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Molecular clouds and star formation

Our incomplete understanding of how stars and planets form
represents one of the longest-standing problems in astronomy today.

Crucial phenomenon with a lot of implications
@ Formation of a single stellar and planetary system.
@ Formation of star clusters.
o Global evolution of an entire galaxy.
@ Observable properties of galaxies at cosmological redshifts.

This failure is mainly linked to the difficulty to detect cold
(T ~ 10 K) molecular hydrogen, the main component of molecular
clouds.
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Molecular clouds

@ Stars form within the densiest regions of molecular clouds.
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Molecular clouds

@ Stars form within the densiest regions of molecular clouds.
e Microphysics: individual star formation from dense cores
(protostellar disk, jets, outflows, dynamics).

o Macrophysics: formation of systems of stars (giant molecular
clouds, SFR, properties of the ISM, IMF)

@ Star formation is inextricably linked to the molecular clouds!

4
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Tracers

Hy is symmetric molecule, therefore cold H, has no emission line
spectrum and remains essentially invisible.

v
Solution: use tracers

Molecular clouds are know to contain more than 100 molecules
(CO, H20, HCN, COy...) that glow at microwave radio
frequencies, with thousands lines observed!

A\
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Can we trust radio observations?

A lot of data

@ Lots of molecules with lots of emission lines provide a unique
diagnostic tool: each transition probes different physical
conditions within the cloud.

@ Doppler shifts provide dynamical information too and allow
one to disentangle different clouds that overlap along the line
of sight.
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Can we trust radio observations?

A lot of data

@ Lots of molecules with lots of emission lines provide a unique
diagnostic tool: each transition probes different physical
conditions within the cloud.

@ Doppler shifts provide dynamical information too and allow
one to disentangle different clouds that overlap along the line
of sight.

v

Difficult interpretation

@ Several poorly constrained effects (opacity variations, chemical
evolution, depletion of molecules. ..) make the ratio between
radio line intensity and H, non constant.

o Different molecules probe different regions, but each line has a
limited dynamic range and data from different lines are often
in contradiction.
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Optical picture

@ Optically, molecular clouds appear as “holes” in the sky (and
indeed originally they were mistaken as such).

@ This happens because the dust present in dense molecular
clouds absorbs photons in the optical wavelength.

@ Extinction is higher for the bluer frequencies: IR light can
often penetrate even the densiest regions of molecular clouds.

v
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Structure of molecular clouds
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Structure of molecular clouds

ér cloud M o 105 M@, ; Ni 10 pq,_
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Larson's 1st law

First law Larson, 1981

The internal motions of GMCs are chaotic, with their internal
velocity dispersions o systematically increasing with cloud size R
(Sanders et al., 1985; Dame et al., 1986, Solomon et al., 1987):

o X R0.5i0.1 )

o(v) (km s™)

S (pe)

M. Lombardi Larson’s laws



Molecular clouds Gould belt Larson’s laws Issues

Introduction

Larson's 1st law
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Size-linewidth relation and turbulence

Larson's law holds on a wide range and has no preferred scale, a
fact which is interpreted as a signature of turbulence.
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Size-linewidth relation and turbulence

Larson's law holds on a wide range and has no preferred scale, a
fact which is interpreted as a signature of turbulence.

Larson's original exponent was ~ 1/3, corresponding to turbulence
of incompressible fluids (Kolmogorov, 1941). The measured
exponent is now ~ 1/2 corresponding to Burgers turbulence or
Burgulence.
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Size-linewidth relation and turbulence

Larson's law holds on a wide range and has no preferred scale, a
fact which is interpreted as a signature of turbulence.

Exponent?

Larson's original exponent was ~ 1/3, corresponding to turbulence
of incompressible fluids (Kolmogorov, 1941). The measured
exponent is now ~ 1/2 corresponding to Burgers turbulence or
Burgulence.

| \

Universality!

Burgulence explains the exponent within a cloud, not why all
GMCs follow the same size-linewidth relation. Turbulence in GMCs
is universal, an unexplained result (Bolatto et al., 2008).
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Larson's 2nd law
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Second law Larson, 1981

GMCs are in approximate virial equilibrium: the gravitational
potential energy is approximately twice the total kinec energy:
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Larson's 2nd
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Gravity role at different scales

@ Larson’'s concluded that GMCs, and also clumps within them,
are gravitationally bounds.
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Gravity role at different scales

@ Larson's concluded that GMCs, and also clumps within them,
are gravitationally bounds.

