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ABSTRACT
We investigate the classical aspects of quantum theory and under which description quantum theory does appear classical. Although such
descriptions or variables are known as “ontological” or “hidden,” they are not hidden at all but are dual classical states (in the sense of the
general classical–quantum duality of nature). We analyze and interpret the dynamical scenario in an inherent quantum structure: (i) We
show that the use of the known ∣φ⟩ states in the circle [F. London, Z. Phys. 37, 915 (1926) and G. ’t Hooft, “The hidden ontological variable
in quantum harmonic oscillators,” arXiv 2407.18153 (2024)] takes a true dimension only when the system is subjected to the minimal group
representation action of the metaplectic group Mp(n). The Mp(n)Hermitian structure fully covers the symplectic Sp(n) group and, in certain
cases, OSp(n). (ii) We compare the circle ∣φ⟩ states and the cylinder ∣ξ⟩ states in configuration space with the two sectors of the full Mp(2)
Hilbert space corresponding to the even and odd n harmonic oscillators and their total sum. (iii) We compute the projections of the Mp(2)
states on the circle ⟨φ∣ and cylinder ⟨ξ∣ states. The known London circle states are not normalizable. We compute here the general coset
coherent states ⟨α, φ∣ in the circle, with α being the coherent complex parameter. It allows full normalizability of the complete set of the circle
states. (iv) The London states (ontological in ’t Hooft’s description) completely classicalize the inherent quantum structure only under the
action of the Mp(n) minimal group representation. (v) For the coherent states in the cylinder (configuration space), all functions are analytic
in the disk ∣z = ω e−iφ∣ < 1. For the general coset coherent states ∣α, φ⟩ in the circle, the complex variable is z′ = z e −i α∗/2: The analytic function
is modified by the complex phase (φ − α∗/2). (vi) The analyticity ∣z′∣ = ∣z∣e− Im α/2 < 1 occurs when Im α ≠ 0 because of normalizability and
Im α > 0 because of the identity condition. The circle topology induced by the ⟨α, φ∣ coset coherent state also modifies the ratio of the disk
due to the displacement by the coset. (vii) For the coset coherent cylinder states in configuration space, the classicalization is stronger due to
screening exponential factors e−2n2

, e−(2n+1/2), and e−(2n+1/2)2
for large n arising in the Mp(2) projections on them. The generalized Wigner

function shows a bell-shaped distribution and stronger classicalization than the square norm functions. The application of the minimal group
representation immediately classicalizes the system, with Mp(2) emerging as the group of the classical–quantum duality symmetry.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0247698
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I. INTRODUCTION AND RESULTS
Nature is quantum. Classical states are contained in a quan-

tum description. Quantum theory is in full development, whatever
be in its own concepts and extensions, interpretations, and yet to
be understood effects and manifestations, or in new applications,
artificial intelligence, quantum computing, and technological and
fundamental experimental research studies. See, for example, Refs.
1–3 and references therein. It is not the purpose of this introduction
to review it here.

In this paper, without entering into all the issues of the inter-
pretations of quantum theory, we consider the subject of the classical
aspects of quantum theory and under which description quantum
theory does appear classical.

Usually, the variables providing such a description are known
as “ontological” or “local hidden variables,” although they are not
hidden at all, and we agree with ’t Hooft (Ref. 4) who recently
considered these variables as not hidden.

Usually, such classical or “ontological” variables are assumed to
describe the results of the real measurements performed on a given
quantum system (here, ontological means essential or existential,
conceptual or substantial, for an entity or representation).

The general classical–quantum (wave–particle, de Broglie)
duality is one deep foundational property of quantum theory and
does remain a crucial one. More recently, this concept has been
extended to include gravity at the Planck scale and beyond it
(classical–quantum gravity duality), which is general and does not
depend on the number or type of spacetime dimensions, manifolds
(compactified or not), or other considerations.

The classical “ontological or existing” states are, in fact, classical
dual states, and we do prefer this last term because it is physically
precise, appropriate, and meaningful for these states.

The time evolution of the quantum harmonic oscillator does
appear identical to the classical motion: a rigid rotating motion in
phase space with the oscillator frequency. The quantum states of
light are harmonic oscillators and have the same time evolution.

We also consider the Wigner function, which is a useful tool
for the comparison of the classical and quantum dynamics of these
states in phase space and analyzing the classical behavior in general.
It allows us to obtain the probability distribution for these states in
phase space. The Wigner or quasi-probability distribution, namely
W(q, p), is symmetric in the reflection (time and space) symmetries,
e.g., W(−q,−p) =W(q, p).

In this paper, we focus on the following:

● In order to interpret the dynamical scenario connected with
an inherent quantum structure, we show that the use of
the known states in the circle (’t Hooft 2024,4 and London
19265) takes a true dimension only when the system is sub-
jected to the minimal group representation under the action
of the metaplectic group Mp(n). Let us recall that Mp(n)
fully covers the symplectic group Sp(n) and, in certain cases,
its Hermitian structure can be extended to OSp(n).

● We consider the metaplectic group Mp(2n), e.g., the dou-
ble covering of the symplectic group Sp(2n). Discretization
arises naturally and directly from the basic states of the
metaplectic representations with an interesting feature to be
highlighted here: The decomposition of the SO(2, 1)

group into its two irreducible representations encom-
passes the span of the even ∣2n⟩ and odd ∣2n + 1⟩ states
(n = 1, 2, 3, . . .) of the harmonic oscillator, whose entirety is
covered by the metaplectic group. For n→∞, the spectrum
becomes continuum as it must be.

● In the metaplectic representation, the general or complete
states must be the sum of the two types of states, even and
odd n states, because they span, respectively, the two sectors
of the Hilbert space, H1/4 and H3/4, completely covered by
the metaplectic symmetry group Mp(2): H1/4 ⊕ H3/4. Based
on the highest eigenvalue of the number operator occurring
in the complete Hilbert space, the two unitary irreducible
representations of Mp(2) are denoted as H1/4 (even states)
and H3/4 (odd states).

● We compare the complete and fully normalizable Mp(2)
states with the ∣φ⟩ states in the circle (London states, phase
space, and the ontological states recently considered by ’t
Hooft).

