Neutrino Model Building & keV sterile neutrino Dark Matter

Alexander Merle
Royal Institute of Technology (KTH)
Stockholm, Sweden

Based on: JCAP 1101: **034**, 2011 (Lindner, **AM**, Niro) 1105.5136 [hep-ph] (**AM** & Niro)

"Ecole Internationale d'Astrophysique Daniel Chalonge"
09 June 2011

Don't forget to say: THANK YOU!!!

to my collaborators:

Manfred Lindner

Viviana Niro

Don't forget to say: THANK YOU!!!

to my collaborators:

Manfred Lindner

Viviana Niro

 and in particular to Norma and Hector for inviting me to this great workshop!!!

Don't forget to say: THANK YOU!!!

to my collaborators:

Manfred Lindner

Viviana Niro

 and in particular to Norma and Hector for inviting me to this great workshop!!!

THANK YOU!!!

Contents:

- 1. Introduction
- 2. Neutrino phenomenology & models
- 3. A Randall-Sundrum Model
- 4. Soft breaking of L_e - L_u - L_τ symmetry
- 5. A Model based on Froggatt-Nielsen
- 6. Conclusions

The Standard Model of Elementary Particle
Physics does not solve everything:

The Standard Model of Elementary Particle
Physics does not solve everything:

Hierarchy problem

The Standard Model of Elementary Particle Physics does not solve everything:

- Hierarchy problem
- Neutrino masses & mixings

The Standard Model of Elementary Particle Physics does not solve everything:

- Hierarchy problem
- Neutrino masses & mixings
- Dark Matter

The Standard Model of Elementary Particle Physics does not solve everything:

- Hierarchy problem
- Neutrino masses & mixings
- Dark Matter
- Dark Energy

The Standard Model of Elementary Particle Physics does not solve everything:

- Hierarchy problem
- Neutrino masses & mixings
- Dark Matter
- Dark Energy
- •

The Standard Model of Elementary Particle Physics does not solve everything:

- Hierarchy problem
- Neutrino masses & mixings
- Dark Matter
- Dark Energy
- •

Physics beyond the SM needed!!

Prime example: models for neutrino masses

Prime example: models for neutrino masses

Prime example: models for neutrino masses

experimental facts:

MAINZ/Toitsk \rightarrow m_{β}<2.2eV \rightarrow KATRIN

Prime example: models for neutrino masses

experimental facts:

MAINZ/Toitsk \rightarrow m_{β}<2.2eV \rightarrow KATRIN

Heidelberg-Moscow → |m_{ee}|<1eV → GERDA

Prime example: models for neutrino masses

```
MAINZ/Toitsk \rightarrow m<sub>\beta</sub><2.2eV \rightarrow KATRIN
Heidelberg-Moscow \rightarrow |m_{ee}|<1eV \rightarrow GERDA
WMAP 7 years + BAO + SN \rightarrow \Sigma<0.7eV \rightarrow Planck
```

Prime example: models for neutrino masses

```
MAINZ/Toitsk \rightarrow m<sub>\beta</sub><2.2eV \rightarrow KATRIN
Heidelberg-Moscow \rightarrow |m_{ee}|<1eV \rightarrow GERDA
WMAP 7 years + BAO + SN \rightarrow \Sigma<0.7eV \rightarrow Planck
oscillations \rightarrow \Delta m^2_S=7.6\times10^{-5}eV^2, \Delta m^2_A=2.4\times10^{-3}eV^2
```

Prime example: models for neutrino masses

```
MAINZ/Toitsk \rightarrow m<sub>\beta</sub><2.2eV \rightarrow KATRIN
Heidelberg-Moscow \rightarrow |m<sub>ee</sub>|<1eV \rightarrow GERDA
WMAP 7 years + BAO + SN \rightarrow \Sigma<0.7eV \rightarrow Planck
oscillations \rightarrow \Delta m^2_S=7.6×10<sup>-5</sup>eV<sup>2</sup>, \Delta m^2_A=2.4×10<sup>-3</sup>eV<sup>2</sup>
\rightarrow conclusion: m<sub>\nu</sub>< 1eV, but non-zero!
```

Prime example: models for neutrino masses

experimental facts:

BUT: Standard Model → m_v=0

```
MAINZ/Toitsk \rightarrow m<sub>\beta</sub><2.2eV \rightarrow KATRIN
Heidelberg-Moscow \rightarrow |m_{ee}|<1eV \rightarrow GERDA
WMAP 7 years + BAO + SN \rightarrow \Sigma<0.7eV \rightarrow Planck
oscillations \rightarrow \Delta m^2_S=7.6\times10^{-5}eV^2, \Delta m^2_A=2.4\times10^{-3}eV^2
\rightarrow conclusion: m_{\nu}<1eV, but non-zero!
```

Prime example: models for neutrino masses

experimental facts:

```
MAINZ/Toitsk \rightarrow m<sub>\beta</sub><2.2eV \rightarrow KATRIN
Heidelberg-Moscow \rightarrow |m_{ee}|<1eV <math>\rightarrow GERDA
WMAP 7 years + BAO + SN \rightarrow \Sigma<0.7eV <math>\rightarrow Planck
oscillations \rightarrow \Delta m^2_S=7.6\times10^{-5}eV^2, \Delta m^2_A=2.4\times10^{-3}eV^2
\rightarrow conclusion: m_{\nu}<1eV, but non-zero!
```

• BUT: Standard Model \rightarrow m_v=0 with N_R \rightarrow m_v should be around v=174 GeV

Possible explanations:

seesaw mechanism type I: at least 2 N_R needed

Possible explanations:

seesaw mechanism type I: at least 2 N_R needed

Dirac mass: ~100 GeV

Possible explanations:

seesaw mechanism type I: at least 2 N_R needed

RH-Majorana mass: ~10¹³ GeV

Dirac mass: ~100 GeV

Possible explanations:

seesaw mechanism type I: at least 2 N_R needed

Dirac mass: ~100 GeV

SEESAW TYPE I

 $(N_R)^c$

Possible explanations:

seesaw mechanism type I:

Possible explanations:

seesaw mechanism type I:

$$(\overline{\nu_L}, \overline{(N_R)^C}) \begin{pmatrix} 0 & m_D \\ \overline{m_D^T} & M_R \end{pmatrix} \begin{pmatrix} (\nu_L)^C \\ N_R \end{pmatrix}$$
v $\langle H \rangle = v$

Possible explanations:

seesaw mechanism type I:

$$(\overline{\nu_L}, \overline{(N_R)^C}) \begin{pmatrix} 0 & m_D \\ \overline{m_D^T} & M_R \end{pmatrix} \begin{pmatrix} (\nu_L)^C \\ N_R \end{pmatrix}$$
v $\langle H \rangle = v$

→ light neutrino mass matrix:

$$-m_D^T M_R^{-1} m_D$$

Possible explanations:

seesaw mechanism type I:

$$(\overline{\nu_L}, \overline{(N_R)^C}) \begin{pmatrix} 0 & m_D \\ \overline{m_D^T} & M_R \end{pmatrix} \begin{pmatrix} (\nu_L)^C \\ N_R \end{pmatrix}$$
v $\langle H \rangle = v$

→ light neutrino mass matrix:

$$-m_D^T M_R^{-1} m_D$$

 \rightarrow suppression due to large $M_R \rightarrow$ eV-scale mass!

