature T d � m their
freezed-out distribution function depends only on

pc

Td
= pph(t)

Td(t)
, where Td(t) ≡ Td

a(t)
.

That is, the distribution function for DM particles that decouple in
thermal equilibrium takes the form

F
equil
d

[
pph(t)

Td(t)

]
= F

equil
d

[
pc

Td

]
,

where F
equil
d is a Bose–Einstein or Fermi–Dirac distribution func-

tion:

F
equil
d [pc] = 1

exp
[√

m2 + p2
c

/
Td

]
± 1

. (45)

Note that for equation (45) in this regime√
m2 + p2

c

Td

Td�m= y + O
(

m2

T 2
d

)
,

where y is defined by equation (6) and we can use as distribution
functions

F
equil
d (y) = 1

ey ± 1
. (46)

Using equations (8) and (45), we find for fermions and for bosons
decoupling at LTE that

m = gd

g

{
3.874 eV fermions

2.906 eV bosons .
(47)

We see that for DM that decoupled at the Fermi scale, namely
T d ∼ 100 GeV and gd ∼ 100, m results in the keV scale, as noted
by Bond & Szalay (1983), Pagels & Primack (1982) and Bond,
Szalay & Turner (1982). DM particles may decouple earlier with
T d > 100 GeV, but gd is always in the hundreds, even in grand
unified theories (GUTs) in which Td can reach the GUT energy
scale. Therefore, equation (47) strongly suggests that the mass of
the DM particles that decoupled UR in LTE is in the keV scale.

It should be noted that the Lee–Weinberg (Lee & Weinberg
1977; Sato & Kobayashi 1977; Vysotsky, Dolgov & Zeldovich
1977) lower bound as well as the Cowsik–McClelland (Cowsick &
McClelland 1972) upper bound follow from equation (8), as shown
in Boyanovsky et al. (2008a).

Computing the integrals in equation (13) with the distribution
functions of equation (45) gives, for DM decoupling UR in LTE,
that

D = g

⎧⎨
⎩

1
4π2

√
ζ 5(3)

15ζ 3(5)
= 1.9625 × 10−3 fermions

1
8π2

√
ζ 5(3)
3ζ 3(5)

= 3.6569 × 10−3 bosons,
(48)

where ζ (3) = 1.2020569. . . and ζ (5) = 1.0369278 . . . .
Inserting the distribution function equation (46) into equations

(19) and (21) for m and gd, respectively, we obtain

m =
(

Z

g

)1/4

keV

{
0.568 fermions

0.484bosons ,

gd = g3/4 Z1/4

{
155 fermions

180bosons . (49)
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Figure 1. The free-streaming wavelength today, λfs(0), in kpc versus the
DM particle mass, m, in keV times g1/4 for ultrarelativistic decoupling at
LTE according to equation (51).

Because g = 1–4, for DM particles decoupling at LTE, we see
from equation (49) that gd > 100, and thus the DM particles should
decouple for T d > 100 GeV. Note that 1 < Z1/4 < 10 for 1 < Z <

10 000.
A further estimate for the DM mass m follows by inserting equa-

tion (48) for D in equation (24):

m ∼
[

ηZ

g

10 km s−1

σs

]1/4 √
kpc

L
keV

{
0.405 fermions

0.347 bosons.
(50)

Taking into account the observed values for σ s and L from equa-
tion (23) and the fact that η � 1.6, g � 1–4, 1 < Z4 < 10, equa-
tion (50) gives again a mass m in the keV scale, as in equation (49).
Both equations (49) and (50) yield a mass for the fermion 17 per
cent greater than that for the boson.

We can express the free-streaming wavelength as a function of
the DM particle mass from equations (28) and (49):

λfs(z) =
(

keV

m

)4/3 kpc

g1/3

1√
1 + z

{
7.67 fermions

6.19 bosons.
(51)

In Fig. 1 we show λfs(0) in kpc versus mg1/4 in keV.