● We also consider general coherent states ∣ξ⟩ in the cylinder
in configuration space and compare them with the sectors
of the Mp(2) Hilbert space and with the total (sum of the
two sectors) states (+) and (−), corresponding to the even
(2n) and odd (2n + 1) states of the harmonic oscillators. We
compute the projections of the Mp(2) ∣Ψ±(ω)⟩ states on the
circle ⟨φ∣ and cylinder ⟨ξ∣ states.

● The known circle (London, t Hooft) states are coherent, non-
normalizable states. We compute here the general coherent
states in the circle ⟨α, φ∣, which include the complex para-
meter α characteristic of coherent states, whose meaning
appears clearly allowing the fully finite normalization of
the complete set of states. The power of the general coset
group construction procedure of coherent states does show up
here.

The main implications of the results of this paper are the
following:

● (i) The London states (ontological in ’t Hooft’s description)
classicalize completely the inherent quantum structure only
under the application of the minimal group representation
with the Mp(n) group taking the main role.

● (ii) The action of the metaplectic group on the “ontological”
(London) states breaks the invariance under time reversal
assumed for the dynamics of the particle in the circle (arrow
of time).

● (iii) In the case of the coherent states of a particle in
the cylinder (configuration space), we can also assign to
them the variable z = ωe−iφ as in the case of the parti-
cle states in a circle (London states, phase space). All
functions are analytic in the disk ∣z∣ < 1. For the general
coherent states in the circle ∣α, φ⟩, the complex variable is
z′ = ω e i (φ−α∗/2) = z e −i α∗/2 : The analytic function in the
disk is modified by the complex phase (φ − α∗/2), with α
being the characteristic coherent state complex parameter.

● (iv) The analyticity condition on the disk
∣z′∣ = ∣z∣e− Im α/2 < 1 occurs with the condition Im α ≠ 0
arising from the normalizability and with Im α > 0 arising
from the identity condition. The topology of the circle
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induced by the coset coherent state ⟨α, φ∣ modifies not only
the phase of ω (e.g., ω ei (φ−α∗/2) = z′) but also the ratio of
the disk due to the displacement generated by the action of
the coset.

● (v) The norm of the projection of the Mp(2) states on the
cylinder and general circle coherent states clearly shows a
very fast decrease as n increases or classicalization. In the
case of the cylinder states in configuration space, the decrease
is stronger than in the circle phase space states, due to the
exponentials e−2n2

, e−(2n+1/2), and e−(2n+1/2)2
, arising in these

configuration space projections.

The generalized Wigner function for the circle states dis-
plays a classicalized distribution, more bell-shaped than the
square norm function of these states.

More remarks are presented in the Conclusions.
This paper is organized as follows: In Sec. II, we describe the

quantum dynamics on the circle and its phase space states (London
states). In Sec. III, we summarize the metaplectic minimal group
representation approach, its group content, double covering, and
fully complete Hilbert space of states. In Sec. IV, both the Mp(2)
basic states and the ontological states in the circle are compared
with their mutual scalar products, which shows how classicaliza-
tion occurs in this case. In Sec. V, we consider the general coherent
states in a cylinder in configuration space and compute the pro-
jections of the Mp(2) total states on them, which show an even
stronger classicalization with respect to the London (circle, phase
space) states. Section VI discusses the implications of the Mp(2)
representation reduction on these states and the analysis and results
of Secs. II–V. In Secs. VII and VIII, the general normalized coset
coherent states on the circle and the projected Mp(2) reduction
on them are computed and analyzed. Section IX summarizes the
conclusions.

II. “ONTOLOGICAL” STATES AND THE MINIMAL
GROUP REPRESENTATION

As we showed earlier in Ref. 6, there is an even more gen-
eral principle in the fundamental structure of quantum spacetime:
the principle of minimal group representation, which allows us
to obtain, consistently and simultaneously, a natural description
of the dynamics of spacetime and the physical states admissible
within it.

The theoretical design is based on physical states, which are the
mean values of the metaplectic group generators Mp(n), the double
covering SL(2C) in vector representation, relative to the coherent
states bearing the spin weight.

In this theoretical context, there is a connection between
the dynamics given by the symmetry generators of the meta-
plectic group and the physical states (mappings of the gen-
erators through bilinear combinations of the ground states;
Refs. 6 and 7).

Let us now see how to apply this principle to the problem
of construction of classical variables in quantum theory as consid-
ered by ’t Hooft in Ref. 4. Therefore, we first need to consider the
quantum dynamics of a particle on the circle, which we describe in
Sec. II A.8–18

A. Theoretical aspects of the quantum dynamics
on the circle

(i) The starting point to take into account to describe a free
particle on a circle is its Hamiltonian,

H = L = 1
2
⋅

φ 2(t) (e.g.,
⋅

φ = J),

with unit mass and velocity. Here, φ is the angle position, with
a period of 2π,

φ(t) = φ(0) + t.

Classically,

{φ, J} = 1.

Quantically (operator level),

[φ̂, Ĵ] = i. (1)

The best candidate for the position operator (well defined in
Hilbert space) is

U = e i φ̂ (U is unitary).

Moreover, it is easy to see from the above equations that

[̂J, U] = U. (2)

(ii) Let us now consider the eigenstates

Ĵ∣j⟩ = j∣j⟩. (3)

From Eqs. (2) and (3), we have

U∣j⟩ = j∣j + 1⟩,
U†∣j⟩ = j∣j − 1⟩,

where U† and U are ladder operators.

Now, it can be easily seen that the additional properties of the states
∣ j⟩ satisfy

⟨i∣ ∣j⟩ = δi j (orthogonality),

∑
j
∣j⟩⟨j∣ = I (completeness).

As we see, we have all the ingredients to implement the principle of
minimal representation of the group:

(i) the basis ∣ j⟩ isomorphic to the basis ∣n⟩ of the harmonic
oscillator,

(ii) a symplectic structure, and (iii) the commutator Eq. (1), that
allows us to build the two operators

a = 1√
2
(φ̂ + îJ) and a+ = 1√

2
(φ̂ − îJ),
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where a and a+ are ladder operators satisfying

[a, a+] = 1. (4)

Let us now consider the metaplectic group approach.

