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Introduction: rotation curves from HI data

Rotating disk:

Data cube (series of maps @ slightly different freq.) should look like this:
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Rotation curve decomposition
Vois (r) :deisk (r) +Vgils (r) +Vhilo (r)

* V4 () : from observed photometry, preferably NIR
absolute scaling depends on the stellar M/L ratio
* V. (r) : from HI observations
* V. (r): It depends on the chosen dark matter
density distribution

* Fit usually performed by X *minimisation
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Introduction

Rotation curves do not decline as expected from the visible matter.
1) Dark matter halo

or
2) gravity is "boosted" below a certain acceleration a,~10® cm s2

Modified Newtonian Dynamics (MOND) — Milgrom (1983)
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NGC 3198: adapted from Begeman et al. (1991)
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Introduction

Rotation curves do not decline as expected from the visible matter.
1) Dark matter halo

or
2) gravity is "boosted" below a certain acceleration a,~10® cm s2

Modified Newtonian Dynamics (MOND) — Milgrom (1983)
Some history: in the Solar System:

1) Perturbation in the orbit of Uranus: unseen matter or modify gravity?
Unseen matter: Neptune

2) Perihelion precession of Mercury: unseen matter or modify gravity?
Modify gravity: GR



Introduction

Rotation curves do not decline as expected from the visible matter.
1) Dark matter halo

or
2) gravity is "boosted" below a certain acceleration a,~10® cm s2

Modified Newtonian Dynamics (MOND) — Milgrom (1983)

Note that:
ap=cHy/(2mm)

a,=c (N\/3)"



Introduction

Rotation curves do not decline as expected from the visible matter.
1) Dark matter halo

or
2) gravity is "boosted" below a certain acceleration a,~10® cm s2

Modified Newtonian Dynamics (MOND) — Milgrom (1983)

- MOND explains very well galaxy kinematics

- But MOND requires some dark matter on larger scales
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Introduction

- Cold Dark Matter works well on large scales (Cosmic
Microwave Background, large scale structure,...)

- But problems on galaxy scales!
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- cusp/core problem :
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Best understood effect of baryons: adiabatic contraction
It would make CDM halos even more concentrated...
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N-body simulations in Cold Dark Matter lead to
dark matter halos with “cuspy” density profiles:*8

Log Density

The core/cusp problem

Navarro

Log p/10% Mg kpc~?

Log radius/kpc

Log Radius

Frenk White

: Navarro, Frenk & White (1996)



The core/cusp problem

In successive modifications of the NFW profile (Moore, Einasto, etc.),

either

1) changes are not significant (for the radial range probed by data in galaxies)
or

2) changes make the profiles even cuspier

But see Andrea Lapi’s talk.
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The core/cusp problem

Observations instead...
p = r% in the centre

l.e.: a constant density core

Rotation velocity

- - |
radius

Example: the galaxy ESO 79-G14

Gentile et al. (2004)

Initial doubts about evidence against cusps (systematic effects)
seem to be overcome (e.g. Gentile+05, de Blok+08)



The core/cusp problem

This was for pure dark matter simulations: what about baryonic physics?

- Best studied effect: adiabatic contraction: it makes things worse
(i.e.: halos become even cuspier)



The core/cusp problem

This was for pure dark matter simulations: what about baryonic physics?

- Best studied effect: adiabatic contraction: it makes things worse
(i.e.: halos become even cuspier)

- Some studies find cores in simulations with also baryons
(e.g. Mashchenko et al. 2006, Governato et al. 2010)

No consensus in the simulations community.

A long way before reproducing galaxy kinematics phenomenology
and additional constraints (e.g. baryon fraction).



The core/cusp problem

Systematic effects? Are observers not doing their job properly?
Can cusps look like cores?

de Blok (2010): pointing errors and/or non-circular motions should be much
larger than they actually are (see J. van Eymeren’s talk)
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Rotation curve decomposition
Vois (r) :deisk (r) +Vgils (r) +Vhilo (r)

* V4 () : from observed photometry, preferably NIR
absolute scaling depends on the stellar M/L ratio
* V. (r) : from HI observations
* V. (r): It depends on the chosen dark matter
density distribution

* Fit usually performed by X *minimisation
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The core/cusp problem

Systematic effects? Are observers not doing their job properly?
Can cusps look like cores?

de Blok (2010): pointing errors and/or non-circular motions should be much
larger than they actually are



The core/cusp problem

Systematic effects? Are observers not doing their job properly?
Can cusps look like cores?

de Blok (2010): pointing errors and/or non-circular motions should be much
larger than they actually are

Valenzuela et al. (2007): pressure support from 10° K gas?
Comparison with 2 observed rotation curves.