Possible explanations:

seesaw mechanism type II:

Possible explanations:

seesaw mechanism type II: Higgs triplet needed

Possible explanations:

seesaw mechanism type II: Higgs triplet needed

Possible explanations:

seesaw mechanism type II: Higgs triplet needed

Possible explanations:

seesaw mechanism type II: Higgs triplet needed

 \rightarrow suppression due to $M_{T,R}$ & possible cancellation!

Possible explanations:

radiative mass:

Possible explanations:

radiative mass: e.g. scotogenic model

Possible explanations:

radiative mass: e.g. scotogenic model

Ma: Phys. Rev. **D73** (2006) 077301

Possible explanations:

radiative mass: e.g. scotogenic model

Possible explanations:

radiative mass: e.g. scotogenic model

$$\Lambda_k = \frac{M_k}{16\pi^2} \left[\frac{m^2(H^0)}{m^2(H^0) - M_k^2} \ln\left(\frac{m^2(H^0)}{M_k^2}\right) - \frac{m^2(A^0)}{m^2(A^0) - M_k^2} \ln\left(\frac{m^2(A^0)}{M_k^2}\right) \right]$$

Possible explanations:

radiative mass: e.g. scotogenic model

$$\Lambda_k = \frac{M_k}{16\pi^2} \left[\frac{m^2(H^0)}{m^2(H^0) - M_k^2} \ln\left(\frac{m^2(H^0)}{M_k^2}\right) - \frac{m^2(A^0)}{m^2(A^0) - M_k^2} \ln\left(\frac{m^2(A^0)}{M_k^2}\right) \right]$$

→ Loop-suppression with M_R~1TeV!

Neutrino mixing: mass basis ≠ flavour basis

Neutrino mixing: mass basis ≠ flavour basis

http://nu.phys.laurentian.ca/~fleurot/oscillations/

Neutrino mixing: mass basis ≠ flavour basis

$$\theta_{12}$$
=34°
 θ_{23} =45°
 θ_{13} <11°

Schwetz, Tórtola Vallé 1103.0734 [hep-ph]

http://nu.phys.laurentian.ca/~fleurot/oscillations/

further puzzles in neutrino physics:

Normal or inverted ordering?

further puzzles in neutrino physics:

Normal or inverted ordering?

Dirac or Majorana?

further puzzles in neutrino physics:

Normal or inverted ordering?

Dirac or Majorana?

To be explained by models!!

BE CAREFUL WITH TERMINOLOGY:

Provides a framework that includes keV sterile neutrinos

examples: vMSM, gauge extensions,...

provide all features needed for phenomenological calculations

BE CAREFUL WITH TERMINOLOGY:

Provides a framework that includes keV sterile neutrinos

examples: vMSM, gauge extensions,...

provide all features needed for phenomenological calculations

Explains the appearance and the mass pattern of keV v's

examples: to be discussed here → provide an "explanation" for what is measured

 QUESTION: Can we also build models that involve one sterile neutrino with a keV-scale mass?!?

- **QUESTION**: Can we also build models that involve one sterile neutrino with a keV-scale mass?!?
 - explanation of the keV mass scale

- QUESTION: Can we also build models that involve one sterile neutrino with a keV-scale mass?!?
 - explanation of the keV mass scale
 - → connection between neutrino flavour sector and Dark Matter

- QUESTION: Can we also build models that involve one sterile neutrino with a keV-scale mass?!?
 - explanation of the keV mass scale
 - → connection between neutrino flavour sector and Dark Matter
 - → strong constraints for seesaw mechanism (keV too light?!?)

- QUESTION: Can we also build models that involve one sterile neutrino with a keV-scale mass?!?
 - explanation of the keV mass scale
 - → connection between neutrino flavour sector and Dark Matter
 - → strong constraints for seesaw mechanism (keV too light?!?)
 - → splitting of N_i-masses cries for a flavour symmetry

- QUESTION: Can we also build models that involve one sterile neutrino with a keV-scale mass?!?
 - explanation of the keV mass scale
 - → connection between neutrino flavour sector and Dark Matter
 - → strong constraints for seesaw mechanism (keV too light?!?)
 - → splitting of N_i-masses cries for a flavour symmetry
 - → sterile v models can be probed with light v experiments

- QUESTION: Can we also build models that involve one sterile neutrino with a keV-scale mass?!?
 - explanation of the keV mass scale
 - → connection between neutrino flavour sector and Dark Matter
 - → strong constraints for seesaw mechanism (keV too light?!?)
 - → splitting of N_i-masses cries for a flavour symmetry
 - → sterile v models can be probed with light v experiments

up to now: only 3 existing classes of models that give an explanation for the mass pattern keV-heavy-heavy (to my knowledge)

first strong model for keV sterile v DM: "Dark Matter from Split Seesaw" (Kusenko, Takahashi, Yanagida: Phys. Lett. **B693** (2010) 144)

first strong model for keV sterile v DM: "Dark Matter from Split Seesaw" (Kusenko, Takahashi, Yanagida: Phys. Lett. **B693** (2010) 144)

first strong model for keV sterile v DM: "Dark Matter from Split Seesaw" (Kusenko, Takahashi, Yanagida: Phys. Lett. **B693** (2010) 144)

 idea: use the splitting between SM brane and hidden brane

first strong model for keV sterile v DM: "Dark Matter from Split Seesaw" (Kusenko, Takahashi, Yanagida: Phys. Lett. **B693** (2010) 144)

- idea: use the splitting between SM brane and hidden brane
- heavy neutrinos on hidden brane, only exponentially suppressed effect on SM brane

first strong model for keV sterile v DM: "Dark Matter from Split Seesaw" (Kusenko, Takahashi, Yanagida: Phys. Lett. **B693** (2010) 144)

