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                                      OUTLINE

1) The ICP: the best Plasma  in Universe, archive of the rich 
     cluster history,   Baryons &  DM over  ~ 10 Gyr

2)  In DM halos,  ICP equilibrium  under DM gravity  vs.  
     thermal pressure related to baryon entropy:  

    conserved on compressions, raised by shocks (central AGN 
    or deep mergers  +  boundary accretion); eroded by cooling
   
3)  Entropy  –>  ICP Supermodel, compared with data: central 
     cores, CCs vs. NCCs; halo shapes/ages,  a  Grand Design    

4)  Outskirts: accretion demise and T(r) decline,  non-thermal 
     pressure and its effects 

 ->  ICP as a probe of  structure/development of  DM halos. 
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Virial theorem   -->

km/s  10~ 3σobserved  1-D  

M ~ 1015  Msun  ~  102  M*    
     crossing time   R/σ ~  1 Gyr
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Hot, thin medium   
within   DM gravitational well 

 CL 0016+16 z=0.54,  X + SZ views      
                   

r

Φ(r)

σ2

e-

P+

γ’



  

 ICP,  best  Plasma  in  Universe ! 

    free  p+, e-    kinetic  >>  electrostatic energy at average d = n-1/3 ~ 10 cm

    In fact

12
3/12 10~

ne
kT                >>   star interiors    103    or 

                   cosmological  Plasma  3 105

  → ICP =  fluid  with 3 degrees of freedom,  effective μ ~ 0.6 mp,  in thermal  
equilibrium by collisions:  λii ~ 10 ( kBT5 keV)2/n-3  kpc, λei ~ 40 x .  Makes up baryonic 
mass m ≈ 1/6 M   ~ cosmic fraction  (metals Z ~ 1/3  Solar). 

ICP confined/heated up by DM gravity: simple fluid amenable to precise modeling

Based on  ICP entropy   kT/n2/3  that  provides the archive for conserving  energy  
discharged  into cluster center//outskirts over radiative cooling  t ~ 0.1 //10 Gyr

Despite feeble gravity       G m2
p/e2   d/10 R    NDM

 

                                         
                                          10-36              10-25          1073                 Or    n λ3

D  = (r/4π)3/2   ~ 1016 



  

 Jeans eq. ~ hydrostatic 

DM i. t. o.  convenient ‘entropy’                             though collisionless  
                                         &  self-gravitating !

N-body simulations prove  in the halos’ body   

Thus Jeans reads 
 

or in compact form 
ρ ~ r - γ

α-profiles

   e.g.,  α = 1.25 
Taylor & Navarro 01  
 ≠  from  NFW!

γa = 3 α /5 = 0.75  weak cusp

γ0 = 6-3 α = 2.25  body

γb =3 (1+α)/2  =3.38 
converging M 

     concentration  c = R/r-2 
     outskirts/body from 
     G. Lensing or X rays   
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α = 1.27  ±  0. 02

under  same 
DM gravity   

DM  halos             lecture by A. Lapi 
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 Use  ICP entropy k  ≡ kB T/n2/3  (adiabat)  dependg. only on energy addition/loss 

        

          This simple 1st order differential  eq.  +   1  boundary condition
integrates  to 

  Supermodel,  w.  entropy run κ (r)  physically given,  yields  precision  Cluster   
     description to match rich observations: 
 
 X-ray brightness  ∝ n2 T1/2 + spectral temperature T, μw SZ scattering  y∝ pe ∝ n T
 

normd.   k/k2   , T/T2   , n/n2    

on sound crossg.  R/cs ≤  R/σ  dyn. time

    ICP in hydrostatic equilibrium,  DM gravity vs.  thermal  p = n kB T/µ 

 
r

rr

 e.g.,  β-model:   T = const,   dlln/dr =  - β dϕ/dr      n= n→ 2 exp (- β ∆ϕ)      (β =  µ mHσ2/kB T)

running  β 

AC, Fusco,
Lapi 09

                                
                                
                                
                     

http://people.sissa.i
t/Supermodel/



  

                                         
              Supermodel links  n(r)  &  T(r) in terms  of  k(r)
              yields for T(r) shapes:  peaked  Cool Core vs. flat NCC   
                                                                                           Molendi Pizzolato 01, Pratt al. 10

