Larson's laws and the universality of molecular cloud structures

Marco Lombardi

University of Milan

Meudon, 8-10 June 2011

Section 1

Introduction

・ロン ・四と ・ヨン ・ヨン

Molecular clouds and star formation

Failure

Our incomplete understanding of how stars and planets form represents one of the longest-standing problems in astronomy today.

Crucial phenomenon with a lot of implications

- Formation of a single stellar and planetary system.
- Formation of star clusters.
- Global evolution of an entire galaxy.
- Observable properties of galaxies at cosmological redshifts.

This failure is mainly linked to the difficulty to detect cold ($T \sim 10$ K) molecular hydrogen, the main component of molecular clouds.

• Stars form within the densiest regions of molecular clouds.

- Microphysics: individual star formation from dense cores (protostellar disk, jets, outflows, dynamics).
- Macrophysics: formation of systems of stars (giant molecular clouds, SFR, properties of the ISM, IMF)

Star formation is inextricably linked to the molecular clouds!

- Stars form within the densiest regions of molecular clouds.
 - Microphysics: individual star formation from dense cores (protostellar disk, jets, outflows, dynamics).
 - Macrophysics: formation of systems of stars (giant molecular clouds, SFR, properties of the ISM, IMF)
- Star formation is inextricably linked to the molecular clouds!

- Stars form within the densiest regions of molecular clouds.
 - Microphysics: individual star formation from dense cores (protostellar disk, jets, outflows, dynamics).
 - Macrophysics: formation of systems of stars (giant molecular clouds, SFR, properties of the ISM, IMF)

Star formation is inextricably linked to the molecular clouds!

• Stars form within the densiest regions of molecular clouds.

- Microphysics: individual star formation from dense cores (protostellar disk, jets, outflows, dynamics).
- Macrophysics: formation of systems of stars (giant molecular clouds, SFR, properties of the ISM, IMF)

• Star formation is inextricably linked to the molecular clouds!

A (B) > (B) > (B)

Tracers

Problem

 H_2 is symmetric molecule, therefore cold H_2 has no emission line spectrum and remains essentially invisible.

Solution: use tracers

Molecular clouds are know to contain more than 100 molecules (CO, H_20 , HCN, $CO_2...$) that glow at microwave radio frequencies, with thousands lines observed!

Can we trust radio observations?

A lot of data

- Lots of molecules with lots of emission lines provide a unique diagnostic tool: each transition probes different physical conditions within the cloud.
- Doppler shifts provide dynamical information too and allow one to disentangle different clouds that overlap along the line of sight.

Difficult interpretation

- Several poorly constrained effects (opacity variations, chemical evolution, depletion of molecules...) make the ratio between radio line intensity and H₂ non constant.
- Different molecules probe different regions, but each line has a limited dynamic range and data from different lines are often in contradiction.

Can we trust radio observations?

A lot of data

- Lots of molecules with lots of emission lines provide a unique diagnostic tool: each transition probes different physical conditions within the cloud.
- Doppler shifts provide dynamical information too and allow one to disentangle different clouds that overlap along the line of sight.

Difficult interpretation

- Several poorly constrained effects (opacity variations, chemical evolution, depletion of molecules...) make the ratio between radio line intensity and H₂ non constant.
- Different molecules probe different regions, but each line has a limited dynamic range and data from different lines are often in contradiction.

Optical picture

- Optically, molecular clouds appear as "holes" in the sky (and indeed originally they were mistaken as such).
- This happens because the dust present in dense molecular clouds absorbs photons in the optical wavelength.
- Extinction is higher for the bluer frequencies: IR light can often penetrate even the densiest regions of molecular clouds.

Structure of molecular clouds

Clouds have often a filamentary structure, with regions of significantly higher density. Filaments can connect relatively distant regions, like in a web.

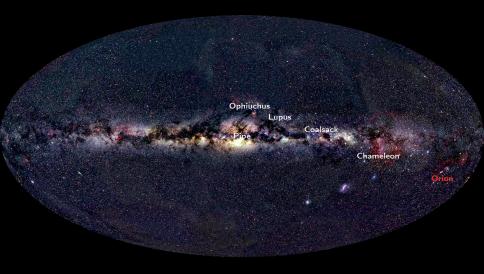
Structure of molecular clouds

Clouds have often a filamentary structure, with regions of significantly higher density. Filaments can connect relatively distant regions, like in a web.

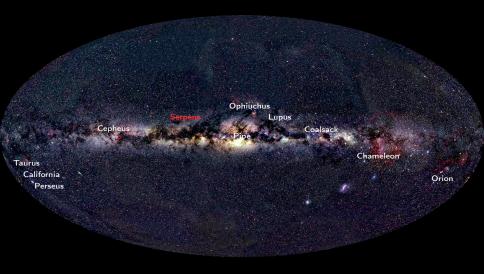
Molecular clouds show inhomogeneities at various scales:

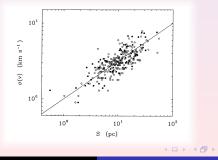
- MC . Giant Molecular cloud: $M\sim 10^5$ M $_{\odot},~R\sim 10$ pc, $ho\sim 10^2$ cm $^{-3}$.
- here M_{\odot} Site of formation of star clusters: $M\sim 10^3~{
 m M}_{\odot}$, $R\sim 1$ pc, $ho\sim 10^3~{
 m cm}^{-3}$.

we Site of formation of an individual star: $M\sim 10^1~{
m M}_\odot$. $R\sim 0.1~{
m pc},~
ho\sim 10^4~{
m cm}^{-3}$.

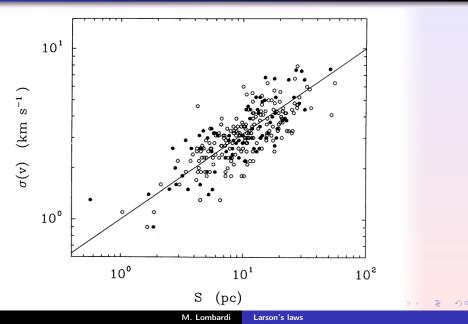








Larson's 1st law


First law Larson, 1981

The internal motions of GMCs are chaotic, with their internal velocity dispersions σ systematically increasing with cloud size R (Sanders et al., 1985; Dame et al., 1986; Solomon et al., 1987):

 $\sigma \propto {\cal R}^{0.5\pm0.1}$

Larson's 1st law

・ロン ・四マ ・ヨマ ・ヨマ

æ

Size-linewidth relation and turbulence

Turbulence

Larson's law holds on a wide range and has no preferred scale, a fact which is interpreted as a signature of turbulence.

Exponent?

Larson's original exponent was $\sim 1/3$, corresponding to turbulence of incompressible fluids (Kolmogorov, 1941). The measured exponent is now $\sim 1/2$ corresponding to Burgers turbulence or *Burgulence*.

