UNIVERSAL PROPERTIES IN GALAXIES AND CORED DM PROFILES

Paolo Salucci (SISSA)

G. Gentile, C Martins-Frigerio, A. Burkert, U. Klein, F. Shankar, I. Yegorova, C. Tonini, A. Lapi, G. Danese, De Vega, N. Sanchez

ECOLE INTERNATIONALE D. CHALONGE CIAS Workshop 2010, Meudon

OUTLINE

- . The kinematics of galaxies
- Universal Properties of DM halos: relation to LM
- . The amount and distribution of DM around Spirals
- The nature of DM

1996 MNRAS, 281, 27 Persic, M.; Salucci, P.; Stel, F. The universal rotation curve of spiral galaxies - I. The dark matter connection 2007 MNRAS, Salucci, Lapi, Gentile, Klein The universal rotation curve of spiral galaxies out the virial radius II

The Realm of Galaxies 15 mag range, 4 types, 16 mag arsec⁻².range

Central surface brightness vs magnitude

Luminosity profile is Universal.

Spirals have a lenght-scale Distribution of stars: L(R/RD)/LT independent of Luminosity

The light distribution in spirals is invariant I(r) = I0exp[-R/RD]The mass distribution is luminosity dependent:

-TF at different radii

-The Universal profile of the RC's

Do the RC's probe the mass distribution of galaxies ? What is the zeroth order of their mass profiles

Radial Tully FisherInner mass distribution

TF at different radii

The relation: magnitude vs velocity @ different radii $x_i R_D$, [$x_i=0.5,1,...5$] 3 samples (600, 89, 78) $M = a_i + b_i \log V(x_i)$ No change in slope implies: i) no DM or ii) constant fraction of DM No relationship if V does not trace the mass

Radial TF relationships

Results: Slope and scatter of the TF-relations:

 $M_{\rm B} = a_i + b_i \log V(x_i)$

The slope increases from -4 to -8

The minimum scatter 0.2 mag at 2.2 R_D

Modelling the very inner circular velocities:

light traces the mass

The slope of the RC

The RC Slopes indicate the presence and the amount of Dark Matter

3200 coadded

Individual

The rotation curves

ACDM Universal Rotation Curve from NFW profile and MMW theory

The URC Concept

In the Cosmic Variance of V(X,L) is one order of magnitude smaller than:

- The variations that, in each galaxy, V(X) shows as X varies.
- The variations that, @ fixed X,V(X) shows in galaxies of different L

The circular velocity is luminosity dependent $V(R/R_D)=F(L,R/R_D)$

MODEL

dark matter

luminous matter

Copyright @ Addison Wesley.

Rotation curve decomposition.

$$V_{tot}^2 = V_{DM}^2 + V_{disk}^2 + V_{gas}^2$$

- $\supset V_{disk}(R)$: from I-band photometry
- $\supset V_{gas}(R)$: from HI observations
- $\supset V_{halo}(R)$
 - dark halos with constant density cores
 - dark halos with "cusps" (NFW, Moore)
- HI-scaling
- MOdified Newtonian Dynamics

We can uniquely mass model a RC

disk-halo components, known surf phot, reliable V(R) and dV/dR, resolution ~ 0.3 R_D

M 31

Modelling the Universal Rotation Curve

NFW Halos

$$ho_{NFW}(r)=rac{
ho_s}{(r/r_s)(1+r/r_s)^2}$$

$$c_{vir} \equiv r_{vir}/r_s$$

 $M_{NFW}(r) = M_{vir} \frac{A(r, r_s)}{A(c_{vir}, r_s/r_e)}$
 $A(x_1, x_2) \equiv \ln(1 + x_1/x_2) - (1 + x_2/x_1)^{-1}$

Burkert-URCH-PI Halos

 $ho_B(r) = rac{
ho_0}{(1+r/r_0)[1+(r/r_0)^2]}$

@ L* , VB ~ VNFW (R)

VNFW easier to fit uniquely

The profile is characterized by a density–core of extension r_0 and value ρ_0 , while it resembles the NFW profile at large radii.

$$M_B(r) = M_e \; {B(r,r_0) \over B(1,r_0/r_e)}$$

s = r/r0; B(s)= 2 ln(1+s)+ln(1+s)-2 arctg(s)