                                               based on  entropy production/erasure -->
                      

                                       

     

      X-ray obs.:  Surface brightness  &  Temperature   (insets)  
                                 
                   from   XMM, Chandra, Suzaku  0.5 – 10 keV

A2597    z=0.08

CC 

Mohr al. 99    Xue, Wu 00



  

ICP entropy, produced by shocks, conserved over cooling t

Eroded  by radiative cooling on scale  tcool =  3 kB T/lx ~  10 T8
1/2 /n-3  Gyr 

Raised by shocks converting  bulk  into thermal  energy on dyn.  t ~   0.1  Gyr, 
(over λii  ,  equipartition  takes  longer  λei)   Bower 97, AC  Lapi  Menci  05, Voit 05

Rankine-Hugoniot shock jumps:  conservation of mass, momentum, energy across layer
yield  for strong shocks (supersonic flows,  maximal thermalization) 

n2/n1   =  4

 kB T2   = μ mp v2
f /3

            ∝ Mach 2 = (v1/cs)2

 k2  =  kB T 2/ n2
2/3

       + residual bulk v2 =  v1/4  
                   (shock frame)

Shocks thermalize flows from: 

 -  grav. infall across cl. boundary 
     of cold IGM  at  Mach ~ 102

-   blasts/shocks into ICP from:
      central  AGNs  Mach ~ 1.5 – 2
      deep mergers  Mach ~ 5
               →  k(r)  =  floor  + ramp



  

Pivotal values: 

central floor, AGN/merger shocks: ∆E  k0 ~ 1 keV/part(10-3)-2/3 ~ 10-102 keV cm2    

boundary infall, strong accr. shock: k2 ~ 5 keV / (10-5 cm-3)2/3 ~ 3 103 keV cm2

     
ramp:  stratified    k(r) ~ r1.1 , see later

Entropy floor + ramp  

k = k0 + k2 (r/R)a

Voit 05, Arnaud al. 2009

 in SModel 
 3 parameters:

 k0 ,   k2  ,  a ~ 1.1
DM

ICP
lo

g 
K

k2 ~ 3 103 keV cm2 
accr. shock  at R 

 IGM: 
  T1 <  0.1 keV, 
   k1   ~ 0.1  keV cm2   

o



  

                                                                                      
 SModel fits  n(r)  & T(r),  in terms of  entropy  floor  + ramp

 k(r) = k0  + k2 (r/R)a     w.   3 specific params.:  k0 , k2   a,   with  χ2
n ~ 1

      → T0 ~   k0
3/5 - 0.35 ~ 0.3 ,    n0 ~  k0

 -1     →      tco ~ 10 (ko/100)1.1 Gyr  short/long

  +  concentration  c  =  R/r-2   (if not known from Grav. Lensing)

             

 

     X-ray Brightness    &  Temperature     Fusco-Femiano, Lapi, AC 09

A2597    z=0.08

CC 



  

ICP – DM connection:  basic T(r)  shapes:  CC – NCC related to central k0 

Also related to large-scale  halo concentration  c = R/r-2 = 10 – 4  (from 
X rays or G Lensing),  in turn linked to  ages  (outskirts)  zt = 2  - 0.2 
 

 → Grand Design: CC  central ICP = cold;  DM = extended, old  zt~ 2
                            NCC central ICP = hot;  DM = compact, young  zt~ 0.5 

lecture by A. Lapi



  

Next:   

 
           
     blast/shock stalls  at rf  ~ 250 kpc       
                                              
     inner entropy flat before ramp,
     T(r)  ~  k(r) n2/3  dips then  recovers  
                              
                             

Snowden al. 08

Fusco-Femiano, Lapi, AC 09



  

                         Focus on Center

Deep mergers  
         or
AGNs/QSOs

Launch  blastwaves w. leading shocks,  spread energy ΔE into ICP  E, 

when  continuously driven   Mach > 1    out to 200 kpc 

Raise etropy to   k2  =  kB T 2/ n2
2/3  ∝ Mach 2 ∝  ΔE/E 

Also deplete/eject  ICP       m ~  (1- ΔE/2E)   AC, Lapi  07

Deep mergers, simulations  Markevitch Vikhlinin 07,  McCarthy al. 08; 

 see  lectures by Gottloeber, Hoffman, Klypin

AGNs  w. L  ~   2 1046  erg/s,  direct evidence in nearby clus./groups      

                                                               

