

### Determination of the local Dark Matter density in our Galaxy

Markus Weber 8<sup>th</sup> June 2010 Karlsruhe Institute of Technology



#### Introduction

## Outline

### Introduction

- Parameterisation of the Galactic matter components
- Astronomical measurements (constraints)
  - Total matter density
  - Local rotation velocity
  - Rotation curve
  - Height of the interstellar gas
  - Mass within 60 kpc
  - Surface density
- Local dark matter density





# Why is the local DM density important?

- DM content of the Universe  $\approx$  23 %
- Nature of DM unknown
- weakly interacting, massive particle (WIMP) well-motivated DM candidate





# Why is the local DM density important?

important for direct search for DM

Introduction

 $\rightarrow$  counting rate depends on local DM density





# How can the local DM density be estimated?

- velocities of stars and gas  $\propto$  gravitational potential  $\propto$  total matter density
- measurement of velocities strongly depends on the standard frame of rest
- rotation velocity defines the mass inside the orbit (if halo spherical)
- assume circular rotation:

$$\frac{v^2}{r} = G \cdot \frac{M}{r^2} = \frac{G}{r^2} \cdot \int_0^r \rho(r) dr'$$



## Visible matter density



### **Galactic bulge**

$$\rho_b(r,z) = \rho_{b,0} \cdot \left(\frac{\tilde{r}}{r_{0,b}}\right)^{-\gamma_b} \cdot \left(1 + \frac{\tilde{r}}{r_{0,b}}\right)^{\gamma_b - \beta_b} \exp\left(-\frac{\tilde{r}^2}{r_t^2}\right)$$
$$\tilde{r}^2 = \sqrt{x^2 + y^2 + (z/q_b)^2}$$

4



# Visible matter density



Galactic disc (exponential decrease)

$$\rho_d(r, z) = \rho_{d,0} \cdot exp(-r/r_d) \cdot exp(-z/z_d)$$



## **Dark Matter Density**

### **DM** halo profile

$$\rho_{\chi}(r) = \rho_{\odot, \text{DM}} \cdot \left(\frac{\tilde{r}}{r_{\odot}}\right)^{-\gamma} \cdot \left[\frac{1 + \left(\frac{\tilde{r}}{a}\right)^{\alpha}}{1 + \left(\frac{r_{\odot}}{a}\right)^{\alpha}}\right]^{\frac{\gamma-\beta}{\alpha}}$$
$$\tilde{r} = \sqrt{x^{2} + \frac{y^{2}}{\epsilon_{xy}^{2}} + \frac{z^{2}}{\epsilon_{z}^{2}}}$$

• 
$$\rho_{\chi}(r) \propto r^{-\gamma} \ (r \ll a) \rightarrow \text{galactic centre}$$
  
•  $\rho_{\chi}(r) \propto r^{-\alpha} \ (r \approx a)$   
•  $\rho_{\chi}(r) \propto r^{-\beta} \ (r \gg a) \rightarrow \text{outer galaxy}$ 



## **Dark Matter Density**







cored

| Profile | α   | β   | γ   | a [kpc] |
|---------|-----|-----|-----|---------|
| NFW     | 1.0 | 3.0 | 1.0 | 20.0    |
| PISO    | 2.0 | 2.0 | 0.0 | 5.0     |



- Total matter density at the Sun
- Local rotation velocity
- Velocity distribution in the Galactic disc
- Surface density at the Sun
- Mass within 60 kpc
- Height of the interstellar gas



# Total matter density at the Sun

$$egin{aligned} & 
ho_{\odot, ext{tot}} &= & 
ho_{\odot, ext{vis}} + 
ho_{\odot, ext{DM}} \ & & 
ho_{\odot, ext{00}} + 0.01 \ ext{M}_{\odot} \ ext{pc}^{-3} \ & = & 0.102 \pm 0.01 \ ext{M}_{\odot} \ ext{pc}^{-3} \end{aligned}$$

- so-called "Oort limit"
- from vertical motion of stars (Holmberg & Flynn (2004) [0405155])



# Rotation velocity at the Sun

$$\frac{v_{\odot}}{r_{\odot}} = 29.45 \pm 0.15 \text{ km s}^{-1} \text{ kpc}^{-1}$$

obtained from the observation of Sgr<sup>\*</sup> A
 → probably the centre of the MW (*Reid & Brunthaler (2004)* [0808.2870])

$$r_{\odot} = 8.33 \pm 0.35$$
 kpc

 obtained from the motion of stars around Sgr<sup>\*</sup> A → Reid & Brunthaler (2004) [0808.2870]

$$v_{\odot} = 244 \pm 10.2 \text{ km s}^{-1}$$



## **Rotation curves**

- velocities of interstellar gas and stars are important tracers for the gravitational potential of the galaxy
- measurement of the redshift of stars, atomic hydrogen and carbon monxide in the galactic disc





# Inner rotation curve of the Milky Way

### **Tangent point method**

- assuming that gas rotates on circular orbit
- line-of-sight tangential to gas orbit
- measurement of the redshift  $\rightarrow v_{rot}$





