Mass profiles and concentrations in X-ray luminous galaxy clusters

Stefano Ettori (INAF-OA Bologna)

Galaxy clusters & cosmology

Matter dominates the dynamics at z>1

Dark energy (with equation of state $w=P/\rho$) becomes relevant at z<2 Radiation was the most important component before $z_{eq}=2e4\Omega_m$

Observable Properties of Clusters

Galaxy clusters & cosmology

- Concentration of 100–1000 galaxies
- Velocity dispersion (observed): $\sigma_v \sim 1000$ km s⁻¹
- Size: R ~1 Mpc → the crossing time (lower limit to the relaxation time) is t_{cross} = R/σ_v ~1 Gyr < t_H = 9.8 h⁻¹ Gyr → clusters must be dynamically relaxed at the present
- Mass: assuming virial equilibrium $\rightarrow M \simeq \frac{R\sigma_v^2}{G} \simeq \left(\frac{R}{1}\right) \left(\frac{\sigma_v}{10^3}\right)^2 10^{15} h^{-1} M_{\odot}$
- Mass components: f_{baryons}≈ 10–15% (f_{gas}≈10%, f_{gal}≈ a few%) ⇒ f_{DM}≈ 80–90%
 Intra-Cluster Gas: T_X ≈ 3–10 keV, n_{gas}≈ 10⁻³ atoms/cm³, Z ~ 0.3 solar ⇒ fully ionized plasma, free-free bremsstrahlung + lines emission: L_X ~ n_{gas}²Λ(T) V ~ 10⁴³–10⁴⁵ erg/s

$$k_B T \simeq \mu m_p \sigma_v^2 \simeq 6 \left(\frac{\sigma_v}{10^3}\right)^2 \, \mathrm{keV}$$

X-ray total mass

The ICM is a fluid because the time scale of elastic/ Coulomb collisions between ions & e⁻ $(t_{coulomb} \propto T^{3/2}/n)$ is $<< t_{cooling} (\propto T^{1/2}/n)$ & $t_{heating}$

ICM is in hydrostatic equilibrium:

 $t_{sound} (\propto R/T^{1/2}) < t_{age} \approx H_0^{-1}$

X-ray total mass

Total mass from X-ray is determined by assuming **1. spherical symmetry**, **2. hydrostatic equilibrium**

X-ray total mass

Total mass from X-ray is determined by assuming **1. spherical symmetry**, **2. hydrostatic equilibrium**

$$M_{tot}(< r) = -\frac{kT_{gas}(r) r}{G\mu m_p} \left(\frac{\partial \ln n_{gas}}{\partial \ln r} + \frac{\partial \ln T_{gas}}{\partial \ln r}\right)$$

$$M_{tot}(< r) \propto r \times T_{gas}(r) \times (-\alpha_n - \alpha_T)$$

 $\alpha_{n} \sim -2/-2.4$ $\alpha_{T} \sim 0/-0.8$

R₂₅₀₀ (~0.3 R₂₀₀ ~CXO limit)

ICM at R₂₀₀: S_b of simulated clusters

R₅₀₀

cases)

R₂₀₀

S_b at R₂₀₀: Observed clusters

Vikhlinin et al. (99): β~0.8 and larger by ~0.05 of the global fit value; see also Neumann 2005. Both use a sample of nearby clusters observed with ROSAT/ PSPC

> Study of S_b at r >0.7 R₂₀₀ in a sample of high-z (z>0.3) objects with CXO (Ettori & Balestra 09)

Slope of S_b : at 0.7 R₂₀₀: -3.9 ± 0.7, at R₂₀₀: -4.3 ± 0.9

1.00

Note: $S_b \sim r^{1-6\beta} \dots \beta = 0.8/0.9$

T_{gas} at **R**₂₀₀: Observed clusters

X-ray total mass: the observables

On the Temperature profile

Changing I = Src/Bkg between 0 and 1 (Leccardi & Molendi 2008)

T_{gas} **profile**: *future prospects*

Estimate of the X-ray M_{tot}

HEE with functional forms of T and n_{gas} (e.g. β-model) & then fit with mass models (e.g. NFW)
 Buote, Pointecouteau, Vikhlinin (& high-z obj with T=const)

 ✓ Use of mass models (e.g. NFW) by fitting either T_{deproj}
 or T_{xspec} from inversion of HE Fabian/Allen, Ettori

direct application of HEE on deprojected T and n_{gas}
 Ettori (and others...)