@ Recent studies show that most likely this applies only to clouds
with M > 10* M, (Heyer et al., 2001).
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@ However, among the small clumps, the few that appear to be
gravitationally bound contain most of the mass, and are the
only one with active star formation.
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Gravity role at different scales

@ Larson's concluded that GMCs, and also clumps within them,
are gravitationally bounds.

@ Recent studies show that most likely this applies only to clouds
with M > 10* M, (Heyer et al., 2001).

@ Smaller clumps must be either transient, or confined with
other mechanisms, such as pressure.

@ However, among the small clumps, the few that appear to be
gravitationally bound contain most of the mass, and are the
only one with active star formation.

@ Clouds cores are gravitationally bounds but also pressure
confined (Alves et al., 2001).
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Larson's 3rd law

Third law Larson, 1981

Molecular clouds have approximately constant column densities, or
equivalently their masses scale as M o R?.
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Larson's 3rd law

Third law Larson, 1981

Molecular clouds have approximately constant column densities, or
equivalently their masses scale as M o R?.

v

Relation with the other laws

The three laws are related: since o oc RY/? (1st law) and M o 2R
(2nd law), we must have M oc R?.
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Larson's 3rd law

Third law Larson, 1981

Molecular clouds have approximately constant column densities, or
equivalently their masses scale as M o R?.

Relation with the other laws

The three laws are related: since o oc RY/? (1st law) and M o 2R
(2nd law), we must have M oc R?.

Average density

In our Galaxy, (bond) molecular clouds have surface densities
around 100 My, pc2, corresponding to ~ 7 mag of visual
extinction (Blitz, 1993).
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All simple? Not quite. . .

Solomon et al. (1987)

@ The data used by are undersampled with respect to the beam
FWHM:;

@ The 12CO line is optically thick under most prevailing
conditions in molecular clouds.

o This result in an average density ¥ ~ 170 M., pc 2.

=

-0.81

19.8 19.6
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All simple? Not quite. . .

Heyer et al. (2009)

@ The data used by are correctly sampled and have a much
higher spatial resolution.

@ The measurements are based on the 13CO line, which is
almost always optically thin.

o This result in an average density ¥ ~ 40 M., pc2.
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Consequences

@ Data seem to indicate that clouds masses might be lower than
virial masses, suggesting that molecular clouds are unbound.

. .
10° 10* 10° 10° 107
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Consequences

@ Data seem to indicate that clouds masses might be lower than
virial masses, suggesting that molecular clouds are unbound.

o The quantity o/R'/?, which is in principle constant (Larson’s
1st law), correlates with the surface density X.

0,/R (km s™! pc'/?)

. .
10° 10* 10° 10° 107 10 100 1000
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Larson’s laws in external galaxies

Larson's type relationships seem to holds in other galaxies too:

@ Rosolowsky et al. (2003) found that molecular clounds in M33
have a surface density of ~ 120 My, pc~2 (comparable to the

Milky Way one).
@ Mizuno et al. (2001) studied the LMC and confirmed Larson’s
laws there.
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Larson’s laws in external galaxies

Larson's type relationships seem to holds in other galaxies too:

@ Rosolowsky et al. (2003) found that molecular clounds in M33
have a surface density of ~ 120 My, pc~2 (comparable to the
Milky Way one).

@ Mizuno et al. (2001) studied the LMC and confirmed Larson’s
laws there.

Bolatto et al. (2008) studied a sample of clouds in nearby galaxies
and found that “more or less” Larson’s laws hold there: clouds seem
to have a factor 2 smaller surface density and a lot of scatter.
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Larson’'s laws in external galaxies
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Dynamic range

with Larson's 3rd
olecular clouds

O‘ny numerical simulation are in contrz
lawtand show a huge range in densitys
(Scalo, 1990; Vazquez-Semadeni et al

Ballesteros-Paredes, 2006).
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Dynamic range

A r

any numerical simulation are in contrast with Larson's 3rd
law and show a huge range in density for molecular clouds

(Scalo, 1990; Vazquez-Semadeni et al.; 1997;

Ballesteros-Paredes, 2006).
Q Observations have a limited dynamic Fange:

o Minimum column density for Ha
UV radiation field.

o High-optical depth and chemica

regions.