Universality

Burgulence explains the exponent *within* a cloud, not why *all* GMCs follow the same size-linewidth relation. Turbulence in GMCs is universal, an **unexplained result** (Bolatto et al., 2008).

ヘロン 人間と 人間と 人間と

3

Size-linewidth relation and turbulence

Turbulence

Larson's law holds on a wide range and has no preferred scale, a fact which is interpreted as a signature of turbulence.

Exponent?

Larson's original exponent was \sim 1/3, corresponding to turbulence of incompressible fluids (Kolmogorov, 1941). The measured exponent is now \sim 1/2 corresponding to Burgers turbulence or Burgulence.

Universality!

Burgulence explains the exponent *within* a cloud, not why *all* GMCs follow the same size-linewidth relation. Turbulence in GMCs is universal, an **unexplained result** (Bolatto et al., 2008).

Size-linewidth relation and turbulence

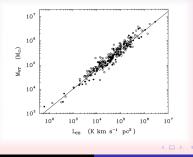
Turbulence

Larson's law holds on a wide range and has no preferred scale, a fact which is interpreted as a signature of turbulence.

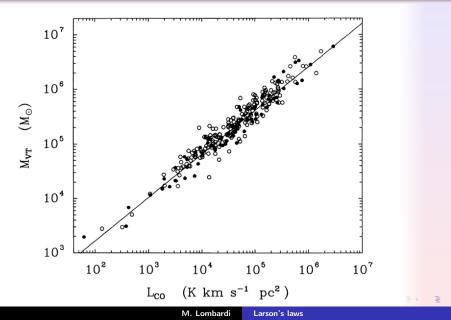
Exponent?

Larson's original exponent was \sim 1/3, corresponding to turbulence of incompressible fluids (Kolmogorov, 1941). The measured exponent is now \sim 1/2 corresponding to Burgers turbulence or Burgulence.

Universality!


Burgulence explains the exponent *within* a cloud, not why *all* GMCs follow the same size-linewidth relation. Turbulence in GMCs is universal, an <u>unexplained result</u> (Bolatto et al., 2008).

Larson's 2nd law


Second law Larson, 1981

GMCs are in approximate virial equilibrium: the gravitational potential energy is approximately twice the total kinec energy:

$$rac{GM^2}{R}\simeq M\sigma^2$$
 .

Larson's 2nd law

A B > A B >

Gravity role at different scales

• Larson's concluded that GMCs, and also clumps within them, are gravitationally bounds.

- Recent studies show that most likely this applies only to clouds with $M>10^4~{
 m M}_{\odot}$ (Heyer et al., 2001).
- Smaller clumps must be either transient, or confined with other mechanisms, such as pressure.
- However, among the small clumps, the few that appear to be gravitationally bound contain most of the mass, and are the only one with active star formation.
- Clouds cores are gravitationally bounds but also pressure confined (Alves et al., 2001).

- Larson's concluded that GMCs, and also clumps within them, are gravitationally bounds.
- Recent studies show that most likely this applies only to clouds with $M>10^4~{\rm M}_\odot$ (Heyer et al., 2001).
- Smaller clumps must be either transient, or confined with other mechanisms, such as pressure.
- However, among the small clumps, the few that appear to be gravitationally bound contain most of the mass, and are the only one with active star formation.
- Clouds cores are gravitationally bounds but also pressure confined (Alves et al., 2001).

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Larson's concluded that GMCs, and also clumps within them, are gravitationally bounds.
- Recent studies show that most likely this applies only to clouds with $M>10^4~{\rm M}_\odot$ (Heyer et al., 2001).
- Smaller clumps must be either transient, or confined with other mechanisms, such as pressure.
- However, among the small clumps, the few that appear to be gravitationally bound contain most of the mass, and are the only one with active star formation.
- Clouds cores are gravitationally bounds but also pressure confined (Alves et al., 2001).

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Larson's concluded that GMCs, and also clumps within them, are gravitationally bounds.
- Recent studies show that most likely this applies only to clouds with $M>10^4~{
 m M}_\odot$ (Heyer et al., 2001).
- Smaller clumps must be either transient, or confined with other mechanisms, such as pressure.
- However, among the small clumps, the few that appear to be gravitationally bound contain most of the mass, and are the only one with active star formation.
- Clouds cores are gravitationally bounds but also pressure confined (Alves et al., 2001).

- Larson's concluded that GMCs, and also clumps within them, are gravitationally bounds.
- Recent studies show that most likely this applies only to clouds with $M>10^4~{
 m M}_\odot$ (Heyer et al., 2001).
- Smaller clumps must be either transient, or confined with other mechanisms, such as pressure.
- However, among the small clumps, the few that appear to be gravitationally bound contain most of the mass, and are the only one with active star formation.
- Clouds cores are gravitationally bounds but also pressure confined (Alves et al., 2001).

Larson's 3rd law

Third law Larson, 1981

Molecular clouds have approximately constant column densities, or equivalently their masses scale as $M \propto R^2$.

Relation with the other laws

The three laws are related: since $\sigma \propto R^{1/2}$ (1st law) and $M \propto \sigma^2 R$ (2nd law), we must have $M \propto R^2$.

Average density

In our Galaxy, (bond) molecular clouds have surface densities around 100 M_{\odot} pc⁻², corresponding to \sim 7 mag of visual extinction (Blitz, 1993).

・ロト ・日下・ ・ ヨト・

Larson's 3rd law

Third law Larson, 1981

Molecular clouds have approximately constant column densities, or equivalently their masses scale as $M \propto R^2$.

Relation with the other laws

The three laws are related: since $\sigma \propto R^{1/2}$ (1st law) and $M \propto \sigma^2 R$ (2nd law), we must have $M \propto R^2$.

Average density

In our Galaxy, (bond) molecular clouds have surface densities around 100 M_{\odot} pc⁻², corresponding to \sim 7 mag of visual extinction (Blitz, 1993).

Larson's 3rd law

Third law Larson, 1981

Molecular clouds have approximately constant column densities, or equivalently their masses scale as $M \propto R^2$.

Relation with the other laws

The three laws are related: since $\sigma \propto R^{1/2}$ (1st law) and $M \propto \sigma^2 R$ (2nd law), we must have $M \propto R^2$.

Average density

In our Galaxy, (bond) molecular clouds have surface densities around 100 $M_{\odot}~pc^{-2}$, corresponding to ~ 7 mag of visual extinction (Blitz, 1993).

A D > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

All simple? Not quite...

