A Universal Mass Profile for (Dwarf Spheroidal) Galaxies?

Matthew Walker – IoA, Cambridge

<u>With</u>

Jorge Peñarrubia - IoA Mario Mateo - U. Michigan Ed Olszewski - U. Arizona Stacy McGaugh - U. Maryland Wyn Evans - IoA Gerry Gilmore - IoA

Aquarius simulation (Springel et al.)

Meudon, 9 June 2010

Milky Way Satellites: Star Clusters vs. Galaxies

- Globular Clusters
 - Pressure supported
 - 10³⁻⁶ L_sun
 - No gas
 - <v> ~ 5-15 km/s
 - ~Single age
 - $R_{half} \sim 10 pc$
 - No Dark Matter
- dSph galaxies
 - Pressure supported
 - 10³⁻⁷ L_sun
 - No gas
 - <v> ~ 5-15 km/s
 - Extended Star formation

 $\bar{v^2}R$

 $M \sim \frac{G}{G}$

R_{half} ~ 100 pc
Dark Matter

Milky Way Satellites: Dwarf Spheroidal (dSph) Galaxies

- Lower limit of galaxy formation
 - Smallest: $r \sim 10^{1-3}$ pc
 - Faintest: L ~ 10^{3-7} L_{sun}
 - Darkest: $M/L \sim 10^{1-3}$ solar
 - Most(?) Metal-Poor
- Tests of Cold Dark Matter
 - Mass Profiles
 - ie., core vs cusp
 - Halo Mass Function
 Pick any two and solve for the third:
 - Dark matter
 - Baryon physics
 - dSph data

Diemand etal (2008); see also Springel etal (2008)

Data: Magellan Samples

Data: Velocity Dispersion Profiles for 'Classical' dSphs

3. dSph Masses

of radius R... B

dSph Masses: Kinematics with the Jeans Equation

<u>Assumptions</u>: Spherical symmetry, Dynamical equilibrium, Single (massless) stellar component, negligible binary motions

1) Collisionless Boltzmann Eq.

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} - \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$
2) Jeans Eq. (spherical)

$$\frac{1}{\nu} \frac{d}{dr} (\nu \bar{v}_r^2) + 2 \frac{\beta \bar{v}_r^2}{r} = -\frac{GM(r)}{r^2}$$
3) Solution in terms of observables

$$\sigma_p^2(R) = \frac{2}{I(R)} \int_R^{\infty} \left(1 - \beta \frac{R^2}{r^2}\right) \frac{\nu(r) \bar{v}_r^2 r}{\sqrt{r^2 - R^2}} dr$$
Free Parameters: normalization, r_scale, alpha, gamma, beta=constant

$$\gamma = 0 \quad -> \text{ Core} \qquad \gamma = \alpha = 1 \quad -> \text{ NFW Cusp}$$

dSph Masses: Free Parameters

dSph Masses: M(rhalf) is well-constrained

See also Peñarrubia etal 2007, Wolf etal 2009

dSph Masses: Simple Mass Estimator

Walker et al. (2009), see also Peñarrubia et al. (2008), Wolf et al. (2010)

$$\frac{1}{\nu} \frac{d}{dr} (\nu \bar{v_r^2}) + 2 \frac{\beta \bar{v_r^2}}{r} = -\frac{GM(r)}{r^2} \ . \ \ \Box$$

Isotropy, flat vdisp profile -->

$$M(r) = -\frac{r^2 \bar{v_r^2}}{G\nu} \frac{d\nu}{dr} = \frac{5r_{half} \sigma^2 \left(\frac{r}{r_{half}}\right)^3}{G\left[1 + r^2/r_{half}^2\right]}$$

eans Eq.