O self-shielding from

etion of high-density
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Dynamic range

O*/Iany numerical simulation are in contrast with Larson's 3rd
law and show a huge range in density for molecular clouds
(Scalo, 1990; Vazquez-Semadeni et al.; 1997;
Ballesteros-Paredes, 2006).

Q Observations have a limited dynami ge:

CO self-shielding from

o Minimum column density for Ha
UV radiation field.

o High-optical depth and chemical
regions.

etion of high-density

aw is merely the result
at real clouds span at
density.

© It has been suggested that Larson
of this limited dynamic range, ane
least 2 orders of magnitude in su
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Section 2

Molecular clouds
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NICER

(Lombardi and Alves, 2001)

Use NIR color excess of background stars to measure the cloud
column density (Lada et al., 1994).
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NICER

(Lombardi and Alves, 2001)

Use NIR color excess of background stars to measure the cloud
column density (Lada et al., 1994).
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NICER

(Lombardi and Alves, 2001)

Use NIR color excess of background stars to measure the cloud
column density (Lada et al., 1994).

@ Easy measurements with modern IR array (simple imaging).

@ Reliable dust-to-gas ratio (Bohlin et al., 1978).

o Standard NIR reddening law (Rieke and Lebofsky, 1985)
relatively stable.

@ Tight NIR colors of un-reddened stars: NIR bands close to the
Rayleigh—Jeans limit, where By oc T /A%,
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The method

Control field: Stars w/o
significant extinction
occupy a small region of
the color-color plane T
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The method

Control field: Stars w/o
significant extinction
occupy a small region of

the color-color plane T
Science field: Reddening ﬁl

shifts stars along the

reddening vector '
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The method

Control field: Stars w/o
significant extinction

occupy a small region of .
the color-color plane T
Science field: Reddening ﬁl
shifts stars along the
reddening vector '

Optimal extinction: Takes
into account colors and H_ K
errors of each star.
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From extinction to surface density

The extinction Ak is converted into a mass column density using
some factors:

@ 1, the average molecular weight in the cloud (p ~ 1.37);
o 8= [N(H))+2N(H)| /Ak ~ 1.67 x 10*? cm™2 mag™!
(Savage and Mathis, 1979);

Reliability

Both conversions are considered quite robust, and little differences
are expected among different clouds.

v
Distance

For the cloud mass, in addition we need a factor distance®. This is
typically the main source of errors for most clouds.

V.
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NICER advantages

@ The method is based on a simple and well understood property
of dust, reddening.

@ It is unbiased (especially when a variant of it is used, NICEST,
see Lombardi, 2009).

@ NICER is optimized and produces maps that have a factor ~ 2
lower variance.

@ It is simple to implement and very fast: can be easily used
with several tens of millions stars

M. Lombardi Larson’s laws



Introduction Molecular clouds Analysis References Nicer Pipe Ophiuchus Orion

Example |: The Pipe nebula
Lombardi et al. (2006)

foes
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Example |: The Pipe nebula
Lombardi et al. (2006)
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Example |: The Pipe nebula
Lombardi et al. (2006)

M. Lombardi Larson’s laws



Introduction Molecular clouds Analysis References Nicer Pipe Ophiuchus Orion

Example I: The Pipe nebula
Lombardi et al. (2006)

A
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Pipe nebula: CO vs. NICER
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Pipe nebula: CO vs. NICER
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Pipe nebula: CO vs. NICER
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Detailed comparison
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@ 12CO is insensitive below Ay ~ 1-2 mag




Nicer Pipe Ophiuchus Orion

Molecular clouds

Detailed comparison

Inco (Kkm s

0.0 0.5 1.0
A (mag)

@ 12CO is insensitive below Ay ~ 1-2 mag
@ These data can be used for a robust determination of the

12CO X-factor.
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Molecular clouds Pipe Ophiuchus

Detailed comparison
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@ 12CO is insensitive below Ay ~ 1-2 mag

@ These data can be used for a robust determination of the
12CO X-factor.
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Orion revealed

A multiwavelength view

@ Optical image (Wei-Hao
Wang, IfA, Hawaii).
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Orion revealed

A multiwavelength view

@ Optical image (Wei-Hao
Wang, IfA, Hawaii).