Solomon et al. (1987)

- The data used by are undersampled with respect to the beam FWHM;
- The ¹²CO line is optically thick under most prevailing conditions in molecular clouds.
- This result in an average density $\Sigma \simeq 170~M_\odot~pc^{-2}.$

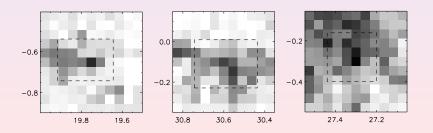
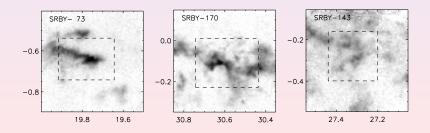
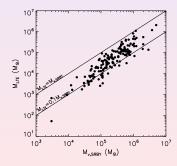
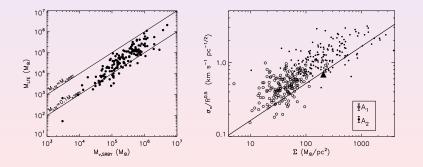



Image: A matrix and a matrix

All simple? Not quite...


Heyer et al. (2009)

- The data used by are correctly sampled and have a much higher spatial resolution.
- The measurements are based on the ¹³CO line, which is almost always optically thin.
- This result in an average density $\Sigma \simeq 40~M_\odot~pc^{-2}.$


Consequences

- Data seem to indicate that clouds masses might be lower than virial masses, suggesting that molecular clouds are unbound.
- The quantity σ/R^{1/2}, which is in principle constant (Larson's 1st law), correlates with the surface density Σ.

Consequences

- Data seem to indicate that clouds masses might be lower than virial masses, suggesting that molecular clouds are unbound.
- The quantity $\sigma/R^{1/2}$, which is in principle constant (Larson's 1st law), correlates with the surface density Σ .

・ロト ・日下・ ・ ヨト・

Larson's laws in external galaxies

Agreements

Larson's type relationships seem to holds in other galaxies too:

- Rosolowsky et al. (2003) found that molecular clounds in M33 have a surface density of $\sim 120~M_\odot~pc^{-2}$ (comparable to the Milky Way one).
- Mizuno et al. (2001) studied the LMC and confirmed Larson's laws there.

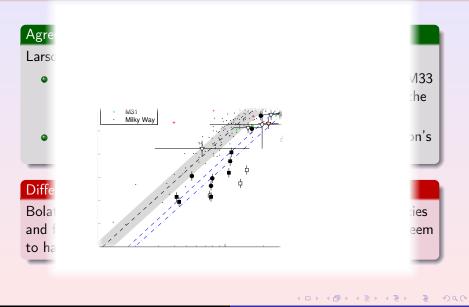
Differences

Bolatto et al. (2008) studied a sample of clouds in nearby galaxies and found that "more or less" Larson's laws hold there: clouds seem to have a factor 2 smaller surface density and a lot of scatter.

(D) (A) (A)

Larson's laws in external galaxies

Agreements


Larson's type relationships seem to holds in other galaxies too:

- Rosolowsky et al. (2003) found that molecular clounds in M33 have a surface density of $\sim 120~M_\odot~pc^{-2}$ (comparable to the Milky Way one).
- Mizuno et al. (2001) studied the LMC and confirmed Larson's laws there.

Differences

Bolatto et al. (2008) studied a sample of clouds in nearby galaxies and found that "more or less" Larson's laws hold there: clouds seem to have a factor 2 smaller surface density and a lot of scatter.

Larson's laws in external galaxies

(Vazquez-Semadeni et al., 1997)

Dynamic range

 Many numerical simulation are in contrast with Larson's 3rd law and show a huge range in density for molecular clouds (Scalo, 1990; Vazquez-Semadeni et al., 1997; Ballesteros-Paredes, 2006).

Dynamic range

- Many numerical simulation are in contrast with Larson's 3rd law and show a huge range in density for molecular clouds (Scalo, 1990; Vazquez-Semadeni et al., 1997; Ballesteros-Paredes, 2006).
- Observations have a limited dynamic range:
 - $\bullet\,$ Minimum column density for H_2 and CO self-shielding from UV radiation field.
 - High-optical depth and chemical depletion of high-density regions.

Dynamic range

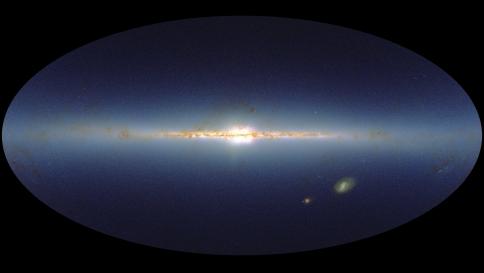
- Many numerical simulation are in contrast with Larson's 3rd law and show a huge range in density for molecular clouds (Scalo, 1990; Vazquez-Semadeni et al., 1997; Ballesteros-Paredes, 2006).
- Observations have a limited dynamic range:
 - $\bullet\,$ Minimum column density for H_2 and CO self-shielding from UV radiation field.
 - High-optical depth and chemical depletion of high-density regions.
- It has been suggested that Larson's 3rd law is merely the result of this limited dynamic range, and that real clouds span at least 2 orders of magnitude in surface density.

Solution: use HDR imaging!

Section 2

Molecular clouds

・ロト ・西ト ・ヨト ・ヨト


æ

Gould belt

A. Melliger

Gould belt

2MASS point sources

NICER (Lombardi and Alves, 2001)

Idea

Use NIR color excess of background stars to measure the cloud column density (Lada et al., 1994).

Advantages

- Easy measurements with modern IR array (simple imaging).
- Reliable dust-to-gas ratio (Bohlin et al., 1978).
- Standard NIR reddening law (Rieke and Lebofsky, 1985) relatively stable.
- Tight NIR colors of un-reddened stars: NIR bands close to the Rayleigh–Jeans limit, where $B_\lambda \propto T/\lambda^4$.

<<p>(日)、

NICER (Lombardi and Alves, 2001)

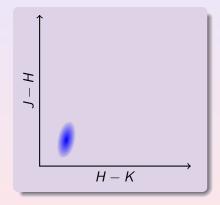
Idea

Use NIR color excess of background stars to measure the cloud column density (Lada et al., 1994).

イロト イヨト イヨト イヨト

NICER (Lombardi and Alves, 2001)

Idea

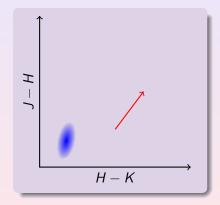

Use NIR color excess of background stars to measure the cloud column density (Lada et al., 1994).

Advantages

- Easy measurements with modern IR array (simple imaging).
- Reliable dust-to-gas ratio (Bohlin et al., 1978).
- Standard NIR reddening law (Rieke and Lebofsky, 1985) relatively stable.
- Tight NIR colors of un-reddened stars: NIR bands close to the Rayleigh–Jeans limit, where $B_{\lambda} \propto T/\lambda^4$.

The method

Control field: Stars w/o significant extinction occupy a small region of the color-color plane



・ロト ・日下・ ・ ヨト

The method

Control field: Stars w/o significant extinction occupy a small region of the color-color plane Science field: Reddening shifts stars along the reddening vector

into account colors and errors of each star.