- idea: use the splitting between SM brane and hidden brane
- heavy neutrinos on hidden brane, only exponentially suppressed effect on SM brane
- explains M_1 ~keV << M_2 ~10¹¹ GeV < M_3

ansatz:

$$S = \int d^4x \, dy \, M \left(i \bar{\Psi} \Gamma^A \partial_A \Psi + m \bar{\Psi} \Psi \right)$$

ansatz:

$$S = \int d^4x \, dy \, M \left(i \bar{\Psi} \Gamma^A \partial_A \Psi + m \bar{\Psi} \Psi \right)$$

standard 4D part

• ansatz:

$$S = \int d^4x \, dy \, M \left(i \bar{\Psi} \Gamma^A \partial_A \Psi + m \bar{\Psi} \Psi \right)$$

standard 4D part

5th dimension integrated out

• ansatz:

$$S = \int d^4x \, dy \, M \left(i \bar{\Psi} \Gamma^A \partial_A \Psi + m \bar{\Psi} \Psi \right)$$

standard 4D part

5th dimension integrated out

zero mode fermion (n=0):

$$(i\Gamma^5\partial_5 + m)\Psi^{(0)} = 0$$

• ansatz:

$$S = \int d^4x \, dy \, M \left(i \bar{\Psi} \Gamma^A \partial_A \Psi + m \bar{\Psi} \Psi \right)$$

standard 4D part

5th dimension integrated out

zero mode fermion (n=0):

$$(i\Gamma^5\partial_5 + m)\Psi^{(0)} = 0$$

$$\rightarrow$$
 bulk profile: $\exp(\mp my)$

• ansatz:

$$S = \int d^4x \, dy \, M \left(i \bar{\Psi} \Gamma^A \partial_A \Psi + m \bar{\Psi} \Psi \right)$$

standard 4D part

5th dimension integrated out

zero mode fermion (n=0):

$$(i\Gamma^5\partial_5 + m)\Psi^{(0)} = 0$$

$$\rightarrow$$
 bulk profile: $\exp(\mp my)$

 \rightarrow Z₂-parity for LH & RH spinors to obtain chiral fermions in 4D:

$$Z_2$$
 parity -1 and $+1$ to χ and ψ

• ansatz:

$$S = \int d^4x \, dy \, M \left(i \bar{\Psi} \Gamma^A \partial_A \Psi + m \bar{\Psi} \Psi \right)$$

standard 4D part

5th dimension integrated out

zero mode fermion (n=0):

$$(i\Gamma^5\partial_5 + m)\Psi^{(0)} = 0$$

$$\rightarrow$$
 bulk profile: $\exp(\mp my)$

 \rightarrow Z₂-parity for LH & RH spinors to obtain chiral fermions in 4D:

$$Z_2$$
 parity -1 and $+1$ to χ and ψ

 \rightarrow then, only ψ has a zero mode in the bulk (with exp-profile)

• we want a canonically normalized right-handed fermion in 4D:

$$\Psi_R^{(0)}(y,x) = \sqrt{\frac{2m}{e^{2m\ell} - 1}} \frac{1}{\sqrt{M}} e^{my} \psi_R^{(4D)}(x)$$

• we want a canonically normalized right-handed fermion in 4D:

$$\Psi_R^{(0)}(y,x) = \sqrt{\frac{2m}{e^{2m\ell} - 1}} \frac{1}{\sqrt{M}} e^{my} \psi_R^{(4D)}(x)$$

exponential suppression

• we want a canonically normalized right-handed fermion in 4D:

$$\Psi_R^{(0)}(y,x) = \sqrt{\frac{2m}{e^{2m\ell} - 1}} \frac{1}{\sqrt{M}} e^{my} \psi_R^{(4D)}(x)$$

exponential suppression

separation of branes

• we want a canonically normalized right-handed fermion in 4D:

$$\Psi_R^{(0)}(y,x) = \sqrt{\frac{2m}{e^{2m\ell} - 1}} \frac{1}{\sqrt{M}} e^{my} \psi_R^{(4D)}(x)$$

exponential suppression

separation of branes

bulk profile (SM at y=0)

• we want a canonically normalized right-handed fermion in 4D:

$$\Psi_R^{(0)}(y,x) = \sqrt{\frac{2m}{e^{2m\ell} - 1}} \frac{1}{\sqrt{M}} e^{my} \psi_R^{(4D)}(x)$$

exponential suppression

4D fermion

separation of branes

bulk profile (SM at y=0)

• we want a canonically normalized right-handed fermion in 4D:

$$\Psi_R^{(0)}(y,x) = \sqrt{\frac{2m}{e^{2m\ell} - 1}} \frac{1}{\sqrt{M}} e^{my} \psi_R^{(4D)}(x)$$

exponential suppression

4D fermion

separation of branes

bulk profile (SM at y=0)

• integrating out the 5th dimension:

$$S = \int d^4x \, dy \left\{ M \left(i \bar{\Psi}_{iR}^{(0)} \Gamma^A \partial_A \Psi_{iR}^{(0)} + m_i \bar{\Psi}_{iR}^{(0)} \Psi_{iR}^{(0)} \right) + \delta(y) \left(\frac{\kappa_i}{2} v_{\text{B-L}} \bar{\Psi}_{iR}^{(0)c} \Psi_{iR}^{(0)} + \tilde{\lambda}_{i\alpha} \bar{\Psi}_{iR}^{(0)} L_{\alpha} \phi + \text{h.c.} \right) \right\}$$

• we obtain:
$$M_{Ri} = \kappa_i v_{\mathrm{B-L}} \frac{2m_i}{M(e^{2m_i\ell}-1)}$$

• we obtain:

$$M_{Ri} = \kappa_i v_{B-L} \frac{2m_i}{M(e^{2m_i\ell} - 1)}$$

4D RH-mass

 v_{B-L} determines the natural size of the N_R mass

exponential suppression due to bulk profile

• we obtain: $M_{\rm Di} = \kappa w_{\rm D}$

 $= \kappa_i v_{\mathrm{B-L}} \frac{2m_i}{M(e^{2m_i\ell} - 1)}$

4D RH-mass

 v_{B-L} determines the natural size of the N_R mass

exponential suppression due to bulk profile

→ Extreme splitting between N_R-masses!!! ✓

• we obtain:

$$M_{Ri} = \kappa_i v_{B-L} \frac{2m_i}{M(e^{2m_i\ell} - 1)}$$

4D RH-mass

 v_{B-L} determines the natural size of the N_R mass

exponential suppression due to bulk profile

- → Extreme splitting between N_R-masses!!! ✓
- light neutrinos:

$$(m_{\nu})_{\alpha\beta} = \sum_{i} \lambda_{i\alpha} \lambda_{i\beta} \frac{\langle \phi^{0} \rangle^{2}}{M_{Ri}}$$