Halo central density vs core radius scaling $\rho_0 = 10^{-23} (r_0 / \text{kpc})^{-1} \text{ g/cm}^3$

Halo masses

$$\mathbf{BMF}(M_b) dM_b = (1.94 \times 10^{-3} \tilde{M}_b^{-1.2} e^{-\tilde{M}_b/1.9} + 4 \times 10^{-7} \tilde{M}_b^{-2.6}) \frac{dM_b}{10^{11} M_{\odot}}$$

$$HMF(M_h) dM_h = AM_h^{-1.84} dM_h$$

and

 $HMF(M_h) dM_h/ dM_b dM_b = BMF(M_b) dM_b$

 $M_{h} = ((|\beta| - 1)/A \ (1.94 \ 10^{-3} \Gamma(-0.21, \tilde{M}_{b}/1.9) + 2.5 \ 10^{-7} \tilde{M}_{b}^{-1.6} + C)^{1/(1-|\beta|)}$

RESULTS

RESULTS

DM halo density: observations vs simulations

THE UNIVERSAL VELOCITY CURVE

Dark halos from simulations

Halos form hierarchically bottom-up via gravit. amplification of initial density flucts. Most evident property: <u>CENTRAL</u> <u>CUSP</u>

$$M_{vir} \equiv \frac{4\pi}{3} \Delta_{vir} \rho_{u} R_{vir}^{3} \qquad V_{vir}^{2} \equiv GM_{vir} / R_{vir} \qquad c_{vir} \equiv R_{vir} / r_{s} = 9.7 (M_{vir} / 10^{12} M_{un})^{-0.09}$$

$$\rho_{NFW}(r) = \frac{\rho_{s}}{(r/r_{s})(1+r/r_{s})^{2}}$$

Navarro, Frenk & White, ApJ 462, 563 (1996) Bullock et al., MNRAS 321, 559 (2001) Klypin,2010

The cusp vs core issue

cuspy NFW density profiles disagree with observed kinematics. comparison galaxy by galaxy and of coadded kinematics highlights a CDM crisis.

NFW HALOS

Fit badly the RCs

Unphysically too low stellar mass-to-light ratios

Unphysically too high halo masses

Moore, Nature 370, 629 (1994) Kravtsov et al., ApJ 502, 48 (1998) Salucci & Burkert, ApJ 537, L9 (2000) de Blok, McGaugh & Rubin, AJ 122, 2396 (2000)

Salucci, Walter & Borriello, A&A 409, 53 (2003) Gentile et al., MNRAS 351, 903 (2004) Kuzio de Naray, McGaugh & de Blok, ApJ 676, 920 (2008)

A test case: ESO 116-G12

Cored halos the best fits

50 objects investigated NFW inconsistent

Density vs core radius

0.75

0.5

0.85

0.6

1.5 2 2.5 3

Po

R.

2. D.8

0.6

0.6

0.7

NFW

ESO 79-G14

Discrepant	points:	2σ	3σ	no. of points
Burkert		0	0	15
NFW		5	4	15
Moore		10	8	15
HI-scaling		6	3	15
MOND		3	1	15

DDO 47

DDO 47: NON CIRCULAR MOTIONS ?

Weak lensing

With a density profile we model the tangential shear Obtain the structural free parameters.

Same results as those obtained from RCs.

Burkert profile provides excellent fit, better than NFW.

Christiane Frigerio Martins

Dwarf spheroidal galaxy kinematics and spiral scaling laws: preliminary results

Attempt to investigate whether properties of DM halos around dSphs obey to well known scaling laws found for the mass distribution of Spirals

⇒ AN INTRIGUING PROPERTY

Preliminary results

we find similar p⁰ and r⁰ relationships <u>independently</u> whether the mass profiles are obtained from RCs or lensing data or from analysis of individual or coadded objects

* dSph halos are much denser, lie on the Spiral relationship

-22

 cm^{-3}

20

data can be reproduced by

existence of scaling relations between p⁰ and r⁰ over three orders of magnitude can rule out WDM

* DM relations cannot arise due to self-annihilation which would predict of narrow range in p⁰

Gilmore et al., ApJ 663, 948 (2007)

Salucci, CFM, Walker, Wilkinson, Gilmore, Koch (in prep)

A matter enigma

IT IS STRONGLY RELATED TO THE LUMINOUS MATTER

THERE IS A SOLID EMPIRICAL SCENARIO