$$M(r_{half}) = \mu r_{half} \sigma^2$$

$$\mu \equiv 580 \ M_{\odot} \mathrm{pc}^{-1} \mathrm{km}^{-2} \mathrm{s}^{2}$$

dSph Masses: Simple Mass Estimator vs. MCMC

dSph Masses: Data for 28 MW Satellites

M	(r_{half})	=	$\mu r_{half} \sigma^2$

TABLE 1 DSph Structural Parameters, Velocity Dispersions and Estimated Masses*								
Object	$L_V \ [L_{V,\odot}]$	r_{half} [pc]	$\sigma_{V_0} \\ [\mathrm{km \ s^{-1}}]$	$\stackrel{M(r_{half})}{M_{\odot}}$	$\stackrel{\langle ho angle}{_{M_{\odot} { m pc}^{-3}}}$	Ref.**		
Carina Draco Fornax Leo I Leo II Sculptor Scutens	$\begin{array}{c} 2.4 \pm 1.0 \times 10^5 \\ 2.7 \pm 0.4 \times 10^5 \\ 1.4 \pm 0.4 \times 10^7 \\ 3.4 \pm 1.1 \times 10^6 \\ 5.9 \pm 1.8 \times 10^5 \\ 1.4 \pm 0.6 \times 10^6 \\ 4.1 \pm 1.0 \times 10^5 \end{array}$	$137 \pm 22 \\ 221 \pm 16 \\ 339 \pm 36 \\ 133 \pm 15 \\ 123 \pm 27 \\ 94 \pm 26 \\ 204 \pm 28 \\ 123 \pm 28 \\ 123 \pm 27 \\ 123 \pm 27 \\ 124 \pm 28 \\$	$\begin{array}{c} 6.6 \pm 1.2 \\ 9.1 \pm 1.2 \\ 11.7 \pm 0.9 \\ 9.2 \pm 1.4 \\ 6.6 \pm 0.7 \\ 9.2 \pm 1.1 \\ 7.0 \pm 1.2 \end{array}$	$\begin{array}{c} 3.4 \pm 1.4 \times 10^{6} \\ 1.1 \pm 0.3 \times 10^{7} \\ 2.7 \pm 0.5 \times 10^{7} \\ 6.5 \pm 2.1 \times 10^{6} \\ 3.1 \pm 0.9 \times 10^{6} \\ 4.6 \pm 1.7 \times 10^{6} \\ 1.1 \pm 0.4 \times 10^{7} \end{array}$	$\begin{array}{c} 3.2 \pm 1.2 \times 10^{-1} \\ 2.3 \pm 0.6 \times 10^{-1} \\ 1.6 \pm 0.3 \times 10^{-1} \\ 6.6 \pm 2.1 \times 10^{-1} \\ 4.0 \pm 1.2 \times 10^{-1} \\ 1.3 \pm 0.5 \\ 1.0 \pm 0.2 \times 10^{-1} \end{array}$	1,2 3,4 1,2 1,5 1,6 1,2 1,2		
Sextans UMi Rootes 1	$4.1 \pm 1.9 \times 10^{5}$ $2.0 \pm 0.9 \times 10^{5}$ $2.0 \pm 0.6 \times 10^{4}$	294 ± 38 150 ± 18 242 ± 21	7.9 ± 1.3 9.5 ± 1.2	$1.1 \pm 0.4 \times 10^{6}$ $7.8 \pm 2.2 \times 10^{6}$ $5.0 \pm 3.7 \times 10^{6}$	$1.0 \pm 0.3 \times 10^{-1}$ $5.5 \pm 1.5 \times 10^{-1}$	1,2		
Bootes 1 CVen I CVen II	$\begin{array}{c} 3.0 \pm 0.6 \times 10^{-1} \\ 1.0 \pm 0.8 \times 10^{3} \\ 2.3 \pm 0.3 \times 10^{5} \\ 7.9 \pm 3.6 \times 10^{3} \end{array}$	242 ± 21 51 ± 17 564 ± 36 74 ± 12	6.5 ± 2.0 10.5 ± 7.4 7.6 ± 0.4 4.6 ± 1.0	$\begin{array}{c} 3.9 \pm 3.7 \times 10^{6} \\ 3.3 \pm 3.3 \times 10^{6} \\ 1.9 \pm 0.2 \times 10^{7} \\ 9.1 \pm 4.2 \times 10^{5} \end{array}$	$\begin{array}{c} 1.0 \pm 0.6 \times 10^{-1} \\ 5.9 \pm 5.9 \\ 2.5 \pm 0.3 \times 10^{-2} \\ 5.3 \pm 2.5 \times 10^{-1} \\ 4.0 \pm 0.0 \\ 10^{-1} \end{array}$	3,8 3,9 3,10 3,10		