▲ 副 ▶ → モ ● ▶

The method

Control field: Stars w/o significant extinction occupy a small region of the color-color plane Science field: Reddening shifts stars along the reddening vector **Optimal extinction:** Takes into account colors and errors of each star.

< A > < E

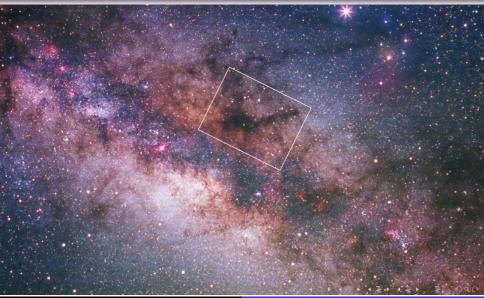
From extinction to surface density

Factors

The extinction $A_{\mathcal{K}}$ is converted into a mass column density using some factors:

- μ , the average molecular weight in the cloud ($\mu \simeq 1.37$);
- $\beta = [N(H_I) + 2N(H_2)]/A_K \simeq 1.67 \times 10^{22} \text{ cm}^{-2} \text{ mag}^{-1}$ (Savage and Mathis, 1979);

Reliability


Both conversions are considered quite robust, and little differences are expected among different clouds.

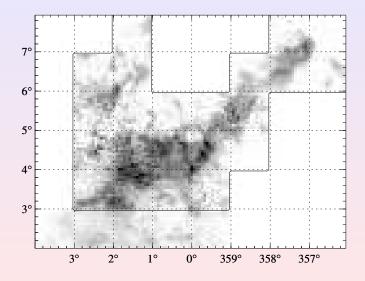
Distance

For the cloud mass, in addition we need a factor distance². This is typically the main source of errors for most clouds.

NICER advantages

- The method is based on a simple and well understood property of dust, reddening.
- It is unbiased (especially when a variant of it is used, NICEST, see Lombardi, 2009).
- $\bullet\,$ NICER is optimized and produces maps that have a factor ~ 2 lower variance.
- It is simple to implement and very fast: can be easily used with several tens of millions stars

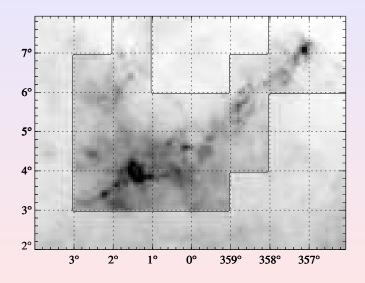
 \circ Nearby ($d\simeq$ 130 pc) cloud with insignificant star formation.

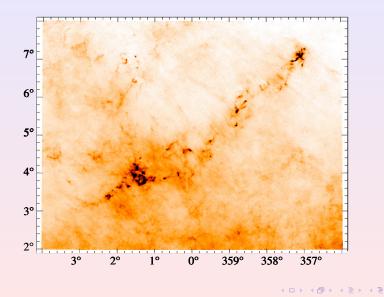

• Nearby $(d\simeq 130~
m pc)$ cloud with insignificant star formation. • Optimally located for NIR studies (in foreground to the bulge).

Nearby (d ~ 130 pc) cloud with insignificant star formation.
 Optimally located for NIR studies (in foreground to the bulge).
 Extinction map with RMS noise (K-band) 0.015 mag and resolution 1 arcmin.

・ロン ・四と ・ヨン ・ヨン

E

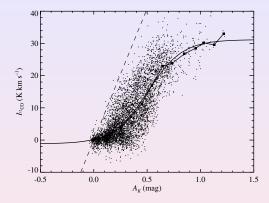

Pipe nebula: CO vs. NICER


・ロト ・日子・ ・ ヨト

< ∃ >

Pipe nebula: CO vs. NICER

Pipe nebula: CO vs. NICER



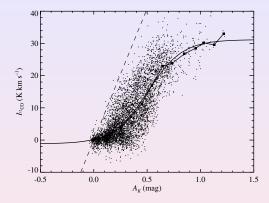
・ロト ・日下・ ・日下

< ≣ >

E

Detailed comparison

• ¹²CO is insensitive below $A_V \sim 1-2$ mag

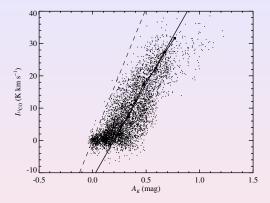

 These data can be used for a robust determination of the ¹²CO X-factor.

・ロト ・日下・ ・ ヨト

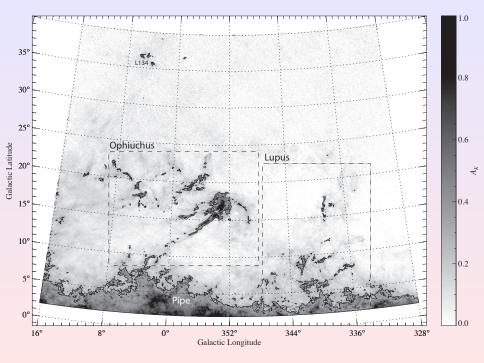
< ≣ >

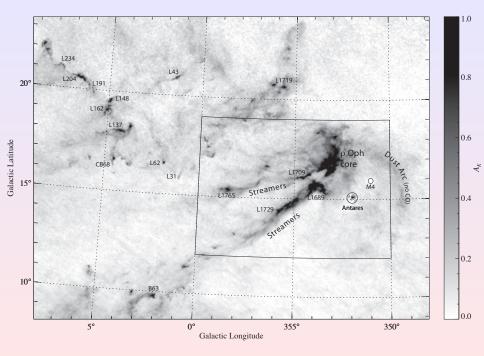
E

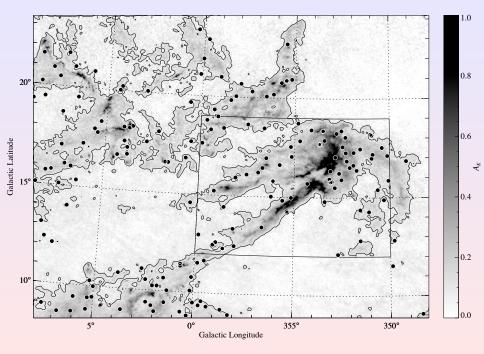
Detailed comparison

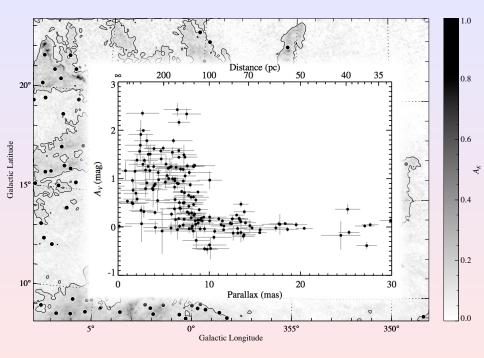


- ^{12}CO is insensitive below $A_V \sim 1\text{--}2$ mag
- These data can be used for a robust determination of the ¹²CO X-factor.