3.2 Decoupling out of LTE

In general, for DM decoupling out of equilibrium, the DM particle
distribution function takes the form

Fd(pc) = Fd

(
pc

Td
;
m

Td
; . . .

)
. (52)

Typically, thermalization is reached by the mixing of the particle
modes and scattering between particles that redistributes the parti-
cles in phase space: the larger-momentum modes are populated by a
cascade whose front moves towards the ultraviolet, akin to a direct
cascade in turbulence, leaving in its wake a state of nearly LTE
but with a lower temperature than that of equilibrium (Boyanovsky,
Destri & de Vega 2004; Destri & de Vega 2006). Hence, for DM par-
ticles not yet at thermodynamical equilibrium at decoupling, their
momentum distribution is expected to peak at smaller momenta
as the ultraviolet cascade is not yet completed (Boyanovsky et al.
2004; Destri & de Vega 2006). The distribution function freezed-out
of equilibrium can be then written as

F out of LTE
d (pc) = F0F

equil
d

[
a(t) pph(t)

ξTd

]
θ

(
p0

c − pc

)
, (53)

where ξ = 1 at thermal equilibrium and ξ < 1 before thermody-
namical equilibrium is attained. F 0 ∼ 1 is a normalization factor
and p0

c cuts the spectrum in the UV region not yet reached by the
cascade.

Inserting the out-of-equilibrium distribution equation (53) into
the expression for the DM particle mass equation (8) and using
equation (46), we obtain the generalization of equation (47) for the
out-of-LTE case:

m = gd

gF0ξ 3
eV

{
3.593 F+(∞)

F+(s) fermions

2.695 F−(∞)
F−(s) bosons,

(54)

where s = p0
c/[ξT d] . Here we used equation (46) and

F±(s) ≡
∫ s

0

y2 dy

ey ± 1
, F+(∞) = 3

2
ζ (3), F−(∞) = 2ζ (3).

(55)

Inserting the out-of-equilibrium distribution equation (53) into
equations (19) and (21) for m and gd, respectively, and using equa-
tion (46), we obtain the estimates

m ∼
(

Z

g

)1/4

W±(s) keV

{
0.568 fermions

0.484 bosons,
(56)

rgd ∼ g3/4 Z1/4ξ 3X±(s)

{
155 fermions

180 bosons,
(57)

where

W±(s) ≡
[

G3
±(s)F 5

±(∞)

G3±(∞)F 5±(s)

]1/8

, X±(s) ≡
[

G±(s)F±(s)

G±(∞)F±(∞)

]3/8

.

(58)

Here, F ±(s) is defined by equation (55) and

G±(s) ≡
∫ s

0

y4dy

ey ± 1
, G+(∞) = 45

2
ζ (5), G−(∞) = 24ζ (5).

(59)

For small arguments s we have:

W+(0) =
√

3

53/4

[
ζ 5(3)

ζ 3(5)

]1/8

= 0.5732982 . . . ,

W−(s)
s→0= s1/4

25/8

[
ζ 5(3)

27ζ 3(5)

]1/8

= 0.4753169 . . . s1/4,

X+(s)
s→0= s3

[2025ζ (3)ζ (5)]3/8 = 0.0529923 . . . s3,

X−(s)
s→0= s9/4

[4320ζ (3)ζ (5)]3/8 = 0.0398856 . . . s9/4.

As seen in Fig. 2,

W±(s) ≤ 1 and X±(s) ≤ 1 for s ≥ 0.

We see from equation (56) that for relics decoupling out of LTE, m
is in the keV range. From equations (56)–(57) we see that both m
and gd for relics decoupling out of LTE are smaller than they would
be if they decoupled in LTE. In addition, as X±(s) vanishes for s →
0, gd may be much smaller than for decoupling in LTE.

We now generalize equation (48) for the phase-space density D
to the out-of-LTE case (equation 53). Using equations (13), (46)
and (53) we have

D = g
F0

W 4±(s)

{
1.9625 × 10−3 fermions

3.6569 × 10−3 bosons.
(60)
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Figure 2. X+(s), X−(s), W+(s) and W−(s) as functions of s according to
equation (58).