III. THE METAPLECTIC MINIMAL GROUP
REPRESENTATION APPROACH

In Refs. 6 and 7 and references therein, a group-theoretic
approach was developed to obtain the metric (line element) as
the central geometrical object associated with a discrete quantum
structure of the spacetime for a quantum theory of gravity.

In summary, for the purpose of this paper, the main character-
istics of this framework are the following:

● Such an emergent metric is obtained from a Riemannian
superspace and is described as a physical coherent state of
the underlying cover of the SL(2C) group: Interestingly, it
seems necessary to consider the full cover of the symplectic
group , which is the metaplectic group Mp(n); its spectrum
for all n leads, in particular for very large n, to continuous
spacetime.

● The main and fundamental importance of this quantum
description is based on the phase space of a relativistic parti-
cle in the natural superspace of bosonic and fermionic coor-
dinates that allow preserving at the quantum level the square
root forms of geometric operators (e.g., the Hamiltonian or
the Lagrangian).

● Such a natural characteristic of this description is ensured
by a complete bosonic realization of the underlying algebra
through creation and annihilation operators of the harmonic
oscillator that establish its gradation.

● The discrete structure of the spacetime arises directly from
the basic states of the metaplectic representation, with an
interesting feature to be highlighted here: The decompo-
sition of the SO(2, 1) group into its two irreducible rep-
resentations encompasses the span of even ∣2n⟩ and odd
∣2n + 1⟩ states (n = 1, 2, 3, . . .), whose entirety is covered by
the metaplectic group.

● In the metaplectic representation, the general or complete
states must be the sum of the two types of states, the even
and odd n states, because they span, respectively, the two
sectors of the Hilbert space, H1/4 and H3/4, whose complete
covering is H1/4 ⊕ H3/4 corresponding to the metaplectic
symmetry group Mp(2).

● This yields the relativistic quantum metric of the discrete
structure spacetime as the fundamental basis for a quantum
theory of gravity. For increasing numbers of levels n, the
metric solution goes to the continuum and to the classical
general relativistic manifold as it should be.

● The double covering of even and odd n states and their sum
in order to have the complete Hilbert space reflects here the
CPT completeness of the theory, and such a property is the
reflection of unitarity. As we know, the metaplectic group
Mp(2) acts irreducibly on each of the subspaces H1/4 and
H3/4 (even and odd sectors) by which the total Hilbert space

(i.e.,H) is divided, according to the Mp(2) Casimir operator
which gives precisely the values k = 1/4, 3/4,

K2 = K2
3 − K2

1 − K2
2 = k (k − 1) = − 3

16
I.

Therefore,

H1/4 = Span{∣n even⟩ states : n = 0, 2, 4, 6, . . .}, (5)

H3/4 = Span{∣n odd⟩ states : n = 1, 3, 5, 7, . . . .}. (6)

Based on the highest eigenvalue of the number operator
occurring in the complete H ≡ H1/4 ⊕ H3/4,

T3 ∣n⟩ = −
1
2
(n + 1

2
) ∣n⟩.

The two unitary irreducible representations (UIRs) of Mp(2) are
denoted as

(UIR) restricted to H1/4 → D1/4 ∈ Mp(2), (7)

(UIR) restricted to H3/4 → D3/4 ∈ Mp(2). (8)

It is notable that in the general case, Sp(2m) can be embedded
somehow in a larger algebra as (Sp(2m) + R2m), admitting a Hermi-
tian structure with respect to which it becomes the orthosymplectic
superalgebra Osp(2m, 1).

Consequently, the metaplectic representation of Sp(2m)
extends to an irreducible representation (IR) of Osp(2m, 1), which
can be realized in terms of the space Hh of all holomorphic functions
h,

Cm → C/∫ ∣h(z)∣2e−∣z∣
2

dλ(z) <∞,

with λ(z) being the Lebesgue measure on Cm.
The restriction of the Mp(n) representation to Sp(2m) implies

that the two irreducible (even and odd n) sectors are supported by
the subspaces H±h of the holomorphic function space Hh. H+h and H−h
are the (closed) spans of the set of functions

zn ≡ (zn1
1 , . . . ., znm

m ),

where nθ ∈ Z, ∣n∣ = ∑nθ, even and odd, (H+h and H−h ), respectively.

A. Mp(2), SU(1,1), and Sp(2)
All the groups Mp(2), Sp(2, R), and SU(1, 1) are three-

dimensional. It is possible to parameterize them in several ways that
make the homomorphic relations particularly simple. We use two
of such parameterizations, in terms of the Mp(2) group generators
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(T1, T2, T3) and the angles (α1, α2, α3), both of which are described
as

Mp (2) → e− i α1T1 , e− i α2T2 , e− i α3T3 ,

Sp (2R) →
⎛
⎝

e
1
2 α1 0
0 e−

1
2 α1

⎞
⎠

,
⎛
⎜⎜
⎝

cosh
1
2

α2 sinh
1
2

α2

sinh
1
2

α2 cosh
1
2

α2

⎞
⎟⎟
⎠

,

×
⎛
⎜⎜
⎝

cos
1
2

α3 − sin
1
2

α3

sin
1
2

α3 cos
1
2

α3

⎞
⎟⎟
⎠

,

SU(1, 1)→
⎛
⎜⎜
⎝

cosh
1
2

α1 sinh
1
2

α1

sinh
1
2

α1 cosh
1
2

α1

⎞
⎟⎟
⎠

,
⎛
⎜⎜
⎝

cosh
1
2

α2 i sinh
1
2

α2

−i sinh
1
2

α2 cosh
1
2

α2

⎞
⎟⎟
⎠

,

×
⎛
⎝

e
i
2 α3 0
0 e−

i
2 α3

⎞
⎠

,

where the angle α3 has the range (−4π, 4π] for Mp(2) and the range
(−2π, 2π] for Sp (2, R) and SU(1, 1).