<<p>(日)、


1≣ ▶


Detailed comparison



- $^{12}{\rm CO}$ is insensitive below $A_V \sim 1\text{--}2$ mag
- These data can be used for a robust determination of the ¹²CO X-factor.

- Optical image (Wei-Hao Wang, IfA, Hawaii).
- 2MASS/NICER extinction map (Lombardi et al., 2011).
- Complementarity between red HII and green H₂ regions.
- Region shaped by supernova explosions, stellar winds, and UV radiation.
- Horsehead nebula seen as a protrusion of the extinction map.

- Optical image (Wei-Hao Wang, IfA, Hawaii).
- 2MASS/NICER extinction map (Lombardi et al., 2011).
- Complementarity between red HII and green H₂ regions.
- Region shaped by supernova explosions, stellar winds, and UV radiation.
- Horsehead nebula seen as a protrusion of the extinction map.

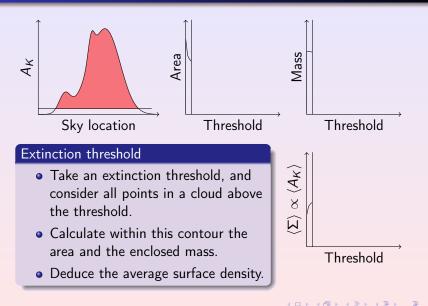
- Optical image (Wei-Hao Wang, IfA, Hawaii).
- 2MASS/NICER extinction map (Lombardi et al., 2011).
- Complementarity between red HII and green H₂ regions.
- Region shaped by supernova explosions, stellar winds, and UV radiation.
- Horsehead nebula seen as a protrusion of the extinction map.

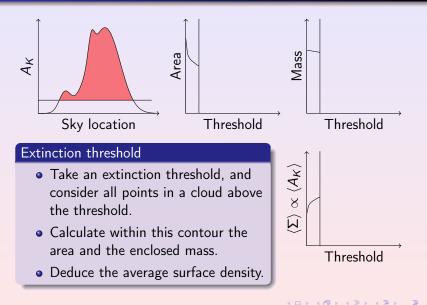
- Optical image (Wei-Hao Wang, IfA, Hawaii).
- 2MASS/NICER extinction map (Lombardi et al., 2011).
- Complementarity between red HII and green H₂ regions.
- Region shaped by supernova explosions, stellar winds, and UV radiation.
- Horsehead nebula seen as a protrusion of the extinction map.

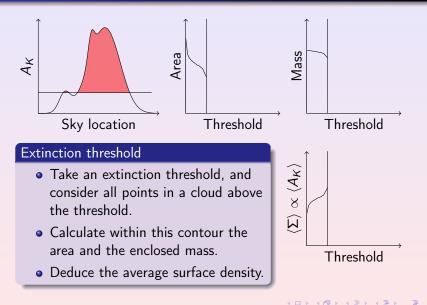
- Optical image (Wei-Hao Wang, IfA, Hawaii).
- 2MASS/NICER extinction map (Lombardi et al., 2011).
- Complementarity between red HII and green H₂ regions.
- Region shaped by supernova explosions, stellar winds, and UV radiation.
- Horsehead nebula seen as a protrusion of the extinction map.

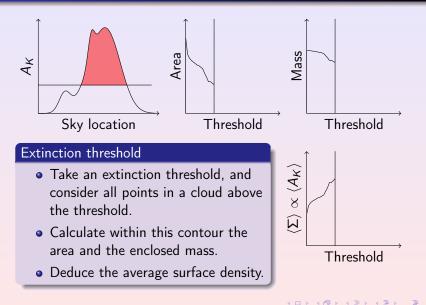
- Optical image (Wei-Hao Wang, IfA, Hawaii).
- 2MASS/NICER extinction map (Lombardi et al., 2011).
- Complementarity between red HII and green H₂ regions.
- Region shaped by supernova explosions, stellar winds, and UV radiation.
- Horsehead nebula seen as a protrusion of the extinction map.

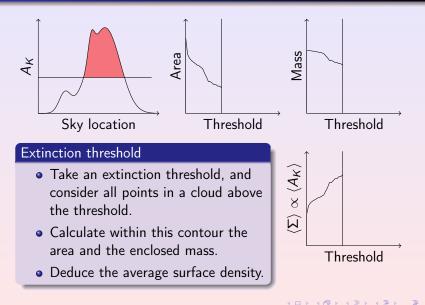
- Optical image (Wei-Hao Wang, IfA, Hawaii).
- 2MASS/NICER extinction map (Lombardi et al., 2011).
- Complementarity between red HII and green H₂ regions.
- Region shaped by supernova explosions, stellar winds, and UV radiation.
- Horsehead nebula seen as a protrusion of the extinction map.

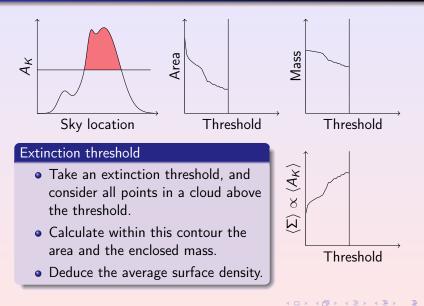

- Optical image (Wei-Hao Wang, IfA, Hawaii).
- 2MASS/NICER extinction map (Lombardi et al., 2011).
- Complementarity between red HII and green H₂ regions.
- Region shaped by supernova explosions, stellar winds, and UV radiation.
- Horsehead nebula seen as a protrusion of the extinction map.