Inserting equation (60) into equation (24) leads to the out-of-LTE
generalization of the estimate for the DM particle mass m (equa-
tion 50):

m ∼
[

ηZ

g

10 km s−1

σs

]1/4

W±(s)

√
kpc

L
keV

{
0.405 fermions

0.347 bosons.

(61)

Taking into account the observed values for σ s and L from equa-
tion (23) and the fact that η � 1.6, g � 1–4, 1 < Z1/4 < 10, equa-
tion (61) gives again a mass m in the keV scale, as in equation (56).
Equations (56) and (61) both yield a mass for the fermion 17 per
cent larger than that for the boson.

3.2.1 An instructive example: sterile neutrinos decoupling
out of LTE

We consider in this subsection a sterile neutrino ν as a DM particle
decoupling out of LTE in a specific model in which ν is a singlet
Majorana fermion (g = 2) with a Majorana mass mν coupled with
a small Yukawa-type coupling (Y ∼ 10−8) to a real scalar field
χ (Chikashige, Mohapatra & Peccei 1981; Gelmini & Roncadelli
1981; Schechter & Valle 1982; Shaposhnikov & Tkachev 2006;
McDonald & Sahu 2009). χ is more strongly coupled to the particles
in the Standard Model (plus to three right-handed neutrinos) than
to v. As a result, all particles (except ν) remain in LTE well after ν

decouples from them.
The distribution function after the decoupling of the sterile neu-

trino ν is known for small coupling Y to be

F ν
d (y) = τ

g5/2(y)√
y

, where g5/2(y) ≡
∞∑

n=1

e−n y

n5/2
(62)

(Boyanovsky 2008), and the coupling τ is in the range 0.035 �
τ � 0.35 (Boyanovsky 2008).

It is interesting to compare the small (y → 0) and large (y →
∞) momentum behaviour of this out-of-equilibrium distribution
F ν

d(y) with the Fermi–Dirac equilibrium distribution (equation 46).
We find that

F ν
d (y)

F
equil
d (y)

y→0= 2τζ (5/2)√
y

→ ∞, ζ (5/2) = 1.341 . . . ,

F ν
d (y)

F
equil
d (y)

y→∞= τ√
y

→ 0 .

Therefore, F ν
d(y) exhibits an enhancement compared with the

Fermi–Dirac equilibrium distribution for small (y → 0) and a sup-
pression for large (y → ∞) momenta. Qualitatively, the out-of-
equilibrium distribution equation (53) exhibits the same enhance-
ment and suppression effects when compared with the equilibrium
distribution F

equil
d as a consequence of the incomplete UV cascade.

We now evaluate the relevant physical quantities, inserting F ν
d(y)

into the appropriate equations of Section 3.1. We find mν from
equations (8) and (62):

mν = 2.34
gd

τ
eV, (63)

which must be compared with the LTE result for fermions (equa-
tion 47) with g = 2.

The phase-space density D from equations (13) and (62) takes
the value

D = 6τζ 5/2(5)

[35πζ (7)]3/2 = 5.627 × 10−3 τ ,

where ζ (7) = 1.0083493 . . . . (64)

This result is to be compared with the LTE result for fermions,
namely equation (48) with g = 2.

Inserting the sterile neutrino distribution function (equation 62)
into equations (19) and (21), which take into account the decrease
of the phase-space density owing to the self-gravity dynamics, we
obtain the following mass estimates for the ν DM particles that
decoupled out of LTE:

mν ∼
(

Z

τ

)1/4

0.434 keV , gd ∼ τ 3/4Z1/4 185. (65)

Again, these formulae must be compared with the LTE result for
fermions (equations 49). gd ∼ 100 corresponds to T d ∼ 100 GeV
(see Kolb & Turner 1990), which is the expected value for Td in
Boyanovsky (2008).

