# The "Bosma Effect" Revisited

Correlations between the ISM and DM in Galaxies

#### F. V. Hessman & M. Ziebart

Institut für Astrophysik Georg-August-Universität Göttingen

# A Brief History of DM in Galaxies

- "Dark matter" needed to explain local stellar kinematics (Kapteyn 1922, Oort 1932)
- Flat rotation curve of M31 (Babcock 1939, Mayall 1951)
- MW globular cluster kinematics (Kurth 1950)
- Local Group kinematics (Kahn & Woltjer 1959)
- Problem with stability of massive discs (Toomre 1964)
- CDM halo provides stability (Ostriker & Peebles 1973)
- Ubiquity of "flat" rotation curves

(Rogstad & Shostak 1972, Bosma 1978, Rubin, Ford & Thonnard 1980)

- Stellar disc-halo "conspiracy" (van Albada & Sancisi 1986)
- "Galaxies are irrelevant": CDM needed for LSS, ΛCDM cosmology (1990's-present)
- Bullet cluster: DM not in baryonic intracluster medium stripped from galaxies
- CDM halos can't be cuspy, so add toy gastrophysics until it fits



# Classical Lines of Evidence for **Cold** DM

**WDM** 

- Galaxy Dynamics
  - Stellar dynamics in the solar neighborhood
  - Spiral galaxy rotation curves
  - Stability of galaxy disks, spiral density waves
  - Projected kinematics of elliptical galaxies
  - Local Group kinematics
  - X-ray gas in elliptical galaxies
  - Strong gravitational lensing
- Galaxy Clusters
  - X-rays
  - Strong gravitational lensing
  - Weak gravitational lensing (e.g. "bullet cluster")
  - Sunyaev-Zeldovich Effect
- Cosmic Background Radiation (e.g. WMAP)
- Large-scale structure formation
  - Baryonic acoustic oscillations
  - Galaxy correlation functions
  - Number and distribution of galaxy masses

#### Baryons matter (not just the stars)!

- Tully-Fisher relation (Tully & Fisher 1977)
- V<sub>DM</sub><sup>2</sup> ∝ V<sub>gas</sub><sup>2</sup> (Bosma 1978, 1981)
- Stellar disc halo conspiracy (URC) (Bahcall & Casertano 1985; van Albada & Sancisi 1986)
- Maximum discs
  - (van Albada & Sancisi 1986)
- MOdified Newtonian Dynamics (Milgrom 1983)
- Baryonic Tully-Fisher relation (McGaugh et al. 2000, Pfenniger & Revaz 2005)
- Mass discrepancy acceleration relation (McGaugh 2004)
- Galaxies are a 1-parameter family (Disney et al. 2008)
- Constant mean DM & baryonic mean surface densities (Donato et al. 2009; Gentile, Famaey & Zhao 2009)

#### MOdifed Newtonian Dynamics (MOND)

- Milgrom (1983)
- Fundamental universal acceleration scale a<sub>0</sub> due to
  - modified inertia  $F = [m^*\mu(a/a_0)]^* a$
  - modified gravity  $a = a_{Newton} / \mu(a/a_0)$ where  $\mu(x>>1)=1$ ,  $\mu(x<<1)=x$
- For modified gravity, Poisson equation is

$$\nabla \cdot \left[ \mu(|\nabla \phi|/a_0) \nabla \phi \right] = 4\pi G \rho$$

- Fits to rotation curves yield  $a_0 = 1.2 \ge 10^{-10} \ge h_{75}^2 \sim 0.1 \ge 0.1$
- Many successful predictions for properties of galaxies
- Theoretical basis could be TensorVectorScalar gravity
- Can also explain "bullet cluster", WMAP angular power, gravitational lensing, ...
- Functions so well, that if not an alternative to Einstein gravity then MOND says DM physics produces really bizzare correlations with baryons.

### **MOND Successes**



# The Problem with MOND



- Basically pure (though spectacularly successful) phenomenology
  - MOND-ish theories (TeVeS, conformal gravity) are inelegant
- No laboratory / Solar system tests



MOND is telling us that baryons are more important than we thought.

# Baryonic Tully-Fisher Relation



McGaugh et al. (2000)

# Mass Discrepancy - Acceleration Relation



McGaugh (2004)

# Galaxies are a 1-Parameter Family



Disney et al. 2008

#### The "Bosma Effect"





"... the ratio [of dynamic to gas surface densities] ... is more or less constant beyond about onethird of the optical radius, with HI being the dominant contributor ... in the outer parts"

# Dependence on Galaxy Parameters



#### Testing the Bosma Effect



### Conclusions of HvA&S

- "The model curve [of the poorer fits] does not agree with the observed rotation curve in the inner region."
- There are "... large wiggles that are not present in the observed rotation curve."
- "The model rotation curve drops below the observed rotation curve at large radii."
- "... scaling of HI to represent the dark component only works in combination with maximal discs."
- "... our sample is biased against galaxies with  $R_{out}/h_{HI}$  substantially larger than 3."
- "... for about two-thirds of the galaxies we obtain good fits to the data."
- "... the good fits are somewhat coincidental."