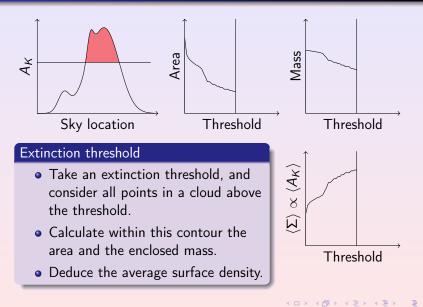

Section 3

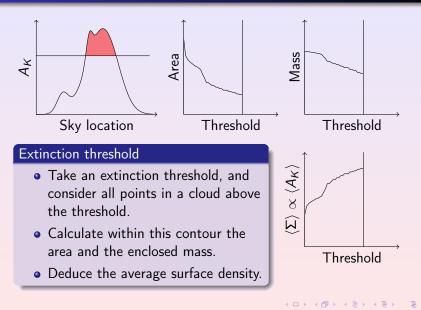

Analysis

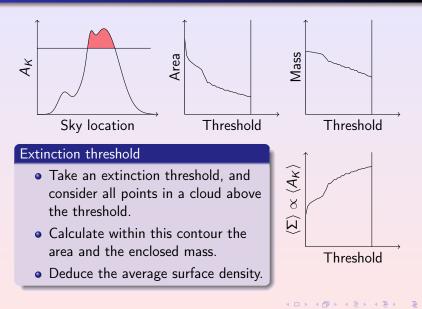

M. Lombardi Larson's laws

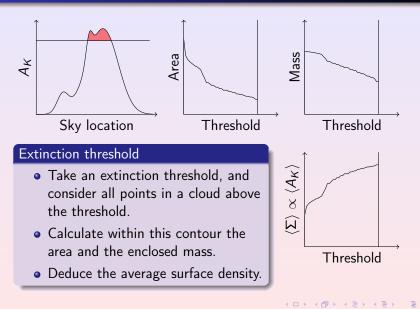

◆□ → ◆□ → ◆ □ → ◆ □ → ○ □ =

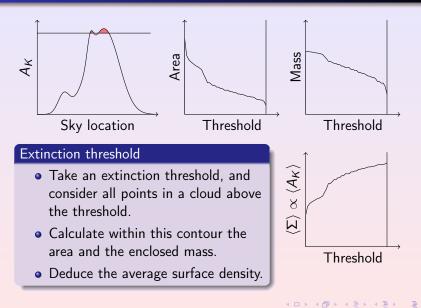


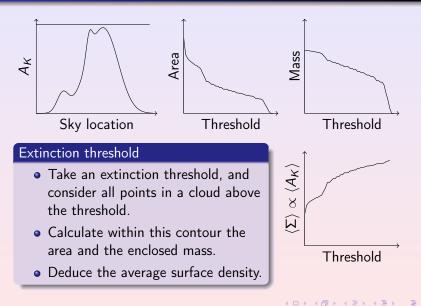












Larson's 3rd law revised Lomnbardi et al. (2010)

Ambiguities

Two ways of considering Larson's 3rd law:

- A "comparative" version, where one studies different clouds at the same extinction threshold.
- ② An "internal" version, where one verifies the $M(R) \propto R^2$ prediction on a single clout at different extinction thresholds.

Larson used a mixture of the two!

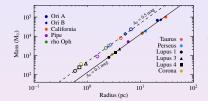
Extinction helps!

- We have a complete description of the projected mass density of many different molecular clouds.
- Best conditions to revised the validity of both versions of Larson's 3rd law.

Larson's 3rd law revised Lomnbardi et al. (2010)

Ambiguities

Two ways of considering Larson's 3rd law:

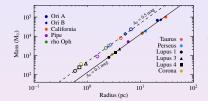

- A "comparative" version, where one studies different clouds at the same extinction threshold.
- ② An "internal" version, where one verifies the $M(R) \propto R^2$ prediction on a single clout at different extinction thresholds.

Larson used a mixture of the two!

Extinction helps!

- We have a complete description of the projected mass density of many different molecular clouds.
- Best conditions to revised the validity of both versions of Larson's 3rd law.

イロト イヨト イヨト イヨト

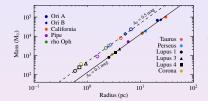

Threshold A ₀	а	γ	Scatter
(mag)	$(M_{\odot} pc^{-\gamma})$		(percent)
0.1	41.2	1.99	11%
0.2	73.1	1.96	12%
0.5	149.0	2.01	14%
1.0	264.2	2.06	12%
1.5	379.8	2.07	14%

<<p>(日)、

.∃ →

Results

- All clouds follow exquisitely a Larson-type relationship $M = aR^{\gamma}$, with $\gamma \simeq 2$.
- Clouds have very similar average surface densities within the same extinction threshold contour.
- The scatter is always below 15%.



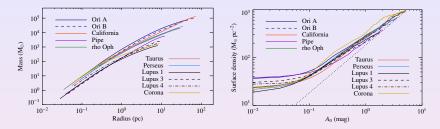
Threshold A ₀	а	γ	Scatter
(mag)	$(M_{\odot} pc^{-\gamma})$		(percent)
0.1	41.2	1.99	11%
0.2	73.1	1.96	12%
0.5	149.0	2.01	14%
1.0	264.2	2.06	12%
1.5	379.8	2.07	14%

.∃ →

Results

- All clouds follow exquisitely a Larson-type relationship $M = aR^{\gamma}$, with $\gamma \simeq 2$.
- Clouds have very similar average surface densities within the same extinction threshold contour.
- The scatter is always below 15%.

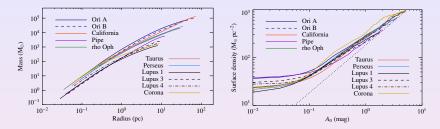
Threshold A ₀	а	γ	Scatter
(mag)	$(M_{\odot} pc^{-\gamma})$		(percent)
0.1	41.2	1.99	11%
0.2	73.1	1.96	12%
0.5	149.0	2.01	14%
1.0	264.2	2.06	12%
1.5	379.8	2.07	14%


Results

- All clouds follow exquisitely a Larson-type relationship $M = aR^{\gamma}$, with $\gamma \simeq 2$.
- Clouds have very similar average surface densities within the same extinction threshold contour.
- The scatter is always below 15%.

< ∃→

Larson's 3d law for single clouds

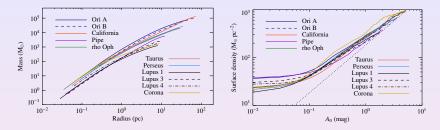

Results

- Cloud M(R) plots have similar thrends, but span a relatively large range of masses.
- Best fit for R ∈ [0.1, 1] pc is M(R) = 380 M_☉(R/pc)^{1.6} (see also Kayffmann et al. 2010).
- Small scatter in exponent, large in mass.
- Power-law index significantly different from 2!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

Larson's 3d law for single clouds

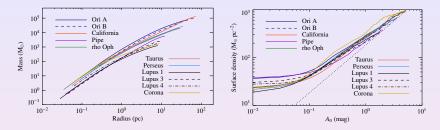


Results

- Cloud M(R) plots have similar thrends, but span a relatively large range of masses.
- Best fit for R ∈ [0.1, 1] pc is M(R) = 380 M_☉(R/pc)^{1.6} (see also Kayffmann et al. 2010).
- Small scatter in exponent, large in mass.
- Power-law index significantly different from 2!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Larson's 3d law for single clouds



Results

- Cloud M(R) plots have similar thrends, but span a relatively large range of masses.
- Best fit for R ∈ [0.1, 1] pc is M(R) = 380 M_☉(R/pc)^{1.6} (see also Kayffmann et al. 2010).
- Small scatter in exponent, large in mass.
- Power-law index significantly different from 2!

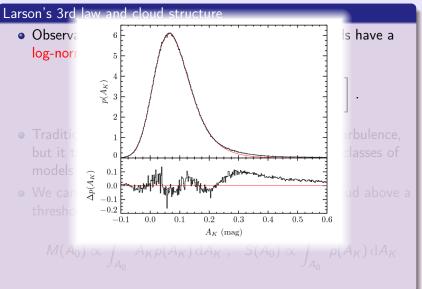
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Larson's 3d law for single clouds

Results

- Cloud M(R) plots have similar thrends, but span a relatively large range of masses.
- Best fit for R ∈ [0.1, 1] pc is M(R) = 380 M_☉(R/pc)^{1.6} (see also Kayffmann et al. 2010).
- Small scatter in exponent, large in mass.
- Power-law index significantly different from 2!