The Burkert halo profile

One of the most used halos with a constant density core:
The Burkert halo Burkert 1995) :

3
POT core

(r 1 Teore) (i’2 £ i’fore)

IOBur(r) —

two parameters r,,, and p,
Ieore: Fadius where density = py/4

core*

Good fit of rotation curves
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Universality of
dark matter surface density

In Donato, GG, et al. (2009):

collection of high-quality rotation curves
and observed stellar kinematics

with mass models.

Galaxies of all sizes and all Hubble types.



Universality of
dark matter surface density

In Donato, GG, et al. (2009): (here r., is called ry)

Spano et al. sample
of spiral galaxies

THINGS sample
of spiral galaxies ]
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Universality of
dark matter surface density

Mean dark matter surface density within r, of a Burkert halo is:

74
<Z>0,dark - M<;"o/nr02 ~0.51py7, =727, Mypc™

©

where M_, is the enclosed dark matter mass within r,



Universality of
dark matter surface density

Mean dark matter surface density within r, of a Burkert halo is:

4

: M<},,,0/Tcr02 ~0.51p,, =727 M@pc_2

where M_, is the enclosed dark matter mass within r,

This is equivalent to:@ro) = Gn<ZD 3257107 cms™

the gravitational acceleration generated by dark matter at r
IS also universal




Universality of
dark matter surface density

The universality of p,r, means that p, and r, conspire to keep
the product constant (even though they vary a lot from
galaxy to galaxy): -2

log p, (g cm™)

(Already noticed by
Kormendy & Freeman 2004
and Spano et al. 2008

but only for spirals)




Universality of
dark matter surface density

In Donato, GG, et al. (2009): (here r., is called ry)

Spano et al. sample
of spiral galaxies

THINGS sample
of spiral galaxies ]
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In GG, Famaey, Zhao, Salucci (2009, Nature) we found that

Universality of
baryons surface density

also the surface density of baryons is constant within r:
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Universality of baryonic and
dark matter surface density

T ] T T T T I T l I T T

Coloured points:
average dark matter surface +

4

density within r, 5
2
Black points: g i
central surface density i
of baryons O T R T
(not the average one My

within ry)



Universality of baryonic and
baryons surface density

What can we learn from the universality of both dark matter
and baryonic surface densities within ry ?
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Universality of baryonic and
dark matter surface density




Universality of baryonic and
dark matter surface density

- At ry, the dark-to-luminous matter ratio is = the same for
every galaxy, but the total ratio is not.

- At r,, the gravitational acceleration due to dark matter and
the gravitational acceleration due to baryons are = the
same for every galaxy

- 1) dark matter “knows” what baryons are doing
2) weirdly, r, can be determined from the distribution of
baryons



Universality of baryonic and
dark matter surface density

Maybe an unknown interaction

between dark matter and baryons (other than gravity)?

Dark matter particle with a mass of 1-2 keV (de Vega, Salucci, Sanchez 2010)?



Universality of baryonic and
dark matter surface density

MOND can explain these relations quite naturally.

First thought: a,/(2mG) = 138 M, pc?

(Poro Was 141+82 5, My, pc?)

We can compare the “phantom dark matter” -
halo associated to MOND 3

(MphantomDM = IvltotaINewton - IvlbaryonsNewton) : \
with the Burkert halo. P




Universality of baryonic and
dark matter surface density

What next?
- Increase the sample statistics

- Extend to higher and lower masses



Conclusions

Evidence for cores over cusps
Core radius r, of a DM halo: size of the central constant density region.

Donato, GG, et al. (2009): the average DM surface density within r, (or
equivalently the DM gravitational accel. at r;) is universal in galaxies.

In GG, Famaey, Zhao, Salucci (2009, Nature) we showed that the same is
true for the average baryonic surface density within r, (or equivalently the
baryonic gravitational acceleration at ry: ¢, (1) =5.7"3% 107" cm s~ ?)

Unknown fine-tuned process in galaxy formation?

Unknown interaction between dark matter and baryons?



Comments on Boyarsky et al.’s follow-up
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Comments on Boyarsky et al.’s follow-up

- They don’t say where they take their sources from
- Single slope or break around a few x 10'2 M_,?
- Their parameters come from NFW fits: bad fits in a lot of cases

- Their parameters come from NFW fits: unrealistic parameters in a lot of cases
(e.g. NGC 224 has M,;,=1.2e13 M)

- Some sources are plotted twice (e.g. M31 and NGC 224 are the same object)