@ 2MASS/NICER extinction map
(Lombardi et al., 2011).
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Hil and green Hy regions.




Orion revealed

A multiwavelength view

@ Optical image (Wei-Hao
Wang, IfA, Hawaii).

@ 2MASS/NICER extinction map
(Lombardi et al., 2011).

o Complementarity between red
Hil and green Hy regions.

@ Region shaped by supernova
explosions, stellar winds, and
UV radiation.




B ;.v. A multiwavelength view

@ Optical image (Wei-Hao
Wang, IfA, Hawaii).

2MASS/NICER extinction map | §
(Lombardi et al., 2011).

Complementarity between red
Hil and green Hy regions.

Region shaped by supernova

explosions, stellar winds, and
UV radiation.

Horsehead nebula seen as a
protrusion of the extinction
map.
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Section 3

Analysis
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Analysis Definitions Results

An operative definition

Ak
Area
Mass

Sky location Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and
consider all points in a cloud above
the threshold.

o Calculate within this contour the
area and the enclosed mass. Threshold

~
5
S
2)

@ Deduce the average surface density.
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Sky location Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and ;K\
consider all points in a cloud above \5/
the threshold. e
L . W
@ Calculate within this contour the <
area and the enclosed mass. Threshold
@ Deduce the average surface density.
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An operative definition

Ak
Area
Mass

N

Sky location Threshold Threshold
Extinction threshold
@ Take an extinction threshold, and ;K\
consider all points in a cloud above \5/
the threshold. e
L . W
@ Calculate within this contour the <
area and the enclosed mass. Threshold
@ Deduce the average surface density.
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An operative definition
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Sky location Threshold Threshold
Extinction threshold
@ Take an extinction threshold, and ;K\
consider all points in a cloud above \5/
the threshold. e
L . W
@ Calculate within this contour the <
area and the enclosed mass. Threshold
@ Deduce the average surface density.
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An operative definition
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Sky location Threshold Threshold
Extinction threshold
@ Take an extinction threshold, and ;K\
consider all points in a cloud above \5/
the threshold. e
L . W
@ Calculate within this contour the <
area and the enclosed mass. Threshold
@ Deduce the average surface density.
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An operative definition

LA

Sky location Threshold Threshold

Extinction threshold

A
Area
Mass

@ Take an extinction threshold, and ;K\
consider all points in a cloud above \5/
the threshold. e
L . W
@ Calculate within this contour the <
area and the enclosed mass. Threshold
@ Deduce the average surface density.
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An operative definition

n

A
Area
Mass

Sky location Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and ;K\
consider all points in a cloud above \5/
the threshold. e
L . W
@ Calculate within this contour the <
area and the enclosed mass. Threshold
@ Deduce the average surface density.
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AR

Sky location Threshold Threshold

Extinction threshold

An operative definition

Mass

Area

@ Take an extinction threshold, and ;K\
consider all points in a cloud above \5/
the threshold. e
L . W
@ Calculate within this contour the <
area and the enclosed mass. Threshold
@ Deduce the average surface density.
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An operative definition

SN
s 7
Sky location Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and ;K\
consider all points in a cloud above \5/
the threshold. e
L . W
@ Calculate within this contour the <
area and the enclosed mass. Threshold
@ Deduce the average surface density.
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An operative definition

A
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Extinction threshold
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consider all points in a cloud above \5/
the threshold. e
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@ Calculate within this contour the <
area and the enclosed mass. Threshold
@ Deduce the average surface density.
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An operative definition

Ak
Area
Mass

Sky location Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and ;K\
consider all points in a cloud above \5/
the threshold. e
L . W
@ Calculate within this contour the <
area and the enclosed mass. Threshold
@ Deduce the average surface density.
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Larson's 3rd law revised
Lomnbardi et al. (2010)

Two ways of considering Larson’s 3rd law:

@ A “comparative” version, where one studies different clouds at
the same extinction threshold.