イロト イヨト イヨト イヨト


Larson's 3rd law and cloud structure

• Observations have long established that many clouds have a log-normal distribution at low extinctions:

$$p(A_{\mathcal{K}}) = \frac{1}{\sqrt{2\pi}\sigma A_{\mathcal{K}}} \exp\left[-\frac{(\ln A_{\mathcal{K}} - \ln A_1)^2}{2\sigma^2}\right]$$

- Traditionally, log-normality is linked to supersonic turbulence, but it turns out it is a common feature of different classes of models (Tassis et al. 2010).
- We can express the mass M and the area S of a cloud above a threshold A_0 as simple integrals of $\rho(A_K)$:

$$M(A_0) \propto \int_{A_0}^\infty A_K p(A_K) \,\mathrm{d}A_K \;, \;\; S(A_0) \propto \int_{A_0}^\infty p(A_K) \,\mathrm{d}A_K$$

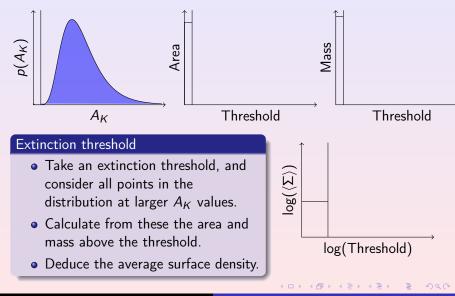
Larson's 3rd law and cloud structure

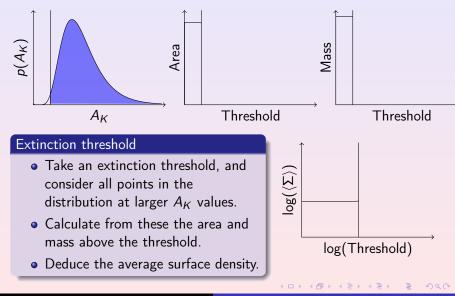
• Observations have long established that many clouds have a log-normal distribution at low extinctions:

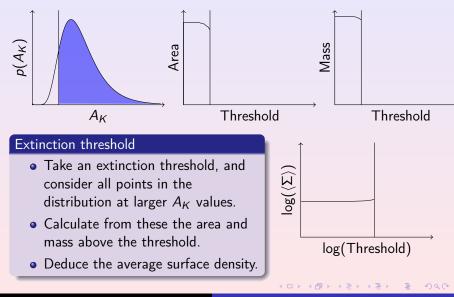
$$p(A_{\mathcal{K}}) = \frac{1}{\sqrt{2\pi}\sigma A_{\mathcal{K}}} \exp\left[-\frac{(\ln A_{\mathcal{K}} - \ln A_1)^2}{2\sigma^2}\right]$$

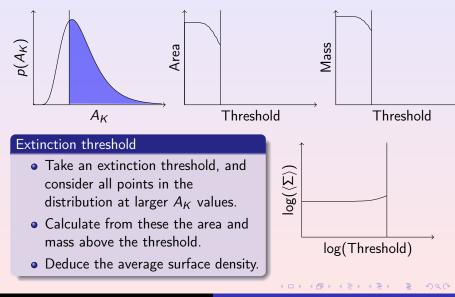
- Traditionally, log-normality is linked to supersonic turbulence, but it turns out it is a common feature of different classes of models (Tassis et al. 2010).
- We can express the mass *M* and the area *S* of a cloud above a threshold A₀ as simple integrals of *p*(A_K):

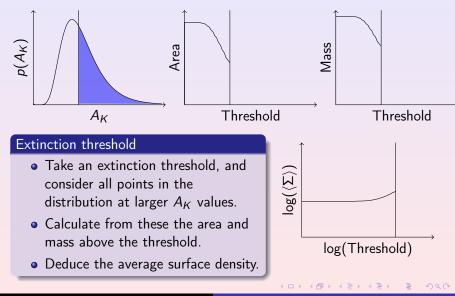
$$M(A_0) \propto \int_{A_0}^{\infty} A_K p(A_K) \,\mathrm{d}A_K \;, \;\; S(A_0) \propto \int_{A_0}^{\infty} p(A_K) \,\mathrm{d}A_K$$

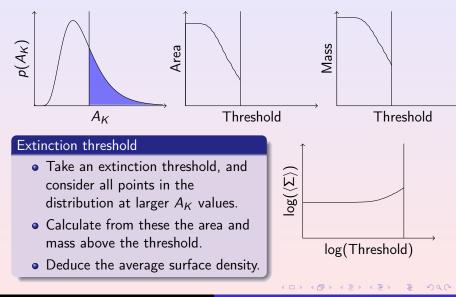

Larson's 3rd law and cloud structure

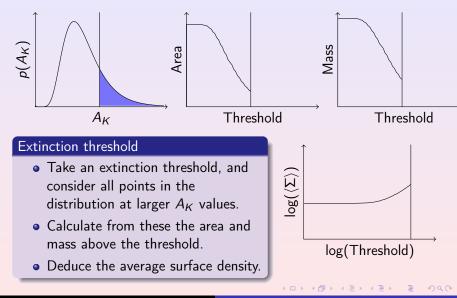

• Observations have long established that many clouds have a log-normal distribution at low extinctions:

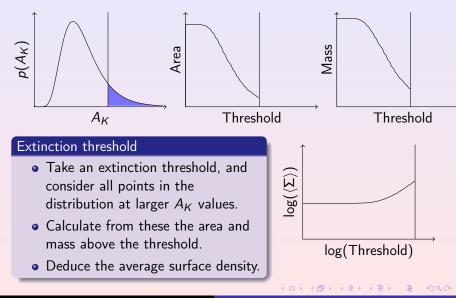

$$p(A_{\mathcal{K}}) = \frac{1}{\sqrt{2\pi}\sigma A_{\mathcal{K}}} \exp\left[-\frac{(\ln A_{\mathcal{K}} - \ln A_1)^2}{2\sigma^2}\right]$$

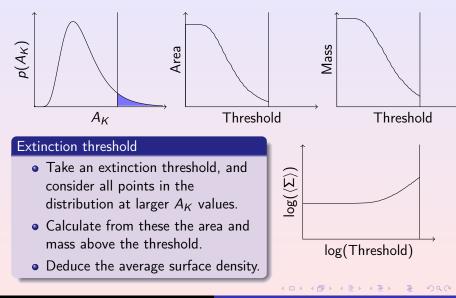

- Traditionally, log-normality is linked to supersonic turbulence, but it turns out it is a common feature of different classes of models (Tassis et al. 2010).
- We can express the mass M and the area S of a cloud above a threshold A₀ as simple integrals of p(A_K):

