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The Standard Model of Elementary Particle
Physics does not solve everything:

Hierarchy problem
Neutrino masses & mixings
Dark Matter

Dark Energy

mm) Physics beyond the SM needed!!
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Prime example: models for neutrino masses

e experimental facts:
MAINZ/Toitsk =» me<2.2eV
Heidelberg-Moscow = |m__ |<1leV
WMAP 7 years + BAO + SN =» 2<0.7eV
oscillations =» Am*.=7.6x107eV?, Am?,=2.4x103eV"
=» conclusion: m, < 1eV, but non-zero!
* BUT: Standard Model =» m =0
with N; =» m_ should be around v=174 GeV
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Possible explanations: c ¢
| Ng X(NR)I (vr)
e seesaw mechanism type I: i M>>v

X
(H)=v

=» light neutrino mass matrix:

—mp Mz mp

=» suppression due to large M, =» eV-scale mass!
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Possible explanations:
e seesaw mechanism type lI: Higgs triplet needed

=» suppression due to M;; & possible cancellation!
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Possible explanations:
* radiative mass: e.g. scotogenic model

@) (¢ Ma: Phys. Rev. D73
(2006) 077301

1-loop computation

AL — M, m?(HY) In m?(HY) B
© 7 16m2 [ m2(HO) — M2 M?

=» Loop-suppression with M;~1TeV!
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* Neutrino mixing: mass basis # flavour basis

Schwetz, Tortola Valle
1103.0734 [hep-ph]

http://nu.phys.laurentian.ca/~fleurot/oscillations/
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* BE CAREFUL WITH TERMINOLOGY:

SCENARIO | Provides a fram.ework that
includes keV sterile neutrinos

examples: vMISM, gauge extensions,...

=» provide all features needed for
phenomenological calculations

Explains the appearance and
MODEL ,
the mass pattern of keV v's

examples: to be discussed here =» provide
an “explanation” for what is measured
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e QUESTION: Can we also build models that involve
one sterile neutrino with a keV-scale mass?!?

=>» explanation of the keV mass scale

=» connection between neutrino flavour sector and Dark Matter
=>» strong constraints for seesaw mechanism (keV too light?!?)
=> splitting of N.-masses cries for a flavour symmetry

=>» sterile v models can be probed with light v experiments

up to now: only 3 existing classes of models that give an explanation
for the mass pattern keV-heavy-heavy (to my knowledge)
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first strong model for keV sterile v DM: “Dark Matter
from Split Seesaw” (Kusenko, Takahashi, Yanagida:
Phys. Lett. B693 (2010) 144)

* idea: use the splitting
between SM brane and
hidden brane

* heavy neutrinos on . My~10"1GeV
hidden brane, only
exponentially suppressed
effect on SM brane

* explains M, ~keV <<
M,~10 GeV < M,

My>M,
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d*x dy M (z U040 + mI v )

standard 4D part 5th dimension integrated out
e zero mode fermion (n=0): ("if505 + 7‘72)\11(0) — ()
=>» bulk profile:
=» Z,-parity for LH & RH spinors to obtain chiral fermions in 4D:

Zo parity —1 and +1 to y and

=>» then, only Y has a zero mode in the bulk (with exp-profile)
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bulk profile (SM at y=0)

exponential suppression

separation of branes
* integrating out the 5th dimension:

S = /lzdz/{\[ (z\If FAO \If —1—m \Isz\If )

H .

+5(y) (7 5 L 000 43, 59, o+h.c.)}
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. exponential suppression
Vg determines due to bulk profile
4D RH-mass

the natural size of
the N, mass

=>» Extreme splitting between N;-masses!!! ¢/
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vy determines
the natural size of
the N, mass

seesaw works: (e2™-1)-terms cancel between A2 and M,
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first model explaining keV sterile v DM with L-L -L_
symmetry: Lindner, AM, Niro; JCAP 1101: 034, 2011

Grimus & Lavoura [JHEP 0009: 007, 2000]: L,-L -L for 3 light & 2 heavy
neutrinos =@ already shows the desired spectrum for light neutrinos

Our model: application of the same symmetry to the heavy sector
=>» generates just the splitting that is desired

F=L.-L -L: global U(1)-symmetry, f, transforms as e'® f, with ®=const.

Ler, | Lur | Ly ler | pr | TR | Nir | Nar | Nsr | ¢ | A
F 1 —1 ] —1 1 [ -1 -1 1 —1 —1 (O] O

=>» only symmetry-preserving combinations of fields are allowed!
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* then, only certain contributions to the mass terms are allowed:
=» right-handed Majorana mass:

Emass — _A[}:{Q (NIR)C N2R — 1’1\[]1%3 (ATIR)C NBR

=» Dirac mass term through Higgs doublet Yukawa couplings:

Emass — _YBI L_eLQBNlR — Ygz L_uLCE;NQR — Ygg L_uLCgN?,R —
Y2 T ¢ Non — Y3 Tr1 6 Nap + hec

=» type Il term through Higgs triplet Yukawa coupling:

‘Cmass — _YE# (LGL)C (QO'ZA) L/.LL — YET (Le_L)C (ZUQA) LTL
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=>» light neutrino spectrum: (0,m,m) = nearly okay (degeneracy...)
=>» heavy neutrino spectrum: (0,M,M) =» N, massless instead of keV

HOWEVER: flavour symmetries must always be broken for
phenomenological reasons = this will lift the massless states

and destroy the degeneracy
(similar idea: Shaposhnikov, Nucl. Phys. B763 (2007) 49)
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4. Soft breaking of L-L -L. symmetry
_ IDEA: since the

symmetry is not
phenomenologically
valid, it must be
broken =» “soft
breaking terms” (no
A\*-divergences) that
must be SMALLER
than the symmetry-
preserving terms

EFFECT: these terms will give the previously massless state N,
a small mass, and the will also lift the degeneracy between
N, & N; = just what was desired!
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* problem: one can choose the soft-breaking terms more or less
arbitrarily, but any choice will only have a small effect
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=> perfectly possible to have M, ~ keV and M, ;> GeV!!!
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=> perfectly possible to have M, ~ keV and M, ;> GeV!!!
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4. Soft breaking of L-L -L. symmetry
s <<m;-mpy%/M; & S << M,

=> perfectly possible to have M, ~ keV and M, ;> GeV!!!