# Outer rotation curve of the Milky Way

### **Merrifield method**

- no tangent point to rotation orbit
- assuming that gas rotates on circular orbit

$$\frac{v_{los}}{\sin(l)\cos(b)} = \frac{r}{r_{\odot}}v(r) - v_{\odot} = constant$$

- how to find galactocentric distance
- height of interstellar gas  $\propto$  galactocentric distance

$$h_b = 2 \arctan\left(\frac{h_z/2r_\odot}{\cos(l) + \sqrt{(r/r_\odot)^2 - \sin^2(l)}}\right)$$



# Outer rotation curve of the Milky Way

### **Merrifield method**

- need results from gas survey
- fit  $h_z/r_{\odot}(r/r_{\odot})$
- measuring the height *h<sub>z</sub>* instead of the distance r





# Rotation curve of the Milky Way

8 independent data sets

### measurements averaged in 18 radial bins





# **Rotation curve of the Milky Way**



### **Maser interferometry**

- VLBI = Very Long Baseline Interferometry
- Measurement of the distance to an H<sub>2</sub>O maser sources for a long time
   → accurate distance and velocity
- strong constraint for outer rotation curve



# Surface density at the Sun

$$\Sigma (|z| < 1.1 \text{ kpc}) = \int_{-1.1 \text{ kpc}}^{1.1 \text{ kpc}} \rho(z') dz'$$

$$= \frac{1}{2\pi G} \cdot \int_{0}^{1.1 \text{ kpc}} \Delta \Phi(r, \varphi, z') dz' \qquad (\Delta \Phi = 4\pi G \rho(r))$$

$$= \frac{1}{2\pi G} \cdot \int_{0}^{1.1 \text{ kpc}} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \varphi^2} + \frac{\partial^2 \Phi}{\partial z'^2}\right) dz'$$

$$= \frac{1}{2\pi G} \cdot \left(\frac{\partial \Phi}{\partial z} + \int_{0}^{1.1 \text{ kpc}} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \varphi^2}\right) dz'$$

$$\approx \frac{1}{2\pi G} \cdot \left(\frac{\partial \Phi}{\partial z}\right) \text{ (if RC is flat)}_{\text{Local Dark Matter density in our Galaxy}}$$



# Surface density: Visible matter

- counting experiments of visible objects in the vicinity of the Sun ( $\approx$  200 pc)
- used to constrain the contribution of luminous matter at the Sun

| Contribution     | Surface density $[M_{\odot} \text{ pc}^{-2}]$ | Reference             |  |
|------------------|-----------------------------------------------|-----------------------|--|
| Visible stars    | 35 ± 5                                        | Gilmore et al. (1989) |  |
|                  | 27                                            | Gould (1995)          |  |
|                  | 30                                            | Zheng et al. (2001)   |  |
| Stellar remnants | 3 ± 1                                         | Mera (1998)           |  |
| Interstellar gas | 8 ± 5                                         | Dame (1993)           |  |
|                  | 13 - 14                                       | Olling et al. (2001)  |  |
| $\Sigma_{vis}$   | 35-58                                         |                       |  |



## **Total surface density**

 determined from the vertical motion of gas and stars

$$\Sigma(z < 1.1 \text{kpc}) = 74 \pm 6 \text{ M}_{\odot} \text{pc}^{-2}$$

(Holmberg & Flynn (2004) [0405155])





## Mass within 60 kpc

- Sloan Digital Sky Survey (SDSS)
- observation of about 2400 halo stars
- circular rotation curve
- $M(60 \text{ kpc}) = 4.0 \pm 0.7 \cdot 10^{11} \text{ M}_{\odot}$



(Xue et al. () [0801.1232])



# Gas flaring

$$f(z) = \rho_0 \cdot \exp\left(-\frac{\Phi(z)}{\sigma^2}\right)$$

- ρ<sub>0</sub> = density at the Galactic disc
- $\sigma$  = velocity dispersion of the gas
- gas flaring needs DM component in the Galactic disc



(Kalberla et al. (2007) [0704.3925])





## **Parameters:**

| Free Parameters |                         |                           |               |                             |  |  |  |
|-----------------|-------------------------|---------------------------|---------------|-----------------------------|--|--|--|
|                 | Parameter               | Symbol                    | Value         | Unit                        |  |  |  |
| Halo            | Local DM density        | $ ho_{\odot,\mathrm{DM}}$ | -             | GeV/cm <sup>-3</sup>        |  |  |  |
| Halo            | Scale Parameter         | а                         | -             | kpc                         |  |  |  |
| Disc            | Density at GC           | $ ho_{ m d,0}$            | -             | GeV cm <sup>-3</sup>        |  |  |  |
| Disc            | scale length            | r <sub>d</sub>            | -             | kpc                         |  |  |  |
| Constraints     |                         |                           |               |                             |  |  |  |
| All             | Mass inside 60 kpc      | M <sub>R&lt;60kpc</sub>   | $4.0 \pm 0.7$ | $10^{11} \ M_{\odot}$       |  |  |  |
| Local           | Rotation speed Sun      | V <sub>☉</sub>            | 244± 10       | km s <sup>−1</sup>          |  |  |  |
| Local           | Total Surface Density   | $\Sigma_{ z <1.1}$        | 71 ± 6        | $M_{\odot} \text{ pc}^{-2}$ |  |  |  |
| Local           | Visible Surface Density | $\Sigma_{vis}$            | 48 ± 9        | $M_{\odot} \text{ pc}^{-2}$ |  |  |  |
| Local           | Mass Density            | $ ho_{tot}$               | 0.102 ± 0.01  | $M_{\odot} \text{ pc}^{-3}$ |  |  |  |





$$\chi^2 = \sum \frac{(x - \bar{x})^2}{\sigma^2}$$

- minimization using MINUIT
- large correlation between visible and dark matter density