                          

                                   ΔE ~ 1063 erg
inject energy pulses                         
             3 

      

 ΔE~ 3 1061 erg   



  

14 kpc ring in 
•Seen over nearly 3600

Symmetry naturally explained as a 
shock explosion of 1058 ergs about 107 
years ago.
•Mildly supersonic (Mach=1.2, v=950 
km/s).
•Up to Mach 8  Forman al. 06

M87 (Virgo Cluster), shocks  on 15 -30 kpc scales   

200 kpc shocks in Hercules A Cluster

McNamara & Nulsen 08 



  

Central ICP,  snapshots  w.  SModel 

For both:

T0  ~  k0
3/5-1/3 = 0.27        n0 ~  k0

 -1

with cooling times

tco ~  To
1/2/no   ~ 10 ( k0/100)1.1  Gyr 

             10 -  0.1  Gyr

Cool Cores will trigger  radiative cooling;  dk/dt ~ - k/tc  may start in 
central E galaxy a recurrent loop:    see Voit Donahue 05; Ciotti Ostriker 07 ..
 
BH fueling, frequent AGN outbursts raise  k0  (A.C. & Lapi 08),  stabilize  
catastrophic cooling (Tabor Binney 98), lead  to an average balance ?

NCCs  ko/k2 > 3 10-2 : hot, stable to both new shocks and cooling tc0 ~  Gyrs;        
  flat  brightness requires weak DM halo cusps  

CCs  ko/k2 < 10-2 
 ~  10 keV cm2: low but 

  finite  T0 ~ 1 keV,  spiky central  n2

  



  

.

   + boundary/outskirts:

    gravitational accretion and entropy 
    production on their demise?
         
   

       Next  

Bautz al. 09

Lapi, Fusco, AC 10



  

 

                    Focus on  boundary & outskirts

Deposition at r=R of infall kinetic energy    k2 .   For  strong accretion shocks recall 

DM sets  v1
2 = 2 vc

2 = 2 ∆Φ    infall  to R    b2  = µ mpvc
2 /kT2  = 3/2 ∆Φ   ~ 2.7     (α  ~  1.27)

 Scaling  yields  k (m) ∝ Κ ∝ m 1.5                                  
  

as outskirts grow after m ∝  M ∝ td/ε     (d = 2/3 ->  1/2  in Concordance  Cosmology)  from 
perturbations  with shape ruled by  ε  > 1  for  slow accretion.                                             

But at r = R equilibrium density n ∝ r-g  with  g = 3 (a + b2 )/5 ,  so   k ∝ r a ∝  ma/(3-g)

On  equating           → a  =  2.4 -  0.47 b2  ~   1.1     ( +  variance)                  
                          

Note k ∝  ra   throughout outskirts by stratification  in relaxed Cls. (adiabatic compression, 
no other sources down to 1/2 Mpc )   and  conservation  (long tc)

3/2
inf2 vmkT pµ=

    

  12 4nn =
    k2 = kB T2 n2

-2/3
   
   

A.Lapi lecture

 
Tozzi & Norman 01, 

DM sets    v1
2 = 2 vc

2 = 2 ∆Φ            



  

But for z  < 0.5  expect: accretion & related entropy  production  
slow down,  slope a  of k ∝ ra  saturates/declines 

 

           Then  from 
 
           T(r)   ∝   n2/3(r)    k(r) 
                                       

          expect T(r) ∝ n2/3(r)  to 
          decline  steeply outwards
                                              
                             
                     

                          In detail -->



  

M
δM r

δM/M

         δM/M ~ M-ε 

shape of 
initial pert.

        cause  slower infall 

   late z: shallow  outer potential 
    wells  from perturbation  wings 

Outskirts development M  ~  td/ε modulated by: 
decreasing perturbation wings (ε >1)  +  accelg.  cosmology (d < 2/3)

R

Rta ~ 2 R

Rs
Φ

r
∆Φ

  shock moves out, weakens
     → lower k(r) 
              

                   -  steeper T(r)   
                         -  larger residual v2     



  

T(r) steep at low z    

                                         
                                         Several Clusters observed  >2009
                                             XMM, Suzaku:  T(r) declines 
                                         
                                      SModel:  Lapi, Fusco, AC 2010
                                         

                                           

high z 
              Reiprich al. 09
           
                                                      Bautz al. 09

          
              also George al. 09,  Kawaharada al. 10  ..               