Coma Hercules Leo IV Leo V	$\begin{array}{c} 3.7 \pm 1.7 \times 10^{3} \\ 3.6 \pm 1.1 \times 10^{4} \\ 8.7 \pm 4.6 \times 10^{3} \\ 4.5 \pm 2.6 \times 10^{3} \end{array}$	77 ± 10 330 ± 63 116 ± 30 42 ± 5	4.6 ± 0.8 3.7 ± 0.9 3.3 ± 1.7 2.4 ± 1.9	$\begin{array}{c} 9.4 \pm 3.5 \times 10^{3} \\ 5.0 \pm 2.0 \times 10^{6} \\ 7.3 \pm 7.3 \times 10^{5} \\ 1.4 \pm 1.4 \times 10^{5} \end{array}$	$\begin{array}{c} 4.9 \pm 1.8 \times 10^{-1} \\ 1.7 \pm 0.9 \times 10^{-2} \\ 1.1 \pm 1.1 \times 10^{-1} \\ 4.5 \pm 4.5 \times 10^{-1} \end{array}$	$3,10 \\ 3,11 \\ 3,10 \\ 12,13$		
Leo T Segue 1 Segue 2 UMa I	$\begin{array}{c} 5.9 \pm 1.8 \times 10^4 \\ 3.3 \pm 2.1 \times 10^2 \\ 8.5 \pm 1.7 \times 10^2 \\ 1.4 \pm 0.4 \times 10^4 \end{array}$	178 ± 39 29 ± 7 34 ± 5 318 ± 45	7.5 ± 1.6 4.3 ± 1.2 3.4 ± 1.8 11.9 ± 3.5	$5.8 \pm 2.8 \times 10^{6} \\ 3.1 \pm 1.9 \times 10^{5} \\ 2.3 \pm 2.3 \times 10^{5} \\ 2.6 \pm 1.6 \times 10^{7} \\ \end{cases}$	$\begin{array}{c} 2.5 \pm 1.2 \times 10^{-1} \\ 3.0 \pm 1.8 \\ 1.3 \pm 1.3 \\ 2.0 \pm 1.2 \times 10^{-1} \end{array}$	3,10,14 3,15 16 3,8		
UMa II Willman 1	$4.0 \pm 1.9 \times 10^{3}$ $1.0 \pm 0.7 \times 10^{3}$	$\begin{array}{c} 140 \pm 25 \\ 25 \pm 6 \end{array}$	5.7 ± 1.4 4.3 ± 1.8	$\begin{array}{c} 2.6 \pm 1.4 \times 10^{6} \\ 2.7 \pm 2.3 \times 10^{5} \end{array}$	$2.3 \pm 1.2 \times 10^{-1}$ 4.1 ± 3.6	$3,10 \\ 3,8$		
AndII AndIX AndXV Cetus Sgr ^{***}	$\begin{array}{c} 9.3 \pm 2.0 \times 10^{6} \\ 1.8 \pm 0.4 \times 10^{5} \\ 7.1 \pm 1.4 \times 10^{5} \\ 2.8 \pm 0.9 \times 10^{6} \\ 1.7 \pm 0.3 \times 10^{7} \\ \end{array}$	1230 ± 20 530 ± 110 270 ± 30 590 ± 20 1550 ± 50	$9.3 \pm 2.7 \\ 6.8 \pm 2.5 \\ 11 \pm 6 \\ 17 \pm 2 \\ 11.4 \pm 0.7 \\ 15.0 \pm 2.5 \\ 11.4 \pm 0.7 \\ 15.0 \pm 2.5 \\ 11.4 \pm 0.7 \\ 15.0 \pm 2.5 \\ 10.0 \pm 0.5 \\ $	$\begin{array}{c} 6.2 \pm 3.6 \times 10^{7} \\ 1.4 \pm 1.1 \times 10^{7} \\ 1.9 \pm 0.2 \times 10^{7} \\ 9.9 \pm 2.3 \times 10^{7} \\ 1.2 \pm 0.6 \times 10^{8} \\ 4.0 \pm 1.0 \times 10^{7} \end{array}$	$7.9 \pm 4.5 \times 10^{-3}$ $2.3 \pm 1.7 \times 10^{-2}$ $2.3 \pm 2.5 \times 10^{-1}$ $1.1 \pm 0.2 \times 10^{-1}$ $7.5 \pm 1.0 \times 10^{-3}$ $4.0 \pm 0.2 \times 10^{-1}$	17,18 19 20,21 17,22 23,24		
rucana	$5.6 \pm 1.6 \times 10^{\circ}$	274 ± 40	15.8 ± 3.6	$4.0 \pm 1.9 \times 10^{\circ}$	$4.6 \pm 2.2 \times 10^{-2}$	25,26		