@ An “internal” version, where one verifies the M(R) o R?
prediction on a single clout at different extinction thresholds.

Larson used a mixture of the two!
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Larson's 3rd law revised
Lomnbardi et al. (2010)

Two ways of considering Larson’s 3rd law:

@ A “comparative” version, where one studies different clouds at
the same extinction threshold.

@ An “internal” version, where one verifies the M(R) o R?
prediction on a single clout at different extinction thresholds.

Larson used a mixture of the two!

Extinction helps!

@ We have a complete description of the projected mass density
of many different molecular clouds.

@ Best conditions to revised the validity of both versions of
Larson’s 3rd law.
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Different clouds at a constant extinction threshold

105 @ OriA .
- gnl? . w7 Threshold Ag a vy  Scatter
_ o California _
2 10k e Pipe s o (mag) (Mg pc™7) (percent)
: o rho Oph Porseus o 0.1 41.2 1.99 11%
g ol Lupus1 o ] 0.2 731 1.96 12%
Loed & 0.5 149.0  2.01  14%
il s Corona » | 1.0 2642  2.06 12%
2 1.5 379.8 2.07 14%
107! 10° 10! 102

Radius (pc)

o All clouds follow exquisitely a Larson-type relationship
M = aR?, with v ~ 2.
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Different clouds at a constant extinction threshold

105E e OriA

. gnl? . o Threshold Ag a ¥ Scatter
20k St s o (mag) (Mg pc™) (percent)
= o tho Oph o 0.1 41.2 1.99 11%

S oL Lupis1 e ] 0.2 73.1 1.96 12%
Lupusd m 0.5 149.0 2.01  14%
il o Coroma 1.0 264.2  2.06 12%
2 1.5 379.8  2.07 14%
107! 100 10! 10?
Radius (pc)

o All clouds follow exquisitely a Larson-type relationship
M = aR7, with v ~ 2.

@ Clouds have very similar average surface densities within the
same extinction threshold contour.
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Different clouds at a constant extinction threshold

105E e OriA )

. 81? . o Threshold Ag a ¥ Scatter
_ o California _
3 uf o o ] (mag) (Mg pc™7)  (percent)
= o tho Oph e 0.1 412 1.00 11%
I Lupus [ @ ] 731 1.96 12%

0.2

Lupus 3

T 0.5 149.0 201 14%
1.0
15

Corona 264.2 2.06 12%
379.8 2.07 14%

107! 10° 10! 102
Radius (pc)

o All clouds follow exquisitely a Larson-type relationship
M = aR7, with v ~ 2.

@ Clouds have very similar average surface densities within the
same extinction threshold contour.

@ The scatter is always below 15%.
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Different clouds at a constant extinction threshold

10° — e Ori A ) _

E o OriB . 3

R [ e California ]
3 ;

104 @ Pipe E

g = e rho Oph Taurus e E

A C Perseus ® 1

S I Lupus1 @ ]

= 10° 3 Lupus 3 & 3

C Lupus4 m ]

102 B gl:l/ : Corona ]

107! 10° 10! 10?

Radius (pc)
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Larson’s 3d law for single clouds

10°
10° - Ori A = a Ori A
777777 Ori B —————_ OiB
10° - California 3 California
Pipe Pipe
103 - rho Oph -

tho Oph

Mass (M)

Surface density (Mg pc2)
=

102 - Taurus i Taurus E
Perseus Perseus
10 Lupus 1 i Lupus 1
Lupus3 - ----- Lupus3 - - - - - -
ol Lupus 4 —-—-—-—— | Lupus4 —-—-—-—-—
10 Corona Corona
107! L L L L 10 v L L
1072 107! 100 10 10? 10- 107! 10° 10!

Radius (pc) Ao (mag)

@ Cloud M(R) plots have similar thrends, but span a relatively
large range of masses.
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Larson’s 3d law for single clouds

10°

10° Ori A

Ori A
—————— Ori B ------ 0OriB
10 - California T California
Pipe Pipe
103 - rho Oph - rho Oph

Taurus

Mass (M)

Surface density (Mg pc2)
=

102 - B " Taurus E
Perseus Perseus
10 Lupus 1 i Lupus 1
Lupus3 - ----- Lupus3 - - - - - -
ol Lupus 4 —-—-—-—— | Lupus4 —-—-—-—-—
10 Corona Corona
107! L L L L 10 v L L
1072 107! 100 10 10? 10- 107! 10° 10!
Radius (pc) Ay (mag)

@ Cloud M(R) plots have similar thrends, but span a relatively
large range of masses.