Integral of HEE from deprojected spectra
 Nulsen (pioneering work in 1995 with Hans on Virgo)

Estimate of the X-ray M_{tot}

To summarize: two methods

model-dependent forward

derivable

model-independent backward

smooth profiles

Pro

not need for parameters

Contra

radial shape imposed need many parameters (e.g. Vikhlinin 05: 10 in n_{gas}, 9 in T_{gas}) degenaracy radial profiles often not smooth enough, derivatives problematic

X-ray total mass in 7 steps

Step 1: define a grid in {c, rs} Step 2: define a functional form for $M(\langle r) = K * f(x) * r_s^3 * m(c)$ where m(c) = $\delta/3 * c^3 / (\log(1+c) - c/(1+c))$ $f(x) = \log(x + \operatorname{sqrt}(1+x^2)) - x/ \operatorname{sqrt}(1+x^2)$ [Isothermal] $= \log(1+x) - x/(1+x)$ [NFW] $= \dots$

Step 3: at each resolved r, estimate dP = -M/r² *n_e*dr **Step 4:** define P_{out} **Step 5:** P(r) = P_{out} - Sum(Reverse(dP)) **Step 6:** T_{fit} = P(r) / n_e **Step 6bis:** project T_{fit} in the observed annulus (e.g., with Mazzotta's rule) **Step 7:** χ^2 (c, rs) = Sum((T_{fit} - T_{xspec})² / err²)

Structure of CDIM halos (Navarro, Frenk, White 1996, 1997)

The **NFW profile** is an approximation to the equilibrium configuration produced in simulations of collisionless DM particles

$$\frac{\rho_{DM}}{\rho_0} = \left(\frac{r}{r_s}\right)^{-1} \left(1 + \frac{r}{r_s}\right)^{-2}$$

$$\rho_0 = \rho_c \delta_c$$

$$\delta_c = \frac{200}{3} \frac{c^3}{\ln(1+c) - c/(1+c)}$$

$$R_{200} = M_{200} / (\rho_c V_{200}) = c \times r_s$$

X-ray mass: central density slope

Schmidt & Allen 07: 27 out of 34 clusters observed with Chandra prefer NFW vs isothermal sphere.

Combining the χ^2 : $\alpha = 0.88 \pm 0.3$ (95% c.l.)

The sample for c-M_{DM} (from Leccardi & Molendi 2008)

44 X-ray luminous galaxy clusters, relaxed (=CC) & not (=NCC), observed with *XMM-Newton* in the z-range 0.1–0.3

The sample

We have extended the LM08 spectral analysis with an analysis of the XMM S_b to recover n_{qas}

The analysis

We have extended the LM08 spectral analysis with an analysis of the XMM S_b to recover n_{gas} We use $n_{gas} \& T_{gas}$ +NFW to constrain { r_s ,c}

$$M_{\rm DM}(< r) = M_{\rm tot}(< r) - M_{\rm gas}(< r) = 4\pi r_{\rm s}^3 \rho_{\rm s} f(x),$$

$$\rho_{\rm s} = \rho_{c,z} \frac{200}{3} \frac{c^3}{\ln(1+c) - c/(1+c)}$$

$$f(x) = \ln(1+x) - \frac{x}{1+x}$$
(1)

But do we know the systematics in the estimates of M_{tot} in X-ray galaxy clusters ?