Let us consider the brief description of the relevant symmetry
group to perform the realization of the Hamiltonian operator of the
problem. This group specifically is the metaplectic Mp(2) as well as
the groups that are topologically covered by it. The generators of
Mp(2) are the following:

T1 =
1
4
(q p + p q) = i

4
(a+2 − a2),

T2 =
1
4
(p2 − q2) = −1

4
(a+2 + a2),

T3 = −
1
4
(p2 + q2) = −1

4
(a+a + a a+),

(9)

with the commutation relations

[T1, T2] = −i T3,

[T3, T1] = i T2, [T3, T2] = −i T1,

with (q, p), or alternatively (a, a+), being the variables of the
standard harmonic oscillator, as usual.

If we rewrite the commutation relations as

[T3, T1 ± i T2] = ± (T1 ± i T2),

[T1 + i T2, T1 − i T2] = −2 T3,

we see that the states ∣n⟩ are eigenstates of T3 such that

T3∣n⟩ = −
1
2
(n + 1

2
) ∣n⟩.

Moreover, it is easy to see that

T1 + i T2 = −
i
2

a2, T1 − i T2 =
i
2

a+2.

IV. THE MP(2) BASIC STATES VS ONTOLOGICAL
STATES IN THE CIRCLE

Let us look at the sectors s = 1/4 and s = 3/4 of the Hilbert space
spanned by the Mp(2) coherent states ∣Ψ(±)(ω)⟩, with ω being the
frequency.

For the s = 1/4 sector, the basic state is

∣Ψ(+)(ω)⟩ = (1 − ∣ω∣2)1/4
∑

n=0,1,2..

(ω/2)2n
√

2n !
∣2n⟩.

On the other hand, the ontological states in the circle (in the limit
N → 1) considered by ’t Hooft and previously proposed by London
as phase states in Ref. 5 in terms of the eigenstates n of the harmonic
oscillator are

⟨φ∣ = 1√
2π
∑

n=0,1,2..
eiφn⟨n∣. (10)

They are overcomplete,

⟨φ∣ ∣φ′⟩ = 1
2π ∑

m=0,1,2 ...

∑
n=0,1,2 ...

eiφne−iφ′m⟨n∣ ∣m⟩

= 1
2π ∑

n=0,1,2 ...

ei(φ−φ′)n,

and solve the identity

∫
2π

0
∣φ⟩⟨φ∣dφ = 1

2π∫
2π

0
ei(n−m)φ dφ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δ n,m

∑
m=0,1,2 ...

∑
n=0,1,2 ...

∣m⟩⟨n∣

=
∞

∑
n=0,1,2 ...

∣n⟩⟨n∣ = I.

Therefore, the scalar product of the two sets of states is

⟨φ∣ ∣Ψ(+)(ω)⟩ =
(1 − ∣ω∣2)1/4

√
2π

∑
m=0,1,2..,

× ∑
n=0,1,2..

(ω/2)2n
√

2n !
eiφm⟨m∣ ∣2n⟩, (11)

⟨φ∣ ∣Ψ(+)(ω)⟩ =
(1 − ∣ω∣2)1/4

√
2π

∑
n=0,1,2..

(ω eiφ/2)2n

√
2n !

(12)

=
(1 − ∣z∣2)1/4

√
2π

∑
n=0,1,2..

(z/2)2n
√

2n !
, z = ω eiφ, (13)

with z = ωeiφ; the analytic function in the disk is modified by the
phase without changing the consistency of the conformal map.

Similarly, for the sector s = 3/4,

⟨φ∣ ∣Ψ(−)(ω)⟩ =
(1 − ∣ω∣2)3/4

√
2π

∑
n=0,1,2..

(ω eiφ/2)2n+1

√
(2n + 1) !

(14)

=
(1 − ∣z∣2)3/4

√
2π

∑
n=0,1,2..

(z/2)2n+1

√
(2n + 1) !

. (15)
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Notice that by taking the scalar product between the ontological states ∣φ⟩ and the states of Mp(2), we obtain two non-equivalent expan-
sions in terms of analytical functions on the disk for the sectors of the minimal representations s = 1/4, 3/4, corresponding to the even and
odd n eigenstates of the harmonic oscillator.

Consequently (ω eiφ = z),

⟨φ∣ ∣Ψ(±)(z)⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ∣z∣2)1/4

√
2π

∑
n=0,1,2..

(z/2)2n
√
(2n) !

, (+) : even states,

(1 − ∣z∣2)3/4

√
2π

∑
n=0,1,2..

(z/2)2n+1

√
(2n + 1) !

, (−) : odd states.

(16a)

Therefore, the total or complete projected state ⟨φ∣ ∣Ψ(z)⟩ is
given by

⟨φ∣ ∣Ψ(z)⟩ = ⟨φ∣ ∣Ψ(+)(z)⟩ + ⟨φ∣ ∣Ψ(−)(z)⟩, (17)

⟨φ∣ ∣Ψ(z)⟩ =
(1 − ∣z∣2)1/4

√
2π

∑
n=0,1,2..

(z/2)2n
√
(2n) !

× [ 1 + (1 − ∣z∣2)1/2 (z/2)√
2n + 1

]. (18)

Now let us consider the following observations about the total
expression ⟨φ∣ ∣Ψ(z)⟩:

● (i) The function ⟨φ∣ ∣Ψ(z)⟩ is analytic on the unit disk: ∣z∣
= ∣z∣ < 1.

● (ii) The topology of the circle induced by the state ⟨φ∣
[Eq. (10)] only modifies the phase of ω (e.g., ω eiφ = z) in
the projection ⟨φ∣ ∣Ψ(ω)⟩ [Eq. (18)]. This is so because the
topology of the circle with R = 1 coincides with that of the
unit disk.

● (iii) The norm of Eq. (18) is obtained, giving as a result the
function

∣⟨φ∣ ∣Ψ(z)⟩∣2 =
(1 − ∣z∣2)1/2

2π ∑
n=0,1,2..

∣z/2∣4n

(2n)!

× [1 + (1 − ∣z∣2) ∣z/2∣
2

2n + 1
]

=
(1 − ∣z∣2)1/2

2π ∑
n=0,1,2..