@ Best fit for R € [0.1,1] pc is M(R) = 380 M (R/pc)*® (see
also Kayffmann et al. 2010).
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Larson’s 3d law for single clouds

10°

10° Ori A

Ori A
777777 Ori B ------ OrB
10 - California T California
Pipe Pipe
10° - rho Oph b rho Oph

Taurus

Mass (M)

Surface density (Mg pc2)
=

102 B " Taurus E
Perseus Perseus
10 Lupus 1 i Lupus 1
Lupus3 - ----- Lupus3 - - - - - -
0 Lupus 4 —-—-—-—-— Lupus4 —-—-—-—-—
10° = Corona 7 Corona
107! L L L L 10 v L L
1072 107! 100 10 10? 10- 107! 10° 10!
Radius (pc) Ay (mag)

@ Cloud M(R) plots have similar thrends, but span a relatively
large range of masses.

o Best fit for R € [0.1,1] pc is M(R) = 380 M (R/pc)* (see
also Kayffmann et al. 2010).

@ Small scatter in exponent, large in mass.
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Larson’s 3d law for single clouds

. 10°
10° - Ori A - — OiA
777777 Ori B & ——---- OriB
10 - (}iulil'omia 2 ——— California
- ipe ° —— Pipe
2 0 tho Oph S " oo
=) >
2 12k Taurus z 10 " Taurus ———
é‘ Perseus _;,5 Perseus —————
10 tupusé 3 Lupus | ————
gl cco=e=e = Lupus3 - -----
100 Lupus 4 —-—-—-—-— :‘;: Lupus4 —-—-—-—-—
Corona . Corona
107! L L L L 10! , L L
1072 107! 10° 10 10 1072 107! 10° 10!
Radius (pc) Ao (mag)

@ Cloud M(R) plots have similar thrends, but span a relatively
large range of masses.

o Best fit for R € [0.1,1] pc is M(R) = 380 M (R/pc)* (see
also Kayffmann et al. 2010).

@ Small scatter in exponent, large in mass.

o Power-law index significantly different from 2!
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A hint

Larson’s 3rd law and cloud structure

@ Observations have long established that many clouds have a
log-normal distribution at low extinctions:

1 (In AK —In A1)2
Ax) = — — )
p(Ak) o A exp[ 52
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o Observ 6 1 s have a
log-nol sk ]

P(AK)

géwlﬁw iy A
b W M ]

-0.2 . L . L . L
—0.1 0.0 0.1 0.2 0.3 04 0.5 0.6

A (mag)

Ap(Ak)

<
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A hint

Larson’s 3rd law and cloud structure

@ Observations have long established that many clouds have a
log-normal distribution at low extinctions:

1 (In AK — |nA1)2
————exp|— 5
V2roAk 20
@ Traditionally, log-normality is linked to supersonic turbulence,

but it turns out it is a common feature of different classes of
models (Tassis et al. 2010).

p(Ak) =
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A hint

Larson’s 3rd law and cloud structure

@ Observations have long established that many clouds have a
log-normal distribution at low extinctions:

1 (In AK — |nA1)2
V2mo Ak 202

@ Traditionally, log-normality is linked to supersonic turbulence,
but it turns out it is a common feature of different classes of
models (Tassis et al. 2010).