* Estimated using Equation 11

** References: 1) Irwin & Hatzidimitriou (1995); 2) Walker et al. (2009c); 3) Martin et al. (2008); 4) Walker et al. (2007b); 5) Mateo et al. (2008); 6) Koch et al. (2007a); 7) Walker et al. in preparation; 8) Martin et al. (2007); 9) Koch et al. (2009); 10) Simon & Geha (2007); 11) Aden et al. (in prep); 12) Belokurov et al. (2008); 13) Walker et al. (2009a); 14) Irwin et al. (2007); 15) Geha et al. (2009a); 16) Belokurov et al. (2009); 17) McConnachie & Irwin (2006); 18) Côté et al. (1999); 19) Chapman et al. (2005); 20) Ibata et al. (2007); 21) Letarte et al. (2009); 22) Lewis et al. (2007); 23) Ibata & Irwin (1997); 24) Majewski et al. (2003); 25) Saviane et al. (1996); 26) Fraternali et al. (2009)

** Structural parameters refer to the bound central region of Sgr (see Majewski et al. 2003).

dSph Masses: M(rhalf) vs. rhalf

dSph Masses: Velocity Dispersion vs. Size A new scaling relation for dSphs

dSph Masses: A Minimum Mass for Galaxy Formation?

dSph Masses: A Minimum Mass for Galaxy Formation?

dSph Masses: M300 vs. M(rhalf)

dSph Masses: Implications

- No empirically-determined minimum mass for galaxy formation -- mass profiles line up as far as each goes, but some may have r<<300pc, and therefore M << 10⁷ Msun
- Large central densities for all dSphs?

4. A Brief History of dSph 'Universality'

THE ASTROPHYSICAL JOURNAL, 266:L11–L15, 1983 March 1 © 1983. The American Astronomical Society. All rights reserved. Printed in U.S.A.

ACCURATE RADIAL VELOCITIES FOR CARBON STARS IN DRACO AND URSA MINOR: THE FIRST HINT OF A DWARF SPHEROIDAL MASS-TO-LIGHT RATIO¹

MARC AARONSON Steward Observatory, University of Arizona Received 1982 August 6; accepted 1982 October 8

ABSTRACT

Velocities accurate to $\sim 1 \text{ km s}^{-1}$ have been obtained with the Multiple Mirror Telescope and echelle spectrograph for three carbon stars in the Draco dwarf galaxy and one carbon star in the Ursa Minor dwarf. These observations demonstrate that measurement of radial velocities having such high precision is quite feasible for stars as faint as $V \sim 18$ mag. The data presented here are of importance for understanding the dynamical history of the dwarf systems. In addition, they provide a first and tantalizing hint of the velocity dispersion in a dwarf spheroidal and suggest that Draco may have a mass-to-light ratio an order of magnitude greater than that found for galactic globulars. If confirmed, this result would support the existence of a massive halo about the Galaxy. It would furthermore rule out the possibility that neutrinos could provide a solution to the missing mass problem, if the dark matter on small and large scales is similar.

Subject headings: galaxies: general - mass-luminosity relation - stars: carbon

A Brief History of dSph 'Universality'

A Brief History of dSph 'Universality'

A Brief History of dSph 'Universality'

Core vs. Cusp: Stellar Dynamics

Collisionless Boltzmann Equation:

$$rac{\partial f}{\partial t} + \mathbf{v}.rac{\partial f}{\partial \mathbf{r}} -
abla \Phi.rac{\partial f}{\partial \mathbf{v}} = 0$$

Distribution function

F(E,L) = w(E)g(E,L) Gerhard (1991)

$$g(E,L) = egin{cases} c + (1-c)(1-(1-x^2))^a & ext{tangential} \ c + (1-c)(1-x^2)^a & ext{radial} \end{cases}$$

$$x(E,L) = rac{L}{L_0 + L_{ ext{circ}}(E)}$$

$$x(E,L) = rac{L}{L_0 + L_{
m circ}(E)}$$

 $\Sigma_*(R) = 2 \int_R^\infty \frac{\rho_*(r) r \mathrm{d}r}{\sqrt{r^2 - R^2}}$

Free parameters: a, c, L_0

Free parameters: rho_0 , r_s , alpha, beta, gamma

 $ho_{
m halo}(r) = rac{
ho_0}{\left(rac{r}{r_{
m s}}
ight)^\gamma \left(1 + \left(rac{r}{r_{
m s}}
ight)^{1/lpha}
ight)^{lpha(eta-\gamma)}}$

M. Wilkinson etal (in prep)

Core vs. Cusp: Stellar Dynamics

Constructing the line of sight velocity distributions

- Fit surface brightness profile
- Use method by P. Saha to invert integral equation for DF:

$$\begin{split} \rho(\Phi) &= \frac{4\pi}{r^2} \int_0^{\Phi} w(E) \, \mathrm{d}E \int_0^{L_{\max}} \frac{g(E,L)L \, \mathrm{d}L}{\sqrt{2(\Phi-E) - L^2/r^2}} \\ L_{\max} &= \sqrt{2(\Phi-E)}r \end{split}$$

- Project to obtain LOS velocity distribution on a grid of and $v_{\rm los}$
- Spline to required radii for observed stars, and convolve with individual velocity errors

M. Wilkinson etal (in prep)

Core vs. Cusp: Tests on artificial data M. Wilkinson etal. in prep

Substructure of Substructure: Segue 2 in a stream?