× [ ∣z/2∣
4n

(2n)! + (1 − ∣z∣
2)3/2 ∣z/2∣ 2 (2n+1)

(2n + 1)! ]

= (1 − ∣z∣2)1/2
cosh (∣z∣2/2)

+ (1 − ∣z∣2)3/2
sinh (∣z∣2/2),

which is evidently analytic in the disk ∣z∣ = ∣ω∣ < 1, graphically
represented in Figs. 1 and 2.

FIG. 1. Graphical representation of the
norm of the projection of the total meta-
plectic Mp(2) states onto the circle ∣φ⟩
states: the function ∣⟨φ∣ ∣Ψ(ω)⟩∣2. As
shown, analyticity is evident since it
clearly respects ∣z = ωeiφ

∣ = ∣ω∣ < 1.
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FIG. 2. Three-dimensional representation of the norm of the projection of the total
metaplectic Mp(2) states on the circle ∣φ⟩ states: the function ∣⟨φ∣ ∣Ψ(ω)⟩∣2,
showing clearly the analytical character due to ∣z = ω eiφ

∣ = ∣ω∣ < 1.

V. GENERAL COHERENT STATES IN CONFIGURATION
SPACE

In this section, we will elucidate and clarify the concept of the
existence of an underlying quantum structure in physical systems,
in light of the results of Sec. IV. For this purpose, we implement the
minimal group representation approach to the case of the dynamics
of a particle in the geometry of a cylinder. The dynamics of a particle
on a cylinder have been studied in Refs. 19–22 for the non-orientable
case.

In order to introduce the coherent states for a quantum
particle on the cylinder geometry, it is possible to follow the
Barut–Girardello construction and seek the coherent state as the
solution of the eigenvalue equation,

X∣ξ⟩ = ξ∣∣ξ⟩,

with ξ being the complex parameter, similar to the standard case,
and

X = ei(φ̂ +̂J ).

In order to analyze the coherent state of a particle in the cylinder
in the context of the minimal group representation, we express the
coherent states as

∣ξ⟩ =
∞

∑
j=−∞

e(l−iφ)je−j 2
/2 ∣j⟩. (19)

If ∣ j⟩ ∼ ∣n⟩, and for the s = 1/4 metaplectic states ∣Ψ(+)(ω)⟩,

⟨ξ∣ ∣Ψ(+)(ω)⟩ = (1 − ∣ω∣2)1/4 ∞

∑
m=−∞

∑
n=0,1,2 ...

× (ω/2)
2n

√
2n !

e(l−iφ) m e−2m2

⟨m∣ ∣2n⟩

= (1 − ∣ω∣2)1/4
∑

n=0,1,2..

(ω e (l−iφ)/2)
2n

√
2n !

e−2n2

.

Similarly, for the s = 3/4 metaplectic states ∣Ψ(−)(ω)⟩,

⟨ξ∣ ∣Ψ(−)(ω)⟩ = (1 − ∣ω∣2)3/4 ∞

∑
m =−∞

∑
n=0,1,2 ...

× (ω/2)
2n+1

√
(2n + 1) !

e(l−iφ)m e−m2
/2 ⟨m∣ ∣2n + 1⟩

= (1− ∣ω∣2)3/4
∑

n=0,1,2 ...

(ω e(l−iφ)/2)
2n+1

√
(2n+ 1) !

e−(2n+1)2
/2.

We see that the scalar product projections taken with the cylin-
der ⟨ξ∣ space configuration states are similar to the projections taken
with the circle ⟨φ∣ phase space states, but they contain the following
weight functions: e−2n2

and e−(2n+1)2
/2, which drastically attenuate

the scalar products when n→∞,

⟨ξ∣ ∣Ψ(±)(ω)⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ∣ω∣2)1/4
∑

n=0,1,2 ...

(ω e(l−iφ)/2)
2n

√
2n !

e −2n2

, even states,

(1 − ∣ω∣2)3/4
∑

n=0,1,2 ...

(ω e (l−iφ)/2)
2n+1

√
(2n + 1) !

e− (2n+1)2
/2, odd states.

(20a)

Consequently, for the total state

∣Ψ(ω)⟩ = ∣Ψ(+)(ω)⟩ + ∣Ψ (−)(ω)⟩,

APL Quantum 2, 016104 (2025); doi: 10.1063/5.0247698 2, 016104-7

© Author(s) 2025

 09 January 2025 21:37:38

https://pubs.aip.org/aip/apq


APL Quantum ARTICLE pubs.aip.org/aip/apq

we have

⟨ξ∣ ∣Ψ(ω)⟩ = (1 − ∣ω∣2)1/4
∑

n=0,1,2 ...

(ω e(l−iφ)/2)
2n

√
2n !

e−2n2

[1 + (1 − ∣ω∣2)1/2 ω e (l−iφ)
√

2n + 1
e−(2n+1)/2]. (21)

We discuss the implications of these results in Sec. VI.

VI. IMPLICATIONS OF THE MINIMAL GROUP
REPRESENTATION REDUCTION

As we have seen so far, in order to interpret the dynamical sce-
nario connected with an inherent quantum structure, the use of the
London circle states takes a true dimension only when the system is
subjected to the minimal group representation under the action of
the metaplectic group Mp(n). Let us recall that Mp(n) covers Sp(n)
twice and, in certain cases, its Hermitian structure can be extended
to OSp(n).

We outline some implications that result from the develop-
ments and analysis in Secs. II–V as follows:

● (i) The London states (ontological states in ’t Hooft’s
description) completely classicalize the inherent quantum
structure only under the application of the minimal group
representation with the Mp(n) group taking the main role.

● (ii) The action of the metaplectic group on the “ontological”
(London) states breaks the invariance under time reversal
assumed for the dynamics of the particle in the circle (arrow
of time).

● (iii) In the case of the coherent states of a particle in the
cylinder (configuration space) of Sec. V, we can set in our
analysis the parameter l = 0. Thus, we can also assign to them
the variable z = ω e−iφ as in the case of the particle states in a
circle (London states, phase space).

● (iv) In the case of the cylinder states, item (iii) with l = 0, the
norm of the projection Eq. (21) is easily calculated giving as
a result the function

∣⟨ξ∣ ∣Ψ(ω)⟩∣2 = ∑
n=0,1,2 ...