• we obtain:

$$M_{Ri} = \kappa_i v_{B-L} \frac{2m_i}{M(e^{2m_i\ell} - 1)}$$

4D RH-mass

 v_{B-L} determines the natural size of the N_R mass

exponential suppression due to bulk profile

- → Extreme splitting between N_R-masses!!! ✓
- light neutrinos:

$$(m_{\nu})_{\alpha\beta} = \sum_{i} \lambda_{i\alpha} \lambda_{i\beta} \frac{\langle \phi^{0} \rangle^{2}}{M_{Ri}}$$

seesaw works: (e^{2ml} -1)-terms cancel between λ^2 and M_R

first model explaining keV sterile v DM with $L_e^-L_\mu^-L_\tau$ symmetry: Lindner, AM, Niro; JCAP 1101: 034, 2011

first model explaining keV sterile v DM with L_e - L_{μ} - L_{τ} symmetry: Lindner, **AM**, Niro; JCAP 1101: **034**, 2011

Grimus & Lavoura [JHEP 0009: **007**, 2000]: $L_e^-L_\mu^-L_\tau^-$ for 3 light & 2 heavy neutrinos \longrightarrow already shows the desired spectrum for light neutrinos

first model explaining keV sterile v DM with L_e - L_{μ} - L_{τ} symmetry: Lindner, **AM**, Niro; JCAP 1101: **034**, 2011

Grimus & Lavoura [JHEP 0009: **007**, 2000]: $L_e^-L_\mu^-L_\tau^-$ for 3 light & 2 heavy neutrinos \longrightarrow already shows the desired spectrum for light neutrinos

Our model: application of the same symmetry to the heavy sector

generates just the splitting that is desired

first model explaining keV sterile v DM with L_e - L_μ - L_τ symmetry: Lindner, AM, Niro; JCAP 1101: **034,** 2011

Grimus & Lavoura [JHEP 0009: **007**, 2000]: $L_e^-L_\mu^-L_\tau^-$ for 3 light & 2 heavy neutrinos \rightarrow already shows the desired spectrum for light neutrinos

Our model: application of the same symmetry to the heavy sector

generates just the splitting that is desired

 $\mathcal{F}=L_e^-L_\mu^-L_\tau^-$: global U(1)-symmetry, f_k transforms as $e^{i\Phi}f_k$ with $\Phi=const.$

	L_{eL}	$L_{\mu L}$	$L_{ au L}$	e_R	μ_R	$ au_R$	N_{1R}	N_{2R}	N_{3R}	ϕ	Δ
\mathcal{F}	1	-1	-1	1	-1	-1	1	-1	-1	0	0

first model explaining keV sterile v DM with L_e - L_{μ} - L_{τ} symmetry: Lindner, AM, Niro; JCAP 1101: **034,** 2011

Grimus & Lavoura [JHEP 0009: **007**, 2000]: $L_e^-L_\mu^-L_\tau^-$ for 3 light & 2 heavy neutrinos \rightarrow already shows the desired spectrum for light neutrinos

Our model: application of the same symmetry to the heavy sector

generates just the splitting that is desired

 $\mathcal{F}=L_e^-L_\mu^-L_\tau^-$: global U(1)-symmetry, f_k transforms as $e^{i\Phi}f_k$ with $\Phi=const.$

	L_{eL}	$L_{\mu L}$	$L_{\tau L}$	e_R	μ_R	$ au_R$	N_{1R}	N_{2R}	N_{3R}	ϕ	Δ
\mathcal{F}	1	-1	-1	1	-1	-1	1	-1	-1	0	0

only symmetry-preserving combinations of fields are allowed!

• then, only certain contributions to the mass terms are allowed:

- then, only certain contributions to the mass terms are allowed:
- → right-handed Majorana mass:

$$\mathcal{L}_{\text{mass}} = -M_R^{12} \ \overline{(N_{1R})^C} \, N_{2R} - M_R^{13} \ \overline{(N_{1R})^C} \, N_{3R}$$

- then, only certain contributions to the mass terms are allowed:
- → right-handed Majorana mass:

$$\mathcal{L}_{\text{mass}} = -M_R^{12} \ \overline{(N_{1R})^C} \, N_{2R} - M_R^{13} \ \overline{(N_{1R})^C} \, N_{3R}$$

→ Dirac mass term through Higgs doublet Yukawa couplings:

$$\mathcal{L}_{\text{mass}} = -Y_D^{e1} \, \overline{L_{eL}} \, \tilde{\phi} \, N_{1R} - Y_D^{\mu 2} \, \overline{L_{\mu L}} \, \tilde{\phi} \, N_{2R} - Y_D^{\mu 3} \, \overline{L_{\mu L}} \, \tilde{\phi} \, N_{3R} - Y_D^{\tau 2} \, \overline{L_{\tau L}} \, \tilde{\phi} \, N_{2R} - Y_D^{\tau 3} \, \overline{L_{\tau L}} \, \tilde{\phi} \, N_{3R} + h.c.$$

- then, only certain contributions to the mass terms are allowed:
- → right-handed Majorana mass:

$$\mathcal{L}_{\text{mass}} = -M_R^{12} \ \overline{(N_{1R})^C} \, N_{2R} - M_R^{13} \ \overline{(N_{1R})^C} \, N_{3R}$$

→ Dirac mass term through Higgs doublet Yukawa couplings:

$$\mathcal{L}_{\text{mass}} = -Y_D^{e1} \, \overline{L_{eL}} \, \tilde{\phi} \, N_{1R} - Y_D^{\mu 2} \, \overline{L_{\mu L}} \, \tilde{\phi} \, N_{2R} - Y_D^{\mu 3} \, \overline{L_{\mu L}} \, \tilde{\phi} \, N_{3R} - Y_D^{\tau 2} \, \overline{L_{\tau L}} \, \tilde{\phi} \, N_{2R} - Y_D^{\tau 3} \, \overline{L_{\tau L}} \, \tilde{\phi} \, N_{3R} + h.c.$$

→ type II term through Higgs triplet Yukawa coupling:

$$\mathcal{L}_{\text{mass}} = -Y_L^{e\mu} \ \overline{(L_{eL})^C} \left(i\sigma_2 \Delta \right) L_{\mu L} - Y_L^{e\tau} \ \overline{(L_{eL})^C} \left(i\sigma_2 \Delta \right) L_{\tau L}$$