More precisely, for the typical range 0.035 � τ � 0.35, from
equation (65) we find

0.56 keV � mνZ
−1/4 � 1.0 keV, 15 � gdZ

−1/4 � 84,

whereas for g = 2 fermions decoupling in LTE, the mass turns out
to be smaller, mZ−1/4 = 0.48 keV, and gd larger, gdZ

−1/4 = 184
(from equation 49).

A further estimate for mν , independent of equation (65), follows
by inserting equation (64) for D into equation (24), valid for a
self-gravitating gas of DM:

mν ∼ 0.3105

[
ηZ

τ

10 km s−1

σs

]1/4 √
kpc

L
keV, (66)

which gives for the typical τ range,

0.40 keV � mν

[
ηZ

10 km s−1

σs

]−1/4
√

L

kpc
� 0.72 keV

(Recall that 0.1 < Z−1/4 < 1.)
In summary, the results for the sterile neutrino decoupling out of

LTE in the model of Chikashige et al. (1981), Gelmini & Roncadelli
(1981), Schechter & Valle (1982), Shaposhnikov & Tkachev (2006),
Boyanovsky (2008) are qualitatively similar to those for fermions
decoupling in LTE.

4 D M PARTI CLES DECOUPLI NG
NON-RELATI VI STI CALLY

Particles decoupling NR at a temperature T d � m are de-
scribed by a freezed-out Maxwell–Boltzmann distribution function
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depending on

p2
c

Td
= a2(t) p2

ph(t)

Td
= Td y2.

That is,

F
equil
d (pc) = 25/2 π7/2

45
gdY∞

(
Td

m

)3/2

e− p2
c

2mTd

= 25/2π7/2

45
gdY∞

(
Td

m

)3/2

e−
a2(t)p2

ph(t)

2mTd

= 25/2π7/2

45

gdY∞
x3/2

e− y2

2x , (67)

where gd is the effective number of ultrarelativistic degrees of free-
dom at decoupling and Y (t) = n(t)/s(t), where n(t) is the number
of DM particles per unit volume and s(t) their entropy per unit vol-
ume, x ≡ m/T d and Y ∞ follows from the late time limit of the
Boltzmann equation (Kolb & Turner 1990; Börner 2003).

For particles that decouple NR we obtain, by inserting equa-
tion (67) into the general formula for the DM particle mass (equa-
tion 8), that

m = 45

4π2

�DM ρc

gT 3
γ Y∞

= 0.748

gY∞
eV. (68)

Solving the Boltzmann equation gives the following expression for
Y ∞:

Y∞ = 45

4
√

2π7/2

g

gd
xe−x (69)

(Kolb & Turner 1990; Börner 2003). Note that x � 1 because the
DM particles decouple NR. Y ∞ can also be expressed in terms of
σ 0 (the thermally averaged total annihilation cross-section times the
velocity that appears in the Boltzmann equation) as (Kolb & Turner
1990; Börner 2003)

Y∞ = 1

π

√
45

8

x√
gdmσ0MPl

. (70)

(We assume for simplicity S-wave annihilation.) It follows from this
relationship and equation (68) that

σ0 = 0.414 10−9

GeV2

gx√
gd

. (71)

The transcendental equations (68) and (69) fix the values of m and
x. They can be combined as

ex

x
= 193.5

g2

gd

m

keV
. (72)

This equation has solutions for x > 1 provided that
m

keV
>

e

193.5

gd

g2
= 0.014

gd

g2
.

For x = m/T d � 1 we have the analytic solution of equation (72):

m

Td
= x � log

(
193.5

g2

gd

m

keV

)
= 5.265 + log

(
g2

gd

m

keV

)
.