@ We can express the mass M and the area S of a cloud above a
threshold Ag as simple integrals of p(Ak):

p(Ak) =

o0

M(Ao) X /AOO AKp(AK)dAK 5 S(Ao) 0.8 A p(AK)dAK
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Larson’s law and log-normal distributions

Area
Mass

—~
X

<

~—
Q

Ak Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and
consider all points in the
distribution at larger Ak values.

o Calculate from these the area and
mass above the threshold. log(Threshold)
@ Deduce the average surface density.
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Larson’s law and log-normal distributions

<
I
) L
Ak Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and
consider all points in the
distribution at larger Ak values.

o Calculate from these the area and
mass above the threshold. log(Threshold)
@ Deduce the average surface density.
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Larson’s law and log-normal distributions

Area
Mass

Ak Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and
consider all points in the
distribution at larger Ak values.

o Calculate from these the area and
mass above the threshold. | log(Threshold)

@ Deduce the average surface density.

log((X))
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Larson’s law and log-normal distributions

Area
Mass

Ak Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and
consider all points in the
distribution at larger Ak values.

o Calculate from these the area and
mass above the threshold. | log(Threshold)

@ Deduce the average surface density.

log((X))
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Larson’s law and log-normal distributions

Area
Mass

Ak Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and
consider all points in the
distribution at larger Ak values.

o Calculate from these the area and
mass above the threshold. log(Threshold)

@ Deduce the average surface density.

log((X))
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Larson’s law and log-normal distributions

Area
Mass

Ak Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and
consider all points in the
distribution at larger Ak values.

o Calculate from these the area and
mass above the threshold. log(Threshold)

@ Deduce the average surface density.

log((X))
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Larson’s law and log-normal distributions

Area
Mass

Ak Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and
consider all points in the
distribution at larger Ak values.

o Calculate from these the area and
mass above the threshold. log(Threshold)

@ Deduce the average surface density.

log((X))
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Larson’s law and log-normal distributions

~ © 2
< e @
= < =

Ak Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and
consider all points in the
distribution at larger Ak values.

o Calculate from these the area and

log((X))

mass above the threshold. log(Threshold)

@ Deduce the average surface density.
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Larson’s law and log-normal distributions

~ © 2
< e @
= < =
Ak Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and
consider all points in the e
distribution at larger Ak values.

o Calculate from these the area and
mass above the threshold. log(Threshold)

@ Deduce the average surface density.

log((X))
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Larson’s law and log-normal distributions

~ © 2
< e @
= < =

Ak Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and
consider all points in the
distribution at larger Ak values.

o Calculate from these the area and

log((X))

mass above the threshold. log(Threshold)

@ Deduce the average surface density.
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Larson’s law and log-normal distributions

Area
Mass

—
X

S

~—
Q

Ak Threshold Threshold

Extinction threshold

@ Take an extinction threshold, and
consider all points in the
distribution at larger Ak values.

o Calculate from these the area and

log((X))

mass above the threshold. log(Threshold)

@ Deduce the average surface density.
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Larson’s law and log-normal distributions

< 3 2
= < =
Ak Threshold Threshold
Extinction threshold
@ Take an extinction threshold, and —~
consider all points in the W
distribution at larger Ak values. &0
o Calculate from these the area and
mass above the threshold. log(Threshold)

@ Deduce the average surface density.
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Larson’s law and log-normal distributions

~

I

Q.
Ak

Area
Mass

log((X))

@ Take an extinction threshold, and
consider all points in the J
o Calculate from these the area and
mass above the threshold. log(Threshold)
@ Deduce the average surface density.J

Threshold Threshold
distribution at larger Ak values.
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Log-normal distributions

10°
Ori A
Ori B

Taurus
Perseus
Lupus 1
Lupus 3
Lupus 4
Corona

Surface density (Mo pc™2)
=
T

107! 10°
Ap (mag)

Theoretical expectation

@ This allows us to estimate the expected cloud surface density
above an extinction threshold.

@ Qualitatively, we recover the observed curves.

@ The scatter among different clouds can be kept small if the
relative scatter of the log-normal parameters A; and o is small

(which is).

S/A1puB

#(a)

Larson’s laws
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Open issues

Still quite a lot. . .

@ Log-normality only works at low extinction:
e What is the role of cores for Larson’s law?
e How is the deviation from log-normality related to stellar
formation?
@ Why do clouds follow log-normal distributions?
o What is the role of turbulence, isothermality, magnetic fields. . .
© Why do cloud have relatively similar log-normal parameters A;
and (especially) o7
o In turbulence models o is related to the cloud Mach number.
Are the similar o related to universality of turbulence for the
size-linewidth relation?
© What is of Larson’s 3rd law in external galaxies?
o Can we use extinction techniques outside the Milky Way?

M. Lombardi Larson’s laws
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