• total Majorana mass term:

$$\mathcal{L}_{\mathrm{mass}} = -rac{1}{2}\overline{\Psi^C}\mathcal{M}_{
u}\Psi + h.c.$$

• total Majorana mass term:

$$\mathcal{L}_{\mathrm{mass}} = -\frac{1}{2} \overline{\Psi^C} \mathcal{M}_{\nu} \Psi + h.c.$$

$$\Psi \equiv ((\nu_{eL})^C, (\nu_{\mu L})^C, (\nu_{\tau L})^C, N_{1R}, N_{2R}, N_{3R})^T$$

• total Majorana mass term:

$$\mathcal{L}_{\mathrm{mass}} = -\frac{1}{2} \overline{\Psi^C} \mathcal{M}_{\nu} \Psi + h.c.$$

$$\Psi \equiv ((\nu_{eL})^C, (\nu_{\mu L})^C, (\nu_{\tau L})^C, N_{1R}, N_{2R}, N_{3R})^T$$

→ mass matrix:

$$\mathcal{M}_{
u} = egin{pmatrix} 0 & m_L^{e\mu} & m_L^{e au} & m_D^{e1} & 0 & 0 \ m_L^{e\mu} & 0 & 0 & 0 & m_D^{\mu2} & m_D^{\mu3} \ m_L^{e au} & 0 & 0 & 0 & m_D^{ au2} & m_D^{ au3} \ \hline m_D^{e1} & 0 & 0 & 0 & M_R^{12} & M_R^{13} \ 0 & m_D^{\mu2} & m_D^{ au3} & M_R^{12} & 0 & 0 \ 0 & m_D^{\mu3} & m_D^{ au3} & M_R^{13} & 0 & 0 \end{pmatrix}$$

• total Majorana mass term:

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} \overline{\Psi^C} \mathcal{M}_{\nu} \Psi + h.c.$$

$$\Psi \equiv ((\nu_{eL})^C, (\nu_{\mu L})^C, (\nu_{\tau L})^C, N_{1R}, N_{2R}, N_{3R})^T$$

→ mass matrix:

$$m_L^{lphaeta} = v_\Delta Y_L^{lphaeta} egin{bmatrix} 0 & m_L^{e\mu} & m_L^{e au} & m_D^{e1} & 0 & 0 \ m_L^{e\mu} & 0 & 0 & 0 & m_D^{\mu2} & m_D^{\mu3} \ m_L^{e au} & 0 & 0 & 0 & m_D^{ au2} & m_D^{ au3} \ m_D^{e1} & 0 & 0 & 0 & 0 & M_R^{12} & M_R^{13} \ m_D^{e1} & 0 & m_D^{\mu2} & m_D^{ au2} & m_D^{ au3} \ 0 & m_D^{\mu3} & m_D^{ au3} & M_R^{13} & 0 & 0 \ \end{pmatrix}$$

• eigenvalues of \mathcal{M}_{v} :

• eigenvalues of \mathcal{M}_{v} :

$$\lambda_{\pm} = \pm \sqrt{2} \left[m_L - \frac{m_D^2}{M_R} \right]$$

$$\Lambda_{\pm} = \pm \sqrt{2} M_R$$

$\begin{pmatrix} \lambda_+ \\ 0 \end{pmatrix}$	0	0	0	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
0	λ			0	0
0	0	0	0	0	0
0	0	0	Λ_+	0	0
0	0	0		Λ_{-}	0
$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	0	0	0	0	0/

ullet eigenvalues of \mathcal{M}_{v} :

$$\lambda_{\pm} = \pm \sqrt{2} \left[m_L - \frac{m_D^2}{M_R} \right]$$

$$\Lambda_{\pm} = \pm \sqrt{2} M_R$$

→ light neutrino spectrum: (0,m,m) → nearly okay (degeneracy...)

• eigenvalues of \mathcal{M}_{v} :

$$\lambda_{\pm} = \pm \sqrt{2} \left[m_L - \frac{m_D^2}{M_R} \right]$$

$$\Lambda_{\pm} = \pm \sqrt{2} M_R$$

- → light neutrino spectrum: (0,m,m) → nearly okay (degeneracy...)
- \rightarrow heavy neutrino spectrum: $(0,M,M) \rightarrow N_1$ massless instead of keV

• eigenvalues of \mathcal{M}_{v} :

$$\lambda_{\pm} = \pm \sqrt{2} \left[m_L - \frac{m_D^2}{M_R} \right]$$

$$\Lambda_{\pm} = \pm \sqrt{2} M_R$$

- → light neutrino spectrum: (0,m,m) → nearly okay (degeneracy...)
- \rightarrow heavy neutrino spectrum: (0,M,M) \rightarrow N₁ massless instead of keV

HOWEVER: flavour symmetries must always be broken for phenomenological reasons → this will lift the massless states and destroy the degeneracy

(similar idea: Shaposhnikov, Nucl. Phys. B763 (2007) 49)

• scheme:

$$L_e$$
- L_μ - $L_ au$

$$L_e$$
- L_{μ} - L_{τ}

$$M_1 \sim \text{keV}$$
 $M_1 \equiv 0$

• scheme:

$$L_e - L_\mu - L_\tau$$

$$L_{\varrho}$$

$$M_1 \sim \text{keV}$$
 $M_1 \equiv 0$

IDEA: since the symmetry is not phenomenologically valid, it must be broken

• scheme:

IDEA: since the symmetry is not phenomenologically valid, it must be broken → "soft breaking terms" (no Λ²-divergences) that must be SMALLER than the symmetry-preserving terms

• scheme:

IDEA: since the symmetry is not phenomenologically valid, it must be broken → "soft breaking terms" (no Λ²-divergences) that must be SMALLER than the symmetry-preserving terms

EFFECT: these terms will give the previously massless state N_1 a small mass, and the will also lift the degeneracy between $N_2 \& N_3 \Rightarrow$ just what was desired!