* simplifications: S

My n J
— (0.0486 eV
= 0.0494 eV
= (0.0004 eV

=>» we predict inverted mass ordering (in fact the exact spectrum)!
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4. Soft breaking of L-L -L. symmetry

* problem: we predict bimaximal instead of tri-bimaximal mixing

=> 0,,=0° & 0,,=45°: okay v' @l = 6,,=45°: excluded at > 60... ®

* way out: this mixing can come from the charged lepton sector
=>» we must assume one term in M, to be small

=» actually somehow natural due to larger radiative corrections
for charged leptons, but nevertheless only an assumption
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Froggatt & Nielsen: Nucl. Phys. B147, 277 (1979)

* idea: the different generations are differently charged
under a new U(1);, symmetry
* in addition, there is a high energy sector of fermions and

scalars; the latter develop VEVs to break the symmetry
* this leads to multiple seesaw-like diagrams:

Nr F, F, F; F4 (Ng) > integrati-ng out the
! ! ' ' ' heavy fermions leads to:
m~M A8, where A=<0>/A
) (D) (D) (D) (D)
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crucial point: the FN-charges of the RH-neutrinos drop
out in the seesaw formula, like any global U(1)

=>» seesaw mechanism guaranteed to work (no keV problem)!
=> light neutrino mass matrix only depends on the charges of v,




5. A Froggatt-Nielsen Model

Goal: find MINIMAL assignments for RH-neutrinos




5. A Froggatt-Nielsen Model

Goal: find MINIMAL assignments for RH-neutrinos

* key point: for the charges (g,,8,,85), we need at least
g,28,+3 in order to create the required hierarchy




5. A Froggatt-Nielsen Model

Goal: find MINIMAL assignments for RH-neutrinos

* key point: for the charges (g,,8,,85), we need at least
g,28,+3 in order to create the required hierarchy

* two example scenarios: A=(3,0,0) & B=(4,1,0)




5. A Froggatt-Nielsen Model

Goal: find MINIMAL assignments for RH-neutrinos

* key point: for the charges (g,,8,,85), we need at least
g,28,+3 in order to create the required hierarchy

* two example scenarios: A=(3,0,0) & B=(4,1,0)

ME Bs s\ MJP2By X3 MEBRByAY
. MZBy )2 0, MZR)
) P ]\133




5. A Froggatt-Nielsen Model

Goal: find MINIMAL assignments for RH-neutrinos

* key point: for the charges (g,,8,,85), we need at least
g,28,+3 in order to create the required hierarchy

* two example scenarios: A=(3,0,0) & B=(4,1,0)

ME Bs s\ MJP2By X3 MEBRByAY
. MZBy )2 0, MZR)
) P ]\133

=>» scenario A: M;=M, A°* O(1), M,=M,, M;=M, [1 + A®° O(1)]




5. A Froggatt-Nielsen Model

Goal: find MINIMAL assignments for RH-neutrinos

* key point: for the charges (g,,8,,85), we need at least
g,28,+3 in order to create the required hierarchy

* two example scenarios: A=(3,0,0) & B=(4,1,0)

ME Bs s\ MJP2By X3 MEBRByAY
. MZBy )2 0, MZR)
. . NI

=>» scenario A: M;=M, A°* O(1), M,=M,, M;=M, [1 + A®° O(1)]

=>» scenario B: M =M, A% O(1), M,=M, A%, M;=M, [1 + A2 O(1)]
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Goal: find MINIMAL assignments for RH-neutrinos

* key point: for the charges (g,,8,,85), we need at least
g,28,+3 in order to create the required hierarchy

* two example scenarios: A=(3,0,0) & B=(4,1,0)

~ ~ ~

]\[}121 36,8)‘6’8 ]\[}1%2 B2§4>\3’5 ]\/f%{gRBQ/\SA
(A,B ' ~ ' ~
My = o MEBy,\"? 0, MFRA
133
® 0 ]\“[R

=>» scenario A: M;=M, A°* O(1), M,=M,, M;=M, [1 + A®° O(1)]
=>» scenario B: M =M, A% O(1), M,=M, A%, M;=M, [1 + A2 O(1)]

=» vield just the required spectra of the sterile neutrinos!!
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Froggatt-Nielsen charge assignment is not as arbitrary
as it may look, when combined with other
requirements (in the context of keV neutrinos!):

needs two FN-fields to combine predictivity and €R
incompatible with left-right symmetry

excludes bimaximal mixing from neutrino sector
GUTs: favors SU(5), disfavors SO(10)

disfavors democratic Yukawa couplings

nice feature: RGE-effects negligible (due to tiny y)
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We could show: with mild deviations from democratic
assignments, one can find fully working models
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no need to say here: keV sterile neutrinos are an
interesting candidate for Warm Dark Matter ©

up to now: scenarios rather than models
Randall-Sundrum model: exp-suppression

L.-L-L.: soft breaking makes massless N; massive

Froggatt-Nielsen: multiple seesaw-like diagrams

all models: deep connections between Dark Matter
and light neutrino sector

=>» We can look forward to more interesting ideas!!!
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