∣ω/2∣4n

2n !
e−2n2

G(ω, φ),

G(ω, φ) =
⎡⎢⎢⎢⎢⎣

1 +
(1 − ∣ω∣2)1/2

√
2n + 1

e−2n−1/2⎛
⎝

2Re(ω e−iφ)

+ e−2n−1/2(1 − ∣ω∣2)1/2 ∣ω/2∣2√
2n + 1

⎞
⎠

⎤⎥⎥⎥⎥⎦
,

where we see the very fast decrease in the function due to the
exponentials e−2n2

, e−(2n+1/2), and e−(2n+1/2)2
, arising in the pro-

jections of the metaplectic states ∣Ψ(ω)⟩ on the cylinder states
∣ξ(φ)⟩ in configuration space.

A. The generalized Wigner function
Let us recall the Wigner function definition,

W(q, p) = ∫ dv e(−pv/̵h) Ψ∗ω (q − v

2
) Ψω(q + v

2
),

where (q, p) are the position and momentum as usual, or, in gen-
eral, any canonical conjugate pair of variables. In our case (m = 1
= r = h), the position and momentum are (φ, j),

(q, p) → (φ, j),

and expressing W as a function of the complex variable z as before,

z = ω eiφ,

we obtain the following generalized Wigner function:

Wmn(z, z∗) = 1
2π ∫ d2η M (z+)

∞

∑
m, n=0,1,2 ...

× (z+ /2)
2n

√
2n !

(z∗− /2)
2m

√
2m !

F(z+)F(z∗−),

where

z ± ≡ z ± η / 2,

M (z + η/2) = (1 − ∣z + η/2∣2)1/2
exp [−(z − z∗)(η + η∗)/2],

and

F(z + η/2) = [ 1 + (1 − ∣z + η/2∣2)1/2 (z + η/2)
2
√

2n + 1
],

F(z∗ − η∗/2) = [1 + (1 − ∣z + η/2∣2)1/2 (z∗ − η∗/2)
2
√

2n + 1
].

Notice that the complex variable is introduced in order to see the
analytical conditions of the function in a little more detail.

Despite the degree of complexity of the function, we can pro-
vide an approximation in the case of m = n (up to the leading terms
inside the unitary disk, e.g., ∣η∣ < 1),

Wmm(z, z∗) ≈ 2e−4 ∣z∣2(2 Ei (4 ∣z∣2) + ln
1
∣z∣4
+ ⋅ ⋅ ⋅), (22)
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FIG. 3. Graphical representation of the
generalized Wigner function for the
approximate Wmm case: The shape
of this distribution appears more bell-
shaped than the function shown in Fig. 1
(square norm).

which is represented in Fig. 3, with Ei being the exponential
integral function. This Wigner function for the circle states dis-
plays a classicalized typical shaped Gaussian distribution, more
bell-shaped than the square norm function of the states displayed
in Fig. 1.

VII. COSET COHERENT STATES FOR THE CIRCLE
A. Coset coherent states

Let us remind the definition of coset coherent states starting
from a vector ϕ0 invariant under the stability subgroup, namely

H0 = {g ∈ G∣U(g)ϕ0 = ϕ0} ⊂ G. (23)

We can see that the orbit of ϕ0 is isomorphic to the coset, e.g.,

O(ϕ0) ≃ G/H0. (24)

On the other hand, if we remit to the operators, e.g.,

∣ϕ0⟩⟨ϕ0∣ ≡ ρ̂0, (25)

then the orbit is now represented as

O(̂ρ0) ≃ G/H, (26)

with

H = {g ∈ G∣U(g)ϕ0 = θϕ0} = {g ∈ G∣U(g)̂ρ0 U †(g) = ρ̂0} ⊂ G.
(27)

The orbits are identified with coset spaces of G with respect to the
corresponding stability subgroups H0 and H, which, in the second
case, are defined within a phase.

Quantum viewpoint: From the quantum viewpoint, ∣ϕ0⟩ ∈ H
(the Hilbert space) and ρ0 ∈ F (the Fock space) are V0 normalized
fiducial vectors (embedded unit sphere in H; its real dimension is
less than or equal to the dimension of G).

Coherent state: A generalized coherent state system is now
defined as the collection of unit vectors ϕ(g) comprising the orbit
O(ϕ0); thus, it brings together [H, G, U(g), and ϕ0] in a special
way, namely

U(G/H0)ϕ0 = ϕ(g).

B. Geometry of the group and coset
As a first step in the construction of the coset coherent states

on the circle, we take an element of the Euclidean group E(2) in a
matrix representation derived from the exponentiation of the gen-
erators of the algebra times the representative parameters of the
coordinates, namely

E(2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

cos φ − sin φ x

sin φ cos φ y

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∣x, y ∈ R2, φ ∈ S1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

As can be seen, the circle (geometrically and topologically) is
perfectly described by the coset G/H = E(2)/T2, with T2 being the
group of translations in the plane as a stability subgroup.
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C. Maurer–Cartan forms and vector fields
Let us consider

E(2)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

cos φ sin φ −x cos φ − y sin φ

− sin φ cos φ x sin θ − y cos φ

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Then, we can obtain the Maurer–Cartan form via pullback, e.g.,

E(2)−1 dE(2) = ωφgφ + ωxgx + ωygy,

where (gφ, gx, gy) are the generators of the respective algebra,
namely

gφ =
⎛
⎜⎜
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎟⎟
⎠

, gx =
⎛
⎜⎜
⎝

0 0 1
0 0 0
0 0 0

⎞
⎟⎟
⎠

, gy =
⎛
⎜⎜
⎝

0 0 0
0 0 1
0 0 0

⎞
⎟⎟
⎠

.

Then, we have

ωφ = dφ,

ωx = cos φ dx + sin φ dy,

ωy = − sin φ dx + cos φ dy,

with the Cartan structure equations showing geometrically the
closing of the E(2) algebra, namely

dωφ = 0 = ωx ∧ ωy = dx ∧ dy,

dωx = ωφ ∧ ωy,

dωy = ωx ∧ ωφ.