• problem: one can choose the soft-breaking terms more or less arbitrarily, but any choice will only have a small effect

• problem: one can choose the soft-breaking terms more or less arbitrarily, but any choice will only have a small effect

→ example:

$$\begin{pmatrix} s_L^{ee} & m_L^{e\mu} & m_L^{e\tau} & m_D^{e\tau} & 0 & 0 \\ m_L^{e\mu} & s_L^{\mu\mu} & 0 & 0 & m_D^{\mu2} & m_D^{\mu3} \\ m_L^{e\tau} & 0 & s_L^{\tau\tau} & 0 & m_D^{\tau2} & m_D^{\tau3} \\ \hline m_D^{e1} & 0 & 0 & S_R^{11} & M_R^{12} & M_R^{13} \\ 0 & m_D^{\mu2} & m_D^{\tau2} & M_R^{12} & S_R^{22} & 0 \\ 0 & m_D^{\mu3} & m_D^{\tau3} & M_R^{13} & 0 & S_R^{33} \end{pmatrix}$$

• problem: one can choose the soft-breaking terms more or less arbitrarily, but any choice will only have a small effect

→ example:

$$\begin{pmatrix} s_L^{ee} & m_L^{e\mu} & m_L^{e\tau} & m_D^{e\tau} & 0 & 0 \\ m_L^{e\mu} & s_L^{\mu\mu} & 0 & 0 & m_D^{\mu2} & m_D^{\mu3} \\ m_L^{e\tau} & 0 & s_L^{\tau\tau} & 0 & m_D^{\tau2} & m_D^{\tau3} \\ \hline m_D^{e1} & 0 & 0 & S_R^{11} & M_R^{12} & M_R^{13} \\ 0 & m_D^{\mu2} & m_D^{\tau2} & M_R^{12} & S_R^{22} & 0 \\ 0 & m_D^{\mu3} & m_D^{\tau3} & M_R^{13} & 0 & S_R^{33} \end{pmatrix}$$

→ eigenvalues:

$$\Lambda_s = S$$

$$\Lambda'_{\pm} = S \pm \sqrt{2} M_R$$

$$\lambda_s = s$$

$$\left| \lambda_{\pm}' = s \pm \sqrt{2} \left| m_L - \frac{m_D^2}{M_R} \right| + \frac{5m_D^2 S}{4M_R^2} \right|$$

• problem: one can choose the soft-breaking terms more or less arbitrarily, but any choice will only have a small effect

→ example:

$$\begin{pmatrix} s_L^{ee} & m_L^{e\mu} & m_L^{e\tau} & m_D^{e\tau} & 0 & 0 \\ m_L^{e\mu} & s_L^{\mu\mu} & 0 & 0 & m_D^{\mu 2} & m_D^{\mu 3} \\ m_L^{e\tau} & 0 & s_L^{\tau\tau} & 0 & m_D^{\tau 2} & m_D^{\tau 3} \\ \hline m_D^{e1} & 0 & 0 & S_R^{11} & M_R^{12} & M_R^{13} \\ 0 & m_D^{\mu 2} & m_D^{\tau 2} & M_R^{12} & S_R^{22} & 0 \\ \hline \text{keV neutrino} & & & & & & & & \\ \end{pmatrix}$$

→ eigenvalues:

$$\Lambda_s = S$$

$$\Lambda'_{\pm} = S \pm \sqrt{2} M_R$$

$$\lambda_s = s$$

$$\lambda_{\pm}' = s \pm \sqrt{2} \mid m_L - m_$$

$$m_L - \frac{m_D^2}{M_R} + \frac{5m_D^2 S}{4M_R^2}$$

• conditions:

$$s << m_L - m_D^2 / M_R \& S << M_R$$

• conditions:

$$s << m_L - m_D^2 / M_R \& S << M_R$$

→ perfectly possible to have $M_1 \sim \text{keV}$ and $M_{2,3} \geq \text{GeV}!!!$

• conditions:

$$s << m_L - m_D^2 / M_R \& S << M_R$$

- → perfectly possible to have $M_1 \sim \text{keV}$ and $M_{2,3} \geq \text{GeV}!!!$
- simplifications:

$$s_L^{\alpha\alpha} \simeq s S_R^{ii} \simeq S$$

$$M_R^{12} \simeq M_R^{13} \sim M_R$$

- conditions:
- $s << m_L m_D^2 / M_R \& S << M_R$
- → perfectly possible to have $M_1 \sim \text{keV}$ and $M_{2,3} \geq \text{GeV}$!!!
- simplifications:

$$s_L^{\alpha\alpha} \simeq s S_R^{ii} \simeq S_R^{ii}$$

$$M_R^{12} \simeq M_R^{13} \sim M_R$$

→ masses:

$$m_1 = s + b$$
, $m_2 = s - b$, and $m_3 = s$

$$b \equiv m_L - \frac{m_D^2}{M_R} > 0$$

- conditions:
- $s << m_L m_D^2 / M_R \& S << M_R$
- → perfectly possible to have $M_1 \sim \text{keV}$ and $M_{2,3} \geq \text{GeV}!!!$
- simplifications:

$$s_L^{\alpha\alpha} \simeq s S_R^{ii} \simeq S_R$$

$$M_R^{12} \simeq M_R^{13} \sim M_R$$

→ masses:

$$m_1 = s + b$$
, $m_2 = s - b$, and $m_3 = s$

$$b \equiv m_L - \frac{m_D^2}{M_R} > 0$$

$$b \equiv m_L - \frac{m_D^2}{M_R} > 0$$
 $\begin{vmatrix} |m_1| = 0.0486 \text{ eV} \\ |m_2| = 0.0494 \text{ eV} \end{vmatrix}$

$$|m_3| = 0.0004 \text{ eV}$$

- conditions:
- $s << m_L m_D^2 / M_R \& S << M_R$
- → perfectly possible to have $M_1 \sim \text{keV}$ and $M_{2,3} \geq \text{GeV}$!!!
- simplifications:

$$s_L^{\alpha\alpha} \simeq s S_R^{ii} \simeq S_R^{ii}$$

$$M_R^{12} \simeq M_R^{13} \sim M_R$$

→ masses:

$$m_1 = s + b$$
, $m_2 = s - b$, and $m_3 = s$

$$b \equiv m_L - \frac{m_D^2}{M_R} > 0$$

$$\begin{vmatrix} |m_1| = 0.0486 \text{ eV} \\ |m_2| = 0.0494 \text{ eV} \\ |m_3| = 0.0004 \text{ eV} \end{vmatrix}$$

→ we predict inverted mass ordering (in fact the exact spectrum)!