### Simply the Effects of CDM?

#### 1978 : DM can be in the disc 2001 : CDM <u>must</u> be in the halo



#### The Bosma Effect in Nearby Galaxies



# Spitzer Infrared Nearby Galaxy Survey



#### **Rotation Curve Models**

Normally :

$$V_{\text{tot}}^{2} = \Upsilon_{\text{disk}} V_{\text{disk}}^{2} + \Upsilon_{\text{bulge}} V_{\text{bulge}}^{2} + V_{\text{HI+He}}^{2} + V_{\text{DM}}^{2} + V_{\text{mol-H+He}}^{2}$$
$$V_{\text{DM}}^{2} = f(\rho_{0}, r_{c}), f(V_{200}, c), f(V_{200}, c(V_{200})), \dots$$

"Simple" Bosma effect = "HI-scaling" :

$$V_{\text{tot}}^2 = \Upsilon_{\text{d,IR}} V_{\text{disk}}^2 + \Upsilon_{\text{b,IR}} V_{\text{bulge}}^2 + (1 + f_{\text{HI}}) V_{\text{HI+He}}^2$$

"Classic" Bosma effect :

 $V_{tot}^{2} = (1 + f_{disc}) \Upsilon_{d,IR} V_{disk}^{2} + \Upsilon_{b,IR} V_{bulge}^{2} + (1 + f_{HI}) V_{HI+He}^{2}$ 

### The "simple" Bosma Effect: Pure HI-scaling





### HI Distributions of Galaxies



Rhee & van Albada (1996)

## The "classic" Bosma Effect



# Bosma effect vs. CDM











# Results



- Self-consistent NFW model ruled out
- "Simple" Bosma effect = "HI scaling" only works outside of the stellar disk
- "Classical" Bosma effect with stellar proxy nearly as good as URC/Burkert

# Implied Surface Densities



# Paper II: Including More of the ISM



# Paper III: What does the Bosma effect mean?

• CDM? : disk potential fundamentally different from that of a spherical distribution





CCM has no means of teaching small amounts of gas in a disk to behave as if it was distributed exactly as a spherical CDM halo - is galactic DM then baryonic??

# What does the literal Bosma effect mean?

- Only about 10-70% of the baryons are visible
- The Utility of "maximal disks" is explained
- The relative mean surface density constancy is explained

$$<\Sigma>_{\rm DM}/<\Sigma>_{\rm baryons} \approx _{\rm DM}/_{\rm baryons} \approx 5$$



• The extended baryonic Tully-Fisher relation (Pfenniger & Revaz 2005)  $log (M_*+c M_{HI+He}) = a+b*V_{rot} - c \sim 3$ 

#### Discs are More Efficient Sources of V<sup>2</sup>

DM sphere with flat rotation curve:  $\rho(r) = (M_{vir}/4\pi r_{vir})(r_{vir}/r)^2$  $V(r)^2 = G M_{vir}/r_{vir} = const$ 

Mestel disc:  $\Sigma(R) = (M_{disc} / (2\pi R_{disc}^2)) (R_{disc} / R) a\cos(R_{disc} / R)$   $V(r)^2 = \pi G M_{vir} / 2r_{vir} = const$ 

 $M_{disc}/M_{vir} = (2R_{disc}/\pi r_{vir}) \approx 10 \text{ kpc} / 100 \text{ kpc} = 0.1$ 

# Are there other Signs of a Hidden ISM?

- Cold H<sub>2</sub> "clumpescules" (Pfenniger & Combes 1994)
- "Extreme Scattering Events", 1~AU (Walker & Wardle 1998)
- MSX, PLANCK "cold cores", l~pc (Egen et al. 1998, Ade et al. 2011a)
- EGRET "dark gas"

(Grenier et al. 2005)

- Dwarf galaxies from collisional debris (Bournaud et al. 2007)
- PLANCK "dark gas" phase (Ade et al. 2011)
- HERSCHEL dwarf galaxy survey (Madden et al. 2011)

#### Egen et al. 1998



# Local Stellar Dynamics Revisited

Milky Way (NASA)