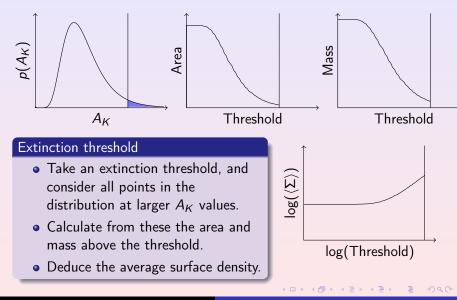

$$M(A_0) \propto \int_{A_0}^{\infty} A_K p(A_K) \, \mathrm{d}A_K \;, \;\; S(A_0) \propto \int_{A_0}^{\infty} p(A_K) \, \mathrm{d}A_K$$

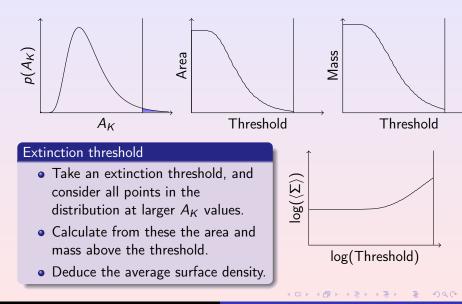


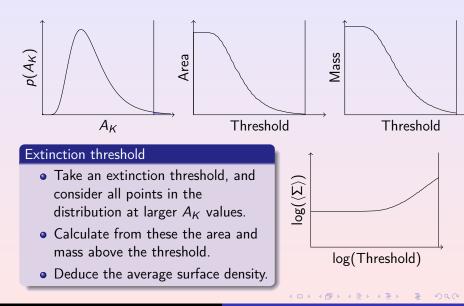


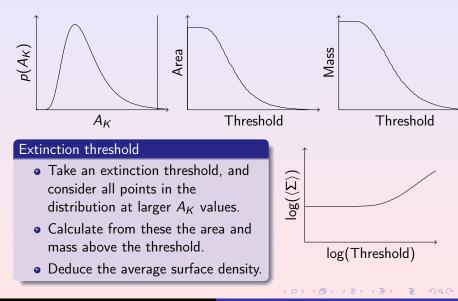


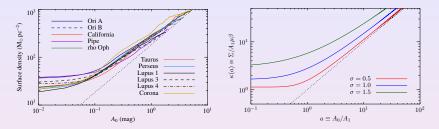










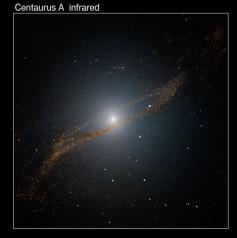


Log-normal distributions

Theoretical expectation

- This allows us to estimate the expected cloud surface density above an extinction threshold.
- Qualitatively, we recover the observed curves.
- The scatter among different clouds can be kept small if the relative scatter of the log-normal parameters A_1 and σ is small (which is).

(日) (部) (目) (日)


Open issues

Still quite a lot...

- Log-normality only works at low extinction:
 - What is the role of cores for Larson's law?
 - How is the deviation from log-normality related to stellar formation?
- Why do clouds follow log-normal distributions?
 - What is the role of turbulence, isothermality, magnetic fields. . .
- Why do cloud have relatively similar log-normal parameters A₁ and (especially) σ?
 - In turbulence models σ is related to the cloud Mach number. Are the similar σ related to universality of turbulence for the size-linewidth relation?
- What is of Larson's 3rd law in external galaxies?
 - Can we use extinction techniques outside the Milky Way?

Centaurus A visible

Credit: Y. Beletsky

References I

- Alves, J., Lada, C. J., and Lada, E. A. (2001). Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight. *Nature*, 409:159–161.
- Ballesteros-Paredes, J. (2006). Six myths on the virial theorem for interstellar clouds. *MNRAS*, 372:443–449.
- Bohlin, R. C., Savage, B. D., and Drake, J. F. (1978). A survey of interstellar H I from L-alpha absorption measurements. *ApJ*, 224:132–142.
- Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F., and Blitz, L. (2008). The Resolved Properties of Extragalactic Giant Molecular Clouds. *ApJ*, 686:948–965.
- Dame, T. M., Elmegreen, B. G., Cohen, R. S., and Thaddeus, P. (1986). The largest molecular cloud complexes in the first galactic quadrant. *ApJ*, 305:892–908.
- Heyer, M., Krawczyk, C., Duval, J., and Jackson, J. M. (2009). Re-Examining Larson's Scaling Relationships in Galactic Molecular Clouds. *ApJ*, 699:1092–1103.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

References II

Heyer, M. H., Carpenter, J. M., and Snell, R. L. (2001). The Equilibrium State of Molecular Regions in the Outer Galaxy. *ApJ*, 551:852–866.

Kolmogorov, A. N. (1941). Turbolence. Dokl. Akad. Nauk SSSR, 30:301-305.

- Lada, C. J., Lada, E. A., Clemens, D. P., and Bally, J. (1994). Dust extinction and molecular gas in the dark cloud IC 5146. *ApJ*, 429:694–709.
- Larson, R. B. (1981). Turbulence and star formation in molecular clouds. MNRAS, 194:809–826.
- Lombardi, M. (2009). nicest, a near-infrared color excess method tailored to small-scale structures. *A&A*, 493:735–745.
- Lombardi, M. and Alves, J. (2001). Mapping the interstellar dust with near-infrared observations: An optimized multi-band technique. *A&A*, 377:1023–1034.
- Lombardi, M., Alves, J., and Lada, C. J. (2006). 2MASS wide field extinction maps. I. The Pipe nebula. *A&A*, 454:781–796.
- Rieke, G. H. and Lebofsky, M. J. (1985). The interstellar extinction law from 1 to 13 microns. *ApJ*, 288:618–621.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

References III

- Sanders, D. B., Scoville, N. Z., and Solomon, P. M. (1985). Giant molecular clouds in the Galaxy. II - Characteristics of discrete features. *ApJ*, 289:373–387.
- Savage, B. D. and Mathis, J. S. (1979). Observed properties of interstellar dust. ARA&A, 17:73-111.
- Scalo, J. (1990). Perception of interstellar structure Facing complexity. In R. Capuzzo-Dolcetta, C. Chiosi, & A. di Fazio, editor, *Physical Processes in Fragmentation and Star Formation*, volume 162 of *Astrophysics and Space Science Library*, pages 151–176.
- Solomon, P. M., Rivolo, A. R., Barrett, J., and Yahil, A. (1987). Mass, luminosity, and line width relations of Galactic molecular clouds. *ApJ*, 319:730–741.
- Vazquez-Semadeni, E., Ballesteros-Paredes, J., and Rodriguez, L. F. (1997). A Search for Larson-Type Relations in Numerical Simulations of the ISM: Evidence for Nonconstant Column Densities. *ApJ*, 474:292.

< 日 > (四 > (四 > (三 > (三 >))))