• problem: we predict bimaximal instead of tri-bimaximal mixing

$$\mathcal{U}_{\nu} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

• problem: we predict bimaximal instead of tri-bimaximal mixing

$$\mathcal{U}_{\nu} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

→ θ_{13} =0° & θ_{23} =45°: okay ✓

• problem: we predict bimaximal instead of tri-bimaximal mixing

$$\mathcal{U}_{\nu} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

→
$$\theta_{13}$$
=0° & θ_{23} =45°: okay ✓

→
$$\theta_{13}$$
=0° & θ_{23} =45°: okay \checkmark Θ_{12} =45°: excluded at > 6 σ ... Θ

problem: we predict bimaximal instead of tri-bimaximal mixing

$$\mathcal{U}_{\nu} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\bullet$$
 θ_{13} =0° & θ_{23} =45°: okay \checkmark

→
$$\theta_{13}$$
=0° & θ_{23} =45°: okay \checkmark Θ_{12} =45°: excluded at > 6 σ ... Θ

• way out: this mixing can come from the charged lepton sector

• problem: we predict bimaximal instead of tri-bimaximal mixing

$$\mathcal{U}_{\nu} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

- $\rightarrow \theta_{13} = 0^{\circ} \& \theta_{23} = 45^{\circ}$: okay $\checkmark \implies \theta_{12} = 45^{\circ}$: excluded at > 6σ ... \otimes
- way out: this mixing can come from the charged lepton sector
- → we must assume one term in M_e to be small

problem: we predict bimaximal instead of tri-bimaximal mixing

$$\mathcal{U}_{\nu} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

- $\rightarrow \theta_{13} = 0^{\circ} \& \theta_{23} = 45^{\circ}$: okay $\checkmark \implies \theta_{12} = 45^{\circ}$: excluded at > 6σ ... \otimes
- way out: this mixing can come from the charged lepton sector
- → we must assume one term in M_e to be small
- → actually somehow natural due to larger radiative corrections for charged leptons, but nevertheless only an assumption

Froggatt-Nielsen mechanism to explain the spectrum: **AM** & Niro; 1105.5136[hep-ph]

Froggatt-Nielsen mechanism to explain the spectrum: **AM** & Niro; 1105.5136[hep-ph]

Froggatt-Nielsen mechanism to explain the spectrum: **AM** & Niro; 1105.5136[hep-ph]

IDEA:

Froggatt-Nielsen mechanism to explain the spectrum: **AM** & Niro; 1105.5136[hep-ph]

IDEA:

 we can use the Froggatt-Nielsen mechanism to suppress a higher mass scale

Froggatt-Nielsen mechanism to explain the spectrum: **AM** & Niro; 1105.5136[hep-ph]

IDEA:

- we can use the Froggatt-Nielsen mechanism to suppress a higher mass scale
- leads naturally to a split mass spectrum

Froggatt-Nielsen mechanism to explain the spectrum: **AM** & Niro; 1105.5136[hep-ph]

IDEA:

- we can use the Froggatt-Nielsen mechanism to suppress a higher mass scale
- leads naturally to a split mass spectrum

Froggatt & Nielsen: Nucl. Phys. **B147**, 277 (1979)

Froggatt & Nielsen: Nucl. Phys. **B147**, 277 (1979)

• idea: the different generations are differently charged under a new $U(1)_{FN}$ symmetry

Froggatt & Nielsen: Nucl. Phys. **B147**, 277 (1979)

- idea: the different generations are differently charged under a new $U(1)_{FN}$ symmetry
- in addition, there is a high energy sector of fermions and scalars; the latter develop VEVs to break the symmetry

Froggatt & Nielsen: Nucl. Phys. **B147**, 277 (1979)

- idea: the different generations are differently charged under a new $U(1)_{FN}$ symmetry
- in addition, there is a high energy sector of fermions and scalars; the latter develop VEVs to break the symmetry
- this leads to multiple seesaw-like diagrams:

Froggatt & Nielsen: Nucl. Phys. **B147**, 277 (1979)

- idea: the different generations are differently charged under a new $U(1)_{FN}$ symmetry
- in addition, there is a high energy sector of fermions and scalars; the latter develop VEVs to break the symmetry
- this leads to multiple seesaw-like diagrams:

→ integrating out the heavy fermions leads to:

m[~]M λ^{f+g} , where $\lambda = <\Theta > /\Lambda$

Froggatt & Nielsen: Nucl. Phys. **B147**, 277 (1979)

- idea: the different generations are differently charged under a new $U(1)_{FN}$ symmetry
- in addition, there is a high energy sector of fermions and scalars; the latter develop VEVs to break the symmetry
- this leads to multiple seesaw-like diagrams:

→ integrating out the heavy fermions leads to:

m[~]M λ^{f+g} , where $\lambda = <\Theta > /\Lambda$

<u>crucial point:</u> the FN-charges of the RH-neutrinos drop out in the seesaw formula, like any global U(1)

<u>crucial point:</u> the FN-charges of the RH-neutrinos drop out in the seesaw formula, like any global U(1)

<u>crucial point:</u> the FN-charges of the RH-neutrinos drop out in the seesaw formula, like any global U(1)

<u>crucial point:</u> the FN-charges of the RH-neutrinos drop out in the seesaw formula, like any global U(1)

<u>crucial point:</u> the FN-charges of the RH-neutrinos drop out in the seesaw formula, like any global U(1)

→ seesaw mechanism guaranteed to work (no keV problem)!

<u>crucial point:</u> the FN-charges of the RH-neutrinos drop out in the seesaw formula, like any global U(1)

- → seesaw mechanism guaranteed to work (no keV problem)!
 - \rightarrow light neutrino mass matrix only depends on the charges of v_L

Goal: find MINIMAL assignments for RH-neutrinos

Goal: find MINIMAL assignments for RH-neutrinos

• key point: for the charges (g_1,g_2,g_3) , we need at least $g_2 \ge g_3 + 3$ in order to create the required hierarchy

Goal: find MINIMAL assignments for RH-neutrinos

- key point: for the charges (g_1,g_2,g_3) , we need at least $g_2 \ge g_3 + 3$ in order to create the required hierarchy
- two example scenarios: A=(3,0,0) & B=(4,1,0)

Goal: find MINIMAL assignments for RH-neutrinos

- key point: for the charges (g_1,g_2,g_3) , we need at least $g_2 \ge g_3 + 3$ in order to create the required hierarchy
- two example scenarios: A=(3,0,0) & B=(4,1,0)

$$M_R^{(A,B)} = \begin{pmatrix} \tilde{M}_R^{11} B_{6,8} \lambda^{6,8} & \tilde{M}_R^{12} B_{2,4} \lambda^{3,5} & \tilde{M}_R^{13} R B_2 \lambda^{3,4} \\ \bullet & \tilde{M}_R^{22} B_{0,2} \lambda^{0,2} & 0, \tilde{M}_R^{23} R \lambda \\ \bullet & \bullet & \tilde{M}_R^{33} \end{pmatrix}$$