We obtain the mass of the DM particle by inserting the non-
relativistic distribution function (equation 67) into the general for-
mula (equation 19) for m4, with the result

m5/2T
3/2

d = 45

2π2

1

ggdY∞
Z

ρs

σ 3
s

. (73)

Combining equation (68) for Y ∞ with equation (73), we obtain for
the product mT d√

mTd = 1.47

(
Z

gd

)1/3

keV NR Maxwell–Boltzmann. (74)

Typical wimps are assumed to have m = 100 GeV and T d = 5 GeV
(Amsler et al. 2008). Such a value for Td implies that gd � 80 (Kolb
& Turner 1990). Equation (74) thus requires for such heavy wimps
that Z ∼ 1023, well above the upper bounds derived in Section 2
(see Table 1). Therefore, wimps in the 100-GeV scale are strongly
disfavoured.

We find from equations (13) and (67) the phase-space density for
DM decoupling NR in LTE:

D = g
2π2

135
√

3
gdY∞

(
Td

m

)3/2

= 8.4418 × 10−2 g gd Y∞ x−3/2 .

(75)

We obtain, using the value for Y ∞ from equation (68), that

D = 0.6315 × 10−4gd
keV

m5/2
T

3/2
d . (76)

Inserting this expression for D into the general estimate for the DM
mass (equation 24) yields

√
mTd ∼ 0.942

(
ηZ

gd

)1/3 (
kpc

L

)2/3 (
10 km/s

σs

)1/3

keV.

(77)

As in equation (74), but independently from it, we reach a result for√
mTd in the keV scale, assuming that the DM is a self-gravitating

gas in thermal equilibrium.

4.1 Allowed ranges for m, T d and the annihilation
cross-section σ 0

We derive here individual bounds on m, T d and σ 0 for DM particles
decoupling NR.

Using that T d < m for DM particles that decouple NR we obtain
from equation (74) a lower bound for m and an upper bound on Td.
Furthermore, taking into account that T d > b eV, where b > 1 or b

� 1 for DM particles that decoupled in the RD era, we obtain an
upper bound for m. In summary,(

Z

gd

)1/3

1.47 keV < m <
2.16

b
MeV

(
Z

gd

)2/3

,

b eV < Td <

(
Z

gd

)1/3

1.47 keV . (78)

Recalling that (Kolb & Turner 1990)

gd � 3 for 1 eV < Td < 100 keV, (79)

and that 1 < Z < 104, we see from equations (78) that

1.02 keV < m <
482

b
MeV, Td < 10.2 keV.

Note that b may be much larger than one with b <

1470 (Z/gd)1/3 < 21960 to ensure T d < m for consistency in
equations (78).

In addition, lower and upper bounds for the cross-section σ 0 can
be derived. From equations (71), (79) and x > 1 a lower bound
follows:

σ0 > 0.239 × 10−9 GeV−2 g. (80)

Upper bounds for the total DM self-interaction cross-sections σ T

have been given by comparing X-ray, optical and lensing observa-
tions of the merging of galaxy clusters with N-body simulations
in Markevitch et al. (2004), Randall et al. (2008), Bradac̆ et al.
(2008) (see also Miralda-Escudé 2002; Hennawi & Ostriker 2002;
Arabadjis, Bautz & Garmire 2002):

σT

m
< 0.7

cm2

gr
= 3200 GeV−3.
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Because the annihilation cross-section must be smaller than the total
cross-section we can write the bound

σ0 < 3200m GeV−3. (81)

Using the upper bound (equation 78) for m yields the upper bound
for σ 0:

σ0 <
3.32Z2/3

b
GeV−2. (82)

This result leaves at least five orders of magnitude between the lower
bound (equation 80) and the upper bound for σ 0. The DM non-
gravitational self-interaction is therefore negligible in this context.

Exotic models in which very heavy (∼10 TeV) DM particles
are produced very late and decouple NR have been proposed, with
the introduction two new fine-tuned parameters: (i) the lifetime
of unstable particles (sneutrinos) that decay into DM (gravitinos);
(ii) the mass difference between the two particles, which must be
small enough to lead to non-relativistic DM (Cembranos et al. 2005;
Strigari, Kaplinghat & Bullock 2007). It is argued in Cembranos
et al. (2005) and Strigari et al. (2007) that such models may describe
the observed phase-space density. It is pointed out in Borzumati,
Bringmann & Ullio (2008) that it is inherently difficult to fulfil all
observational constraints in such models.