Evrard, Metzler, Navarro 96; Schindler 96; Bartelmann & Steinmetz 96; Balland & Blanchard 97; Kay et al. 04; Rasia, SE et al. 06; Hallman et al. 06; Nagai, Vikhlinin, Kravtsov 07; *Meneghetti, Rasia, SE et al. 2010*

X-ray total mass: results

X-ray M_{est} underestimates M_{true} by 10-45 %

~ half of the error budget comes from neglecting gas motions > inhomogeneities in T map affect M_{tot} by 10-15 %

X-ray total mass: results

X-ray M_{est} underestimates M_{true} by 10-45 %

half of the error budget comes from neglecting gas motions
 inhomogeneities in T map affect M_{tot} by 10-15 %

→ poor contraints on n_{gas} from β-model; due to the limited radial interval over which the fit is done, β / $c_{\rm NFW}$ are always lower / higher than the values measured from fit of $\rho_{\rm gas}$ up to R₂₀₀

X-ray vs **lensing mass:** *simulations*

M_X / X-MAS & M_{lens} / SkyLens both convolve hydro simulations with observational setup

> (work with E. Rasia & M. Meneghetti; see also Nagai, Kravtsov, et al.)

X-ray vs **lensing mass:** *simulations*

X-ray vs lensing mass: simulations

X-ray total mass: MS2137

The case of MS2137

(Donnarumma et al. 2008)

X-ray vs Optical mass

$$M_{X} \approx M_{\text{lensing}} \text{ within 15\% implies}$$

$$\frac{G M_{X}}{r^{2}} = -\frac{d(P_{therm} + P_{NO-therm})}{dr} \frac{1}{\rho_{gas}}$$

$$P_{\text{NO-therm}} \approx 0$$

Moreover, the difference btw M_X and true Mass cannot be larger than ~20% as proved in cosmological studies [e.g. $f_{bar} = (M_{gas} + M_{star})/M_{tot} = \Omega_b / \Omega_m$] & hydrodynamical simulations...

Conclusions on estimate of the X-ray M_{tot}

• Hydrostatic equilibrium holds locally: look for relaxed regions also in merging systems

• At least two main ways (one *forward*, one *backward*) to apply HEE: pro/contra, no systematic is evident btw them, not thermalized ICM is missed (but see good agreement btw X-ray/lensing data)

- (*Method 1*) (de)projected data +HEE +NFW +fit T(r): ~15-20% relative errors on c₂₀₀ & M₂₀₀
- (*Method 2*) ... +functional form for n_{gas}(r) +T₀:
 ~20% relative errors

The c- M_{DM} relation: systematics

Dataset	$(\hat{c}_{200}-c_{200})/c_{200}$	$(\hat{M}_{\rm DM}-M_{\rm DM})/M_{\rm DM}$	$(\hat{f}_{\mathrm{gas}} - f_{\mathrm{gas}})/f_{\mathrm{gas}}$
Method 2 M2 T _{3D} fit n _{gas}	-0.013 +0.010 -0.048 +0.001	$+0.008 \\ -0.017 \\ -0.036 \\ +0.011$	+0.036 +0.009 +0.024 +0.000
P_{out}	-0.011	+0.030	-0.014
at R ₂₀₀	(-0.048, +0.010)	(-0.036, +0.030)	(-0.014, +0.036)
Method 2	_	-0.015	+0.035
M2	_	-0.018	+0.010
T_{3D}	_	-0.046	+0.025
fit n_{gas}	_	+0.012	-0.008
$P_{\rm out}$	_	+0.028	-0.013
at R_{500}	_	(-0.046, +0.028)	(-0.013, +0.035)
Method ?	_	-0.073	+0.032
M2	_	-0.013	+0.002
Tan	_	-0.059	+0.028
fit n _{gas}	_	+0.004	+0.000
Pout	_	+0.020	-0.009
at R ₂₅₀₀	_	(-0.073, +0.020)	(-0.009, +0.032)

The c-M_{DM} relation: $\sigma_8 - \Omega_m$

Concentration [$\sim M_{200}^{1/3}/(r_s \rho_{c,z}^{1/3})$] depends on the halo mass growth history (function of $\sigma_8 \& \rho_{c,z}$) and needs N-body simulations to be described as function of (M,z)

The c-M_{DM} relation: $\sigma_8 - \Omega_m$

Dotted lines: Eke et al. (01) for a given Λ CDM at z=0 (from top to bottom: σ_8 =0.9 and 0.7).