# **Rotation curve of the Milky Way**

- density distribution at the Galactic centre dominated by the visible matter
- good description at the inner galaxy
- poor description at the outer galaxy





## Potential & gas flaring





## Result

- $\rho_{\odot,\mathrm{DM}}$  = 0.3 ± 0.1 GeV cm^{-3}
  - $\rightarrow$  in agreement with Salucci et al. (2010) ([1003.3101])
- flattened halo ( $\epsilon_z=0.7) 
  ightarrow 
  ho_{\odot,{
  m DM}} pprox 0.7~{
  m GeV}~{
  m cm}^{-3}$
- large uncertainty because of uncertain determination of local visible matter
- vertical gravitational potential well described
- outer rotation curve 🖞
- height of the interstellar gas distribution  $\frac{1}{2}$
- minimization with Markov Chain algorithms yield more accurate local density ([arXiv:0907.0018])
  - $ightarrow 
    ho_{\odot,\mathrm{DM}} = 0.389 \pm 0.025~\mathrm{GeV~cm^{-3}}$
  - $\rightarrow$  unknown reason for discrepancy so far



# **Rotation curve of the Milky Way**



Results

- introduction of 2 DM rings describes change of slope at r ≈ 10 kpc
- inner ring at r ≈ 4 kpc
   → ring of gas and dust
- outer ring at r ≈ 13 kpc → ghostly ring of stars (Monoceros ring)

$$\Rightarrow 
ho_{\odot, \mathrm{DM}} \lesssim 1.0 \ \mathrm{GeV} \ \mathrm{cm}^{-3}$$



# **Rotation curve of the Milky Way**

- DM rings expected from infall of dwarf galaxies
  - $\rightarrow$  dwarf galaxies are disrupted by tidal forces
  - $\rightarrow$  circular tidal streams are formed
- rings could be part of a dark disc of the MW



(Penarrubia et al. (2004) [0410448]



## Potential & gas flaring





# **Density and Mass profile**



- $\bullet~$  Total mass of the Galaxy  $M_{tot} \approx 8 \cdot 10^{11}~M_{\odot}$
- Ring masses:  $M_{I\!R}=7.5\cdot10^9~M_{\odot},\,M_{O\!R}=4\cdot10^{10}~M_{\odot}$
- Ring masses about 5% of total mass



#### Summary

## Summary

- Rotation curve, surface density and height of the interstellar gas determine gravitational potential
- 2 Rotation curve shows change of slope at about 10 kpc
- ③  $\rho_{\odot,DM} = 0.3 \pm 0.1 \text{ GeV cm}^{-3}$ (oblate halo → 0.7 GeV cm<sup>-3</sup>) (*Weber & de Boer (2009)* [0910.4272])
- Ringlike DM substructure in the disc explains rotation curve & height of the Galactic gas distribution
- OM rings consistent with surface density at the Sun
- 6  $ho_{\odot,\rm DM}$  up to 1.0 GeV cm<sup>-3</sup>

# Thank you!

# BACKUP





- cross section ∝ A<sup>2</sup>
   → heavy nuclei
- recoil energy  $\approx$  keV
- annual modulation of the signal
- counting rate: 1-10 events / kg / year



# Oort constants (A and B)

### most precise determination

$$A \equiv -\frac{1}{2} \left[ \frac{\partial v_{\varphi}}{\partial r} - \frac{v_{\varphi}}{r} + \frac{1}{r} \frac{\partial v_{r}}{\partial \varphi} \right]_{r=r_{\odot}}$$
$$B \equiv -\frac{1}{2} \left[ \frac{\partial v_{\varphi}}{\partial r} + \frac{v_{\odot}}{r_{\odot}} - \frac{1}{r} \frac{\partial v_{r}}{\partial \varphi} \right]_{r=r_{\odot}}$$

- A describes azimuthal shear
- B describes local vorticity



# Oort constants (C and K)

### most precise determination

$$C \equiv -\frac{1}{2} \left[ \frac{v_r}{r} - \frac{\partial v_r}{\partial r} + \frac{1}{r} \frac{\partial v_{\varphi}}{\partial \varphi} \right]_{r=r_{\odot}}$$
  
$$K \equiv -\frac{1}{2} \left[ -\frac{v_r}{r} - \frac{\partial v_r}{\partial r} - \frac{1}{r} \frac{\partial v_{\varphi}}{\partial \varphi} \right]_{r=r_{\odot}}$$

- C describes radial shear
- K describes local divergence