5 C O N C L U S I O N S

Our results are independent of the particle model that describes the
DM. We consider DM particles that decouple both NR and UR and
that decouple both in and out of LTE. Our analysis and results refer
to the mass of the DM particle and the number of ultrarelativistic
effective degrees of freedom when the DM particles decoupled. We
do not make assumptions about the nature of the DM particle and we
assume only that its non-gravitational interactions can be neglected
in the present context (which is consistent with structure formation
and observations).

For DM particles to explain the formation of galactic centre
black holes, DM particles must be fermions with keV-scale mass
(Munyaneza & Biermann 2006).

The mass for DM particles in the keV range is much larger than
the temperature during the MD era, and hence DM is cold (CDM).

A possible CDM candidate in the keV scale is the sterile neu-
trino (Dodelson & Widrow 1994; Shi & Fuller 1999; Abazajian,
Fuller & Patel 2001; Abazajian 2006; Munyaneza & Biermann
2006; Kusenko 2007), produced through its mixing and oscillation
with an active neutrino species. Other putative CDM candidates in
the keV scale are the gravitino (Gorbunov, Khmelnitsky & Rubakov
2008; Steffen 2009, and references therein), the light neutralino
(Profumo 2008, and references therein) and the majoron (Lattanzi
& Valle 2007).

In fact, many more extensions of the Standard Model of Particle
Physics can be envisaged to include a DM particle with mass in
the keV scale and weakly enough coupled to the Standard Model
particles.

Lyman α forest observations provide indirect lower bounds on
the masses of sterile neutrinos (Viel et al. 2005, 2007), whereas
constraints from the diffuse X-ray background yield upper bounds
on the mass of a putative sterile neutrino DM particle (Dolgov
& Hansen 2002; Watson et al. 2006; Boyarsky, Nevalainen &
Ruchayskiy 2007; Riemer-Sorensen, Hansen & Pedersen 2006;
Riemer-Sorensen et al. 2007; Loewenstein, Kusenko & Biermann
2009). All these recent constraints are consistent with DM particle
masses at the keV scale.

The DAMA/LIBRA collaboration has confirmed the presence
of a signal in the keV range (Bernabei et al. 2008a). Whether this
signal results from DM particles in the keV mass scale is still unclear
(Bernabei et al. 2006, 2008b; Pospelov, Ritz & Voloshin 2008). On
the other hand, the DAMA/LIBRA signals cannot be explained by a
hypothetical wimp particle with mass � O(1) GeV, as this would be
in conflict with previous wimp direct detection experiments (Aalseth
et al. 2008; Fairbairn & Schwetz 2009; Hooper et al. 2009; Savage
et al. 2009; Ahmed et al. 2009).

As discussed in Section 4, typical wimps with m = 100 GeV
and T d = 5 GeV (Amsler et al. 2008) would require a huge
Z ∼ 1023, well above the upper bounds displayed in Table 1. Hence,
wimps cannot reproduce the observed galaxy properties. In addi-
tion, recall that Z ∼ 1023 produces, from equation (28), an extremely
short λfs today:

λfs(0) ∼ 3.51 × 10−4 pc = 72.4 au.

If the flyby anomaly is to be explained by DM, a keV-scale DM
mass is preferred (Adler 2009).

Further evidence for the DM particle mass in the keV scale fol-
lows by comparing the observed value of the constant surface den-
sity of galaxies with the theoretical calculation from the linearized
Boltzmann–Vlasov equation (de Vega & Sánchez 2009). Indepen-
dent further evidence for the DM particle mass in the keV scale is
given by Tikhonov et al. (2009) (see also Gilmore et al. 2007).