From the above results, the vector fields can be computed in the
standard manner,

eφ = ∂φ,
ex = cos φ ∂x + sin φ ∂y,

ey = − sin φ ∂x + cos φ ∂y,

with the commutation relations

[eφ, ex] = ey, [eφ, ey] = −ex, [ex, ey] = 0.

D. Coset coherent states
The steps to follow for the determination of the coset coherent

states are the following:

(i) The coset G/H identification → E(2)/T2, with T2 being the
group of translations {gx, gy} ∈ T2.

(ii) The fiducial vector determination: It is annihilated by all the
generators h of the stability subgroup H and, for instance,
invariant under the action of H. We propose

∣A0⟩ = A(φ, x, y) ∣φ⟩,

where ∣φ⟩ is the London (circle) state, which is expanded in
the ∣n⟩ state of the harmonic oscillator and

A(φ, x, y)
(±)
= (cos φ ± sin φ)x + (∓ cos φ + sin φ)y,

such that we can see

(ex + ey)A(φ, x, y)
(±)
= 0.

(iii) The coherent state is defined as the action of an element of
the coset group on the fiducial vector ∣A0⟩; consequently, the
coherent state (still unnormalized yet) takes the form

e−α ∂φ ∣A0⟩ =
1√
2π
(A+ cos α + A− sin α) ∑

n=0,1,2..
e−α ∂φ e−iφn∣n⟩,

(28)

∣α, φ⟩ = 1√
2π

S(α, φ) ∑
n=0,1,2..

e−i(φ−α/2)n∣n⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣φ−α/2⟩

= 1√
2π

S(α, φ) ∣φ − α/2⟩, (29)

where α ∈ C is an arbitrary complex parameter in the element
of the coset, which must be adjusted after normalization as

S(α, φ) ≡ (A+ cos α + A− sin α).

Some observations with respect to Eq. (28), i.e., the most
general coherent state expression from the Klauder–Perelomov
construction viewpoint, are the following:

Notice that the state can be normalized from the overlap taking
the form

⟨β, φ′∣ ∣α, φ⟩ = 1
2π

S(β∗, φ′)S(α, φ)
m=0,1,2..

∑

× ∑
n=0,1,2..

ei (φ′−β∗/2) me−i(φ−a/2) n⟨m∣ ∣n⟩

= 1
2π

S(β∗, φ′)S(α, φ) ∑
n=0,1,2..

e−i [φ−φ′−(α−β∗)/2] n

= 1
2π

S(β∗, φ′) S(α, φ)
1 − e− i (φ−φ′−(α−β∗)/2)

.

Then, the state is fully normalizable: φ→ φ′. Iff the parameter α has
Im α ≠ 0,

∣∣α, φ⟩∣2 = 1
2π

S(α∗, φ) S(α, φ)
1 − e−i(α∗−α)/2

, (30)

where

S(α∗, φ)S(α, φ) = (x2 + y2) cosh (2 Im α) − (x2 − y2)
× sin 2(Reα − φ) + 2xy cos 2(Reα − φ).

Consequently, it solves the problem of the London states that are
overcomplete but clearly not normalizable when φ→ φ′,

⟨φ∣ ∣φ′⟩ = 1
2π ∑n=0,1,2..

ei(φ−φ′)n = 1
2π

1

1 − e−i(φ−φ′)
. (31)
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We see explicitly from Eqs. (30) and (31) how the general
coherent states on the circle ∣α, φ⟩ (with the coherent characteristic
complex parameter α) solve the problem of the non-normalizability
of the known (London, ’t Hooft) ∣φ⟩ states in the circle.

From Eq. (30), the normalized coherent state ⟨φ∣ ∣φ′⟩ is

∣α, φ⟩ =
√

1 − e− Im α ei arg S

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N

∑
n=0,1,2..

e−i(φ−α/2) n∣n⟩. (32)

However, the identity is not resolved in a strict sense, but in a
weak sense, always for Im α > 0,

∫
2π

0
∣α, φ⟩⟨α, φ∣ dφ = 1

2π∫
2π

0
∑

n=0,1,2..
ei(m−n)φei(αn−α∗m)/2 dφ

× ∑
m=0,1,2...

∑
n=0,1,2..

∣m⟩⟨n∣

=
∞

∑
n=0,1,2...

e−n Im α∣n⟩⟨n∣

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
e− Im α

e−2 Im α

. . .
e−n Im α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

which clearly shows the role played by the complex characteristic
coherent state parameter α.

VIII. ACTION OF THE MP(2) GROUP ON THE COSET
COHERENT STATES IN THE CIRCLE

Again, let us look at the sector s = 1/4 of the Hilbert space
spanned by the Mp(2) coherent states (unnormalized). The basic
state is given by

∣Ψ(+)(ω)⟩ = (1 − ∣ω∣2)1/4
∑

n=0,1,2..

(ω/2)2n
√

2n!
∣2n⟩.

On the other hand,

⟨α, φ∣ = N ∗ ∑
n=0,1,2..

ei(φ−α∗/2)n ⟨n∣. (33)

Then, with all the definitions given above and, in principle,
excluding the normalization N , we have

⟨α, φ∣ ∣Ψ(+)(ω)⟩ =
(1 − ∣ω∣2)1/4

√
2π

∑
m=0,1,2..

∑
n=0,1,2..

× (ω/2)
2n

√
2n!

ei(φ−α∗/2)m⟨m∣ ∣2n⟩, (34)

⟨α, φ∣ ∣Ψ(+)(ω)⟩ =
(1 − ∣ω∣2)1/4

√
2π

∑
n=0,1,2..

(ωei(φ−α∗/2)/2)
2n

√
2n!

=
(1 − ∣ω∣2)1/4

√
2π

∑
n=0,1,2..

(z′/2)2n

√
2n!

, (35)

with

ω e i(φ−α∗/2) = z e −i α∗/2 ≡ z′.

The analytic function in the disk is now modified by the complex
phase (φ − α∗/2).

Similarly, for the sector s = 3/4 of the Mp(2) states, we have

⟨α, φ∣ ∣Ψ(−)(ω)⟩ =
(1 − ∣ω∣2)3/4

√
2π

∑
n=0,1,2..