# The Local Mass-Density Revisited



#### The Bosma Effect & MOND

Define :  $g_{tot} = g_* + g_{gas} + g_{dDM}$  $= g_{vis} + g_{dDM} = g_* + g_{ISM} = g_* + (1 + f_B) g_{gas}$ Thus (Dunkel 2004) :  $\varepsilon = g_{tot}/g_{dDM} - 1 = g_{vis}/g_{dDM}$  $\epsilon/(\epsilon+1) - g_{vis}/g_{tot} = \mu(\epsilon)$  $g_{vis} = \mu(\varepsilon) g_{tot}$ MOND :  $g_{vis} = \mu(x) g_{tot}$  $x/(x+1) = \mu(x)$  $x = g_{tot} / a_0,$ If  $x = \varepsilon$ :  $g_{tot}/g_{dDM}$  - 1 =  $g_{tot}/a_0$  $1/a_0 = 1/g_{dDM} - 1/g_{tot}$  $g_{tot} / a_0 = g_{vis} / g_{dDM} = g_* / g_{dDM} + 1 / f_B$  $\approx g_* / g_{dDM}$ 



The local gravitational field (and approximately the total local surface density) determines how much mass is in stars vs. in dDM

#### The Mass Discrepancy-Acceleration Relation



#### Halo Mass of the Milky Way Revisited

- Estimates for total baryonic mass  $M_b+M_d+M_g+M_{dDM} \approx (0.1+0.7+0.1+0.3) \ 10^{11} M_{Sun} \approx 1.210^{11} M_{sun}$
- Concordance assumptions & result (Watkins, Evans & An 2010)
  - Most of mass in NFW halo with scales >>  $\rm r_{vis},$  all satellite galaxies observed are bound
  - Result:  $M_{halo}(r < 300 \text{ kpc}) \sim 13 \ 10^{11} M_{Sun} \sim 15 \text{x}$  visible disc
- Non-standard assumptions & result
  - Kinematics of satellite galaxies with r > 40 kpc
  - Isotropy parameter  $\beta \sim 0$
  - Leo I & Hercules are not bound (2 most extreme outliers from 28)
  - Result:  $M_{halo}(r < 300 \text{ kpc}) \sim 4 \ 10^{11} M_{Sun} \sim 3x$  total disc



The results of satellite kinematics depends upon poor statistics & what one assumes, but one needs a modest (W?)DM halo at scales of the Local Group.

#### The Bosma Effect & Warm DM



- Disk DM cannot explain kinematics at large distances (e.g. Milky Way & M31 satellites, massive ellipticals)
- Disk DM cannot explain galaxy clusters
- WDM naturally fills in the gap at large radii.

# Disk Stability?

- Increase  $\Sigma(R)$  by a factor of ~3, Q =  $\sigma \kappa / \pi G \Sigma < 1$
- Real discs are not uniform, axisymmetric, thin
- Real ISM chemistry complicated
- Read ISM is fractal
- Stability of turbulent media complicated (Romero, Burkert, Agertz 2010)
- Spiral structure is non-stationary (Sellwood 2010)
- m=1 structure seen in 56% of non-interacting galaxies (Van Eymeren et al. 2011)
- m=1 structure seen in inner galaxies (Rix & Zaritsky 1995)
- Dark component in discs are stabler than one expects (Revaz, Pfenniger, Combes & Bournaud 2009)



Q > 1 keeps galaxies from looking like galaxies

# The Lines of Evidence for **Cold** DM

- Galaxy Dynamics
  - Stellar dynamics in the solar neighborhood
  - Spiral galaxy rotation curves
  - Stability of galaxy disks, spiral density waves
  - Projected kinematics of elliptical galaxies
  - Local Group kinematics
  - X-ray gas in elliptical galaxies
  - Strong gravitational lensing
- Galaxy Clusters
  - X-rays
  - Strong gravitational lensing
  - Weak gravitational lensing (e.g. "bullet cluster")
  - Sunyaev-Ze
- Cosmic Backg
- Primordial nu
  - Baryonic a fig 400 Galaxy cor: @ 200
  - Number an





**WDM** 

# Summary

- The "Bosma effect" the correlation between the centripetal contribution of the dynamically unimportant visible gas and DM is clearly seen in the THINGS+SINGS data.
- It is physically implausible for DM in a spherical halo to force the ISM in a disk to show exactly the same centripetal signature, despite different geometries.
- The Bosma effect appears to be telling us that there is more baryonic matter in the discs of spiral galaxies and no need for a halo of COLD DM.
- The Bosma effect explains lots (but not all) of the baryon-DM correlations
- The theory and implications of disc DM need to be reconsidered.
- A non-cold DM component is still needed for the Local Group, massive galaxies, clusters, and LSS
- W/HDM and baryonic disc DM seem to be a perfect match.