In summary, our analysis shows that DM particles decoupling
UR in LTE have a mass m in the keV scale with gd � 150, as shown
in Section 3.1. That is, decoupling happens at least at the 100-GeV
scale. The values of m and gd may be smaller for DM decoupling
UR out of LTE than for decoupling UR in LTE (see Section 3.2).
For DM particles decoupling NR in LTE (T d < m) we find that√

mTd is in the keV range. This is consistent with the DM particle
mass in the keV range.

Note that the present uncertainty by one order of magnitude of
the observed values of the phase-space density ρs/σ

3
s affects the

DM particle mass only through a power 1/4 of this uncertainty
according to equations (19)–(20). Namely, by a factor 101/4 � 1.8.

We find that the free-streaming wavelength (Jeans length) is in-
dependent of the nature of the DM particle except for the Z factor
characterizing the decrease of the phase-space density through self-
gravity (Section 1.1). The values found for the Jeans length and the
Jeans mass for m in the keV scale are consistent with the observed
small structure and with the masses of the galaxies, respectively.
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ApJ, 679, 1173
Riemer-Sorensen S., Hansen S. H., Pedersen K., 2006, ApJ, 644, L33
Riemer-Sorensen S., Hansen S. H., Pedersen K., Dahle H., 2007, Phys. Rev.

D, 76, 043524
Romano-Diaz E., Faltenbacher A., Jones D., Heller C., Hoffman Y.,

Shlosman I., 2006, ApJ, 637, L93
Romano-Diaz E., Hoffman Y., Heller C., Faltenbacher A., Jones D.,

Shlosman I., 2007, ApJ, 657, 56
Sato K., Kobayashi H., 1977, Prog. Theor. Phys., 58, 1775
Savage C., Gelmini G., Gondolo P., Freese K., 2009, J. Cosmology Astropart.

Phys., 04, 010
Schechter J., Valle J. W. F., 1982, Phys. Rev. D, 25, 774
Shaposhnikov M., Tkachev I., 2006, Phys. Lett. B, 639, 414
Shi X., Fuller G. M., 1999, Phys. Rev. Lett., 82, 2832
Steffen F. D., 2009, Eur. Phys. J., C59, 557
Strigari L. E., Kaplinghat M., Bullock J. S., 2007, Phys. Rev. D, 75, 061303
Tikhonov A. V., Gottloeber S., Yepes G., Hoffman Y., 2009, MNRAS, 399,

1611
Tremaine S., Henon M., Lynden-Bell D., 1986, MNRAS, 219, 285
van den Bergh S., 2001, in Martı́nez V. J., Trimble V., Pons-Borderı́a M.

J., eds, ASP Conf. Ser. Vol. 252, Historical Development of Modern
Cosmology. Astron. Soc. Pac., San Francisco, p. 75

Vass I. M., Valluri M., Kravtsov A. V., Kazantzidis S., 2009, MNRAS, 395,
1225

de Vega H. J., Sánchez N., 2002a, Nucl. Phys. B, 625, 409
de Vega H. J., Sánchez N., 2002b, Nucl. Phys. B, 625, 460
de Vega H. J., Sánchez N., 2009, preprint (arXiv:0907.0006)
Viel M., Lesgourgues J., Haehnelt M. G., Matarrese S., Riotto A., 2005,

Phys. Rev. D, 71, 063534
Viel M., Becker G. D., Bolton J. S., Haehnelt M. G., Rauch M., Sargent

W. L. W., 2007, Phys. Rev. Lett., 100, 041304
Vysotsky M. I., Dolgov A. D., Zeldovich Ya. B., 1977, JETP Lett., 26, 188
Watson C. R., Beacom J. F., Yuksel H., Walker T. P., 2006, Phys. Rev. D,

74, 033009
Wyse R. F. G., Gilmore G., 2007, in Davies J., Disney M., eds, Proc. IAU

Symp. 244, Dark Galaxies & Lost Baryons. Cambridge Univ. Press,
Cambridge, p. 44

Yao W.-M. et al., 2006, J. Phys. G, 33, 1
Zwicky F., 1933, Helvetica Phys. Acta, 6, 124

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 404, 885–894