Shaded regions: Maccio' et al. (08, see Bullock et al. 01) for WMAP-1, 5 and 3 years (from the top to the bottom, respectively).

Dashed lines (thin: z=0.1, thick: z=0.3) indicate the best-fit range at 1 σ in a WMAP-5 yrs cosmology from Duffy et al. (08)

Scatter in the sample $\sigma_{tot} \sim 0.14 \ (\sigma_{stat} \sim 0.09)$ LEC: $\sigma_{tot} \sim 0.08 \ (\sigma_{stat} \sim 0.03)$

NOTE: LEC≈CC … HEC≈mergers (see e.g. Leccardi et al. 2010)

Combining {c, M_{DM} , f_{gas} }: $\sigma_8 - \Omega_m$

• We constrain (σ_8, Ω_m) by comparing our estimates of (c_{200}, M_{200}) to the predictions tuned from CDM simulations (*black contours*)

 We consider both
 systematics (e.g. different T profiles; fitted n_{gas}; two methods:
 ~5%) in our measurements &
 scatter from numerical
 predictions (~20%, e.g. Neto et al. 07)

• We add constraints from f_{bar} (*red contours*).

Gas mass fraction

To constrain the cosmological model

 $\Omega_{\rm m} + \Omega_{\Lambda} + \Omega_{\rm k} = 1$

We combine a **dynamical** and a **geometrical** method (see also Allen et al, Blanchard et al., Ettori et al, Mohr et al) :

- 1. baryonic content of galaxy clusters is representative of the cosmic baryon fraction $\Omega_{\rm b}$ / $\Omega_{\rm m}$ (White et al. 93)
- 2. f_{gas} is assumed constant in cosmic time in very massive systems (Sasaki 96, Pen 97)

The cosmological dependence $f_{gas}(\langle R_{500} \rangle) = M_{gas}/M_{tot} \propto n_{gas}R^3/R \propto d_{ang} (\Omega_m, \Omega_\Lambda, w)^{3/2}$

500 relaxed hot (T>5 keV) obj with f_{gas} estimate precise at 5% level provides a FoM_{DETF} [~1/ ($\sigma_{w0} \sigma_{wa}$), w=w₀+w_a(1-a)] ~**15-40** (*Rapetti et al. 08*), comparable to:

ground-based SNIa ... 8-22 Space-based SNIa ... 19-27 Ground-based BAO ... 5-55 Space-based BAO ... 20-42 Space-based clusters cts ... 6-39

The c-M_{tot} relation: $\sigma_8 - \Omega_m$

Combining {c, M_{DM}, f_{gas}}: conclusions

• We demonstrate that analysis in the {c, M_{DM} , f_{gas} } plane represent a mature & competitive technique to constrain { σ_8 , Ω_{m_1} (w)}

• Our results depend (~20%) on the models adopted to relate the properties of the DM halos to the background cosmology. A more detailed analysis of the output of larger sets of cosmological numerical simulations is requested to provide the needed calibration of massive (>1e14 Msun) DM halos as function of { σ_8 , Ω_m , z} for more definitive & robust results

Combining {c, M_{DM}, f_{gas}}: conclusions

• Impact of WDM:

(1) the change in core density and concentration due to the lower formation redshift in WDM models;
(2) the suppression of density cusps due to relic thermal velocities of the WDM particles.

Smith & Markovic (2011) found that the former effect is the most important. Relic velocities only affect the density structure on scales r<1 kpc/h