(ωei(φ−α∗/2)/2)
2n+1

√
(2n + 1)!

=
(1 − ∣ω∣2)3/4

√
2π

∑
n=0,1,2..

(z′/2)2n+1

√
(2n + 1)!

. (36)

Notice that by taking the scalar product between the coset
coherent state ⟨α, φ∣ and the coherent states of Mp(2), ∣Ψ(−)(ω)⟩, we
obtain two non-equivalent expansions in terms of analytical func-
tions on the disk for the sectors of the minimal representations
s = 1/4, 3/4, even and odd n states, respectively, in the eigenstates ∣n⟩
of the harmonic oscillator.

Consequently (ω e i (φα∗/2) ≡ z′),

⟨α, φ∣ ∣Ψ(±)(z′)⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ∣z′∣2)
1/4
∑

n=0,1,2..

(z′/2)2n

√
2n!

, (+): even states,

(1 − ∣z′∣2)
3/4
∑

n=0,1,2..

(z′/2)2n+1

√
(2n + 1)!

, (−): odd states.

(37a)
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Therefore, for the total projected state, ⟨α, φ∣ ∣Ψ(z′)⟩,

⟨α, φ∣ ∣Ψ(z′)⟩ = ⟨α, φ∣ ∣Ψ(+)(z′)⟩ + ⟨α, φ∣ ∣Ψ(−)(z′)⟩, (37b)

we have

⟨α, φ∣ ∣Ψ(z′)⟩ = (1 − ∣z′∣2)
1/4
∑

n=0,1,2..

(z′/2)2n

√
2n!

× [1 + (1 − ∣z′∣2)
1/2 (z′/2)√

2n + 1
]. (38)

We now consider the following observations:

(i) The analyticity condition of the function ⟨α, φ∣ ∣Ψ(z′)⟩
on the disk is now constrained, taking into account ∣z′∣
= ∣z∣e− Im α/2 < 1, which occurs under the already accepted
condition of arising from the normalization function.

(ii) The topology of the circle induced by the coset coherent
state ⟨α, φ∣ [Eq. (32)] modifies not only the phase of ω (e.g.,
ω ei (φ−α∗/2) = z′) but also the ratio of the disk due to the
displacement generated by the action of the coset.

(iii) The norm square of Eq. (38) is easily calculated, giving as a
result the function

∣⟨φ∣ ∣Ψ(z′)⟩∣2 = (1 − ∣z′∣2)
1/2

cosh
⎛
⎝
∣z′∣2

2
⎞
⎠
+ (1 − ∣z′∣2)

3/2

× sinh
⎛
⎝
∣z′∣2

2
⎞
⎠
+ (1 − ∣z′∣2)

1/2
Re (z′) ∑

n=0,1,2..

×
∣z′/2∣ 4n

2n ! (2n + 1) , z′ = ω e i (φ−α∗/2),

with a decrease in the tail as n increases, showing the analyticity, in
this case in the disk ∣z′∣ < 1, with the same comments as in items (i)
and (ii) above.

IX. CONCLUDING REMARKS
In this paper, relevant implications inherent to the description

of quantum theory, in particular when it takes a classical aspect, were
elucidated and discussed from the principle of minimal group rep-
resentation. To this end, the concept of classical quantum duality
was considered demonstrating the non-existence of ontological or
hidden variables in the reality of the physical scenario analyzed.

(1) The application of the Minimal Representation Group Prin-
ciple (MGRP) to the London state (circle, phase states), e.g.,
the application of an element of the Mp(2) group on the
London state, immediately classicalizes the physical scenario
considered: The quantum dynamics in the circle takes on the
classical character.

(2) The application of the MGRP to the London states naturally
introduces the analytic functions through the action of the
basic (coherent, s = 1/4, 3/4) states of the metaplectic group
in the Bargmann representation. This is in contrast to the

case of ’t Hooft in Ref. 4, where although similar functions
and results in the circle are considered, the analyticity in the
unit disk ∣z∣ < 1 is introduced differently.

(3) The analytic functions induced by the action of the basic
states of the metaplectic group and the London states divide
the projection of the Hilbert space on the disk into even
and odd functions that, in all cases (both for the square
of the norm and for the Wigner function), remain analytic
inside the unit disk, as well as for its analytic extension (by
inversion). In Fig. 4, we can clearly see this fact.

(4) The application of the MGRP to the coherent states of the
quantum particle on the cylinder (configuration space) of
Refs. 19–22 in the non-orientable case classicalizes the system
in a similar manner to the London circle phase states, but
the square norm of the scalar product between the Mp(2)
states and the cylinder configuration coherent states has an
extremely fast decay for increasing n due to the content of
the factors e−2n2

, e−(2n+1/2), and e−(2n+1/2)2
.

One of the reasons for the complexity of the obtained
functions is due to the construction of the coherent states
on the circle, such as the non-standard modification of the
Barut–Girardello definition for the Kowalski et al. case or the
introduction of a Gaussian fiducial state for the proposal in
Ref. 21.

(5) In order to elucidate the classical–quantum duality prob-
lem by considering the circle topology in a complete way,
new coherent states for the circle were introduced here. These
coherent states follow Perelomov’s definition (Ref. 23) of
coset coherent states, where the operators and the fiducial
vector are completely determined by the nonlinear realiza-
tion of the coset of the group E(2) on the group of transla-
tions in two dimensions as a stability group: g = E(2)/T2.
These new coherent states solve the identity but in a weak
way (diagonal matrix with entries Mnn = e−n Im α), and the
most important thing is that they are completely normalizable

FIG. 4. Graphical representation of the square norm of the projections under the
application of the minimal group representation, against the variable z = ωeiφ: The
huge curve corresponds ∣⟨φ+∣ ∣Ψ(ω)⟩∣2 to s = 1/4, even n sector in the Hilbert
space of the analytical functions, and the small curve ∣⟨φ−∣ ∣Ψ(ω)⟩∣2 corresponds
to s = 3/2, odd n sector in the Hilbert space of the analytical functions.
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and well defined in the Hilbert space, contrary to the London
states.

From all the cases exhaustively studied here, Mp(2) emerges as
the classical–quantum duality group of symmetry.
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