-->   k(r) bends ar  r/R = 0.3 +/- 0.02
        gradient   a' = 1.8 +/- 1.3 



  

        But then non-thermal, turbulent  δp  
        from residual bulk flow past shock
        will contribute to  hydrostatic support 
        even in relaxed Clusters
                              
                                                                   
          
        Turbolence,  wide interest: 
        Vikhlinin al. 09, Lau al. 10,  Molnar al. 10 ..
                        
               

        

                           δp/p =  δ(r)   in SModel:  levels at shock  
                           δ2 ~ (v2 /v1)2 > 1/16 =  9% from resid. v2;
                           dissipated on scale  R/Re3/4  ~ ½  Mpc
                                                          Inogamov Sunyaev 03
 
                            → T ∝  (1+ δ)-2/5  ~0.9 decreases weakly,  
                                 entropy saturation  & a(r)  dominate

pth   
pth        δ =  0 

ptot
 δ2   =  30% 
  

 

δ(r)



  

Check  w. SZ  scattering    
y ∝ pe ∝ (1 + δ)-1 

higher by 25 % with  δp 

Probe turbulent δp, 
input level & scale 

AC, Lapi, Fusco in  prep. 

   But signature: in X rays, pure thermal 
   support  would cause DM   M(<r)  to  
   attain only  85 %  of true value

   
   δp  → full DM masses from fast X rays? 
   key issue for Cosmology  from statistics  
   of DM halos. 
 



  

Conclusions

DM halos probed in terms of  ICP,   with  X rays  (brems. :  n2 T,  T)  and 
microwaves (SZ scattering:  pe∝ n Te)

ICP represented by effective yet simple Supermodel:  hydrostatic equilibrium  
under thermal  p, 3 specific parameters,  based on  entropy     (// simulations) 

Entropy deposited/stratified  at center and outskirts, conserved over a cooling 
time; thus radius  r  records  history  t. 

SModel snapshots  provide info. to retrieve evolution of ICP: central events 
over  r ~  0.3 Mpc,  t ~ 0.1 Gyr;   outskirts,   r ~  2 Mpc, t ~  10 Gyr   

Inner CC -- NCC shapes of ICP relate to large-scale DM halo shape  c ~ 10 – 4,  
formation (transition) ages  zt ~ 2 -- 0.5  of DM halos  Cluster → Grand Design

For zobs < 0.5 expect: accretion demise, increasing turbulent contribution δp 
to HE driven by smooth mass inflow past the shock  from fast X rays (+SZ), →
assess bias in masses of DM halos 

 



  



  

 Sunyaev Zel’dovich 1972 

   2
0

2 ∫≡
R

e

e

T dnkT
cm

y ℓ
σ

422 10~1010~ 2 −−− ×−→




 ∆ y

T
T

CMB

Compt.  parameter
along l.o.s.

νI

ν

a “cold shadow” cast by a hot plasma cloud

+-

e-

γ

γ’

     z = 0

      z = 103

submm

µw

            τ
ν

ν
h
h∆

SZ:  i. Compton scattering  of CMB 
photons by thermal electrons

SModel: 



  

Central AGN feedback      k0 = kBT0 /n0
2/3

  entropy   k - T correlation           
            

                 episodic QSO

SN

A.C., Lapi & Menci 02, 
Lapi, A.C., & Menci  05

      groups                    clusters



  

Connection to simple models

A) β - model,  central region NCCs

B) CCs: SModel yields k0 ~ 10-3 (blue)  
  T(r)  follows  σ2(r),  not  vc

2(r).

This suggests trying the simple
 model (cf. A.C. & Fusco-Femiano 81)

      T(r) ~ σ2(r)      n(r) ~ ρβ  σ2(β-1)

OK for  CCs !
Consistent with non-radiative sims. (see Borgani 04)

 Prediction: peaks  of T should move left 
    in poor clusters and  groups,  w. lower DM  
    α and decreasing  σ2

M positions  (cf. A Lapi)

Consistent with obs.  Nagai al. 07 

(recalibrated  Chandra ) 

Average NCC and CC 
from Leccardi & Molendi 08

vc
2

σ2
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