Goal: find MINIMAL assignments for RH-neutrinos

- key point: for the charges (g_1,g_2,g_3) , we need at least $g_2 \ge g_3 + 3$ in order to create the required hierarchy
- two example scenarios: A=(3,0,0) & B=(4,1,0)

$$M_R^{(A,B)} = \begin{pmatrix} \tilde{M}_R^{11} B_{6,8} \lambda^{6,8} & \tilde{M}_R^{12} B_{2,4} \lambda^{3,5} & \tilde{M}_R^{13} R B_2 \lambda^{3,4} \\ \bullet & \tilde{M}_R^{22} B_{0,2} \lambda^{0,2} & 0, \tilde{M}_R^{23} R \lambda \\ \bullet & \bullet & \tilde{M}_R^{33} \end{pmatrix}$$

 \rightarrow scenario A: $M_1 = M_0 \lambda^6 O(1)$, $M_2 = M_0$, $M_3 = M_0 [1 + \lambda^6 O(1)]$

Goal: find MINIMAL assignments for RH-neutrinos

- key point: for the charges (g_1,g_2,g_3) , we need at least $g_2 \ge g_3 + 3$ in order to create the required hierarchy
- two example scenarios: A=(3,0,0) & B=(4,1,0)

$$M_R^{(A,B)} = \begin{pmatrix} \tilde{M}_R^{11} B_{6,8} \lambda^{6,8} & \tilde{M}_R^{12} B_{2,4} \lambda^{3,5} & \tilde{M}_R^{13} R B_2 \lambda^{3,4} \\ \bullet & \tilde{M}_R^{22} B_{0,2} \lambda^{0,2} & 0, \tilde{M}_R^{23} R \lambda \\ \bullet & \tilde{M}_R^{33} \end{pmatrix}$$

- \rightarrow scenario A: $M_1 = M_0 \lambda^6 O(1)$, $M_2 = M_0$, $M_3 = M_0 [1 + \lambda^6 O(1)]$
- ⇒ scenario B: $M_1 = M_0 \lambda^8 O(1)$, $M_2 = M_0 \lambda^2$, $M_3 = M_0 [1 + \lambda^2 O(1)]$

Goal: find MINIMAL assignments for RH-neutrinos

- key point: for the charges (g_1,g_2,g_3) , we need at least $g_2 \ge g_3 + 3$ in order to create the required hierarchy
- two example scenarios: A=(3,0,0) & B=(4,1,0)

$$M_R^{(A,B)} = \begin{pmatrix} \tilde{M}_R^{11} B_{6,8} \lambda^{6,8} & \tilde{M}_R^{12} B_{2,4} \lambda^{3,5} & \tilde{M}_R^{13} R B_2 \lambda^{3,4} \\ \bullet & \tilde{M}_R^{22} B_{0,2} \lambda^{0,2} & 0, \tilde{M}_R^{23} R \lambda \\ \bullet & \bullet & \tilde{M}_R^{33} \end{pmatrix}$$

- \rightarrow scenario A: $M_1 = M_0 \lambda^6 O(1)$, $M_2 = M_0$, $M_3 = M_0 [1 + \lambda^6 O(1)]$
- ⇒ scenario B: $M_1 = M_0 \lambda^8 O(1)$, $M_2 = M_0 \lambda^2$, $M_3 = M_0 [1 + \lambda^2 O(1)]$
- → yield just the required spectra of the sterile neutrinos!!

Froggatt-Nielsen charge assignment is not as arbitrary as it may look, when combined with other requirements (in the context of keV neutrinos!):

needs two FN-fields to combine predictivity and CP

- needs two FN-fields to combine predictivity and CP
- incompatible with left-right symmetry

- needs two FN-fields to combine predictivity and CP
- incompatible with left-right symmetry
- excludes bimaximal mixing from neutrino sector

- needs two FN-fields to combine predictivity and CP
- incompatible with left-right symmetry
- excludes bimaximal mixing from neutrino sector
- GUTs: favors SU(5), disfavors SO(10)

- needs two FN-fields to combine predictivity and CP
- incompatible with left-right symmetry
- excludes bimaximal mixing from neutrino sector
- GUTs: favors SU(5), disfavors SO(10)
- disfavors democratic Yukawa couplings

- needs two FN-fields to combine predictivity and CP
- incompatible with left-right symmetry
- excludes bimaximal mixing from neutrino sector
- GUTs: favors SU(5), disfavors SO(10)
- disfavors democratic Yukawa couplings
- nice feature: RGE-effects negligible (due to tiny y_D)

We could show: with mild deviations from democratic assignments, one can find fully working models

We could show: with mild deviations from democratic assignments, one can find fully working models

We could show: with mild deviations from democratic assignments, one can find fully working models

 no need to say here: keV sterile neutrinos are an interesting candidate for Warm Dark Matter ©

- no need to say here: keV sterile neutrinos are an interesting candidate for Warm Dark Matter ©
- up to now: scenarios rather than models

- no need to say here: keV sterile neutrinos are an interesting candidate for Warm Dark Matter ©
- up to now: scenarios rather than models
- Randall-Sundrum model: exp-suppression

- no need to say here: keV sterile neutrinos are an interesting candidate for Warm Dark Matter ©
- up to now: scenarios rather than models
- Randall-Sundrum model: exp-suppression
- $L_e-L_{\mu}-L_{\tau}$: soft breaking makes massless N_R massive

- no need to say here: keV sterile neutrinos are an interesting candidate for Warm Dark Matter ©
- up to now: scenarios rather than models
- Randall-Sundrum model: exp-suppression
- L_e-L_u-L_τ: soft breaking makes massless N_R massive
- Froggatt-Nielsen: multiple seesaw-like diagrams

- no need to say here: keV sterile neutrinos are an interesting candidate for Warm Dark Matter ©
- up to now: scenarios rather than models
- Randall-Sundrum model: exp-suppression
- L_e-L_μ-L_τ: soft breaking makes massless N_R massive
- Froggatt-Nielsen: multiple seesaw-like diagrams
- all models: deep connections between Dark Matter and light neutrino sector

- no need to say here: keV sterile neutrinos are an interesting candidate for Warm Dark Matter ©
- up to now: scenarios rather than models
- Randall-Sundrum model: exp-suppression
- L_e-L_u-L_τ: soft breaking makes massless N_R massive
- Froggatt-Nielsen: multiple seesaw-like diagrams
- all models: deep connections between Dark Matter and light neutrino sector
- → We can look forward to more interesting ideas!!!

I am currently thinking about many other interesting possibilities....

→ Interested?!?

Ecole
Internationale
d'Astrophysique
Daniel Chalonge
2012;-)

