

and its capabilities to measure the mass of light (active) and heavy (sterile) neutrinos

Angelo Nucciotti for the MARE collaboration Dipartimento di Fisica "G. Occhialini", Università di Milano-Bicocca INFN - Sezione di Milano-Bicocca, Milano, Italy

Ecole Internationale Daniel Chalonge Workshop CIAS Meudon 2011 WARM DARK MATTER IN THE GALAXIES: THEORETICAL AND OBSERVATIONAL PROGRESSES CIAS Observatoire de Paris, Château de Meudon, Meudon campus 8, 9 and 10 June 2011

Outline

- Direct neutrino mass measurement
 - spectrometers vs. calorimeters
- ▷ MARE: Microcalorimeter Array for a Rhenium Experiment
 - calorimetric measurement sensitivity to light neutrinos
 - ▷ ¹⁸⁷Re vs. ¹⁶³Ho
 - ▷ ¹⁸⁷Re measurement systematics
 - heavy (sterile) neutrinos detection
 - cosmological relic neutrinos (light and heavy)

▷ MARE project status

- ▷ path for isotope and technique selection
- MARE-1 experimental activities
- MARE-2 prospects

Conclusions

Neutrino mass measurements

Open questions:

Neutrinos masses from single β and $\beta\beta$ -**0** ν decays

Fogli et al. hep-ph/0608060

Experimental approaches for direct m, measurements

Spectrometers: source \neq **detector**

Calorimeters: source ⊆ detector

β calorimeter

ideally measures all the energy *E* released in the decay except for the v_e energy: $E = E_0 - E_v$

Spectrometers present results

electrostatic integrating spectrometers (MAC-E filter)

- Mainz with solid ³H source
- Troitsk with gaseous ³H source
 - ▶ *m*_{ve} < 2.2 eV 95% CL

Spectrometer advantages

- high statistics
- high energy resolution

Spectrometer drawbacks

- Iarge systematics
 - source effects
 - decays to excited states
- background

Spectrometers future: KATRIN

large electrostatic spectrometer
with gaseous ³H source
▶ expected statistical sensitivity
m_{ve} < 0.2 eV 90% CL</pre>

start data taking in 2013/2014

A. Nucciotti, Meudon Workshop 2011, 8-10 JUNE 2011

Calorimetry of beta sources

calorimeters measure the <u>entire spectrum</u> at once

- low $E_0 \beta$ decaying isotopes for more statistics near the end-point
- ► best choice ¹⁸⁷Re: $E_0 = 2.5 \text{ keV}$, $\tau_{\gamma_2} = 4 \times 10^{10} \text{ y} \Rightarrow F(\Delta E = 10 \text{ eV}) \sim (\Delta E/E_0)^3 = 7 \times 10^{-8}$
- ► other option ¹⁶³Ho electron capture: $E_0 \approx 2.6$ keV, $\tau_{y_2} \approx 4600$ y

Cryogenic detectors as calorimeters

 $\Delta T = E/C$ with C total thermal capacity (phonons, electrons, spins...) \Diamond phonons: $C \sim T^3$ (Debye law) in dielectrics or superconductors below T_c \diamondsuit low T (i.e. T << 1K)

• $\Delta E_{me} = (k_{\rm R} T^2 C)^{1/2}$ due statistical fluctuations of internal energy E

• $\Delta T(t) = E/C e^{-t/\tau}$ with $\tau = C/G$ and G thermal conductance

Resistive thermometers: thermistors

- doped semiconductors at Metal-Insulator-Transition (N_c =3.74×10¹⁸ cm⁻³ for Si:P)
- at $T \ll 10K \rightarrow$ phonon assisted variable range hopping conduction (VRH)

$$\rho(T) = \rho_0 \exp(T_0/T)^{\gamma}$$

- $ightarrow T_0$ increases with decreasing net doping N
- ► $T < 1 \text{ K} \Rightarrow \gamma = \frac{1}{2}$ (VRH with Coulomb Gap)

Cryogenic detectors

TES with Re @ Genova

6x6 Si-implanted array @ NASA/GSFC

Thermal detectors for calorimetric experiments

 ${}^{187}\text{Re } \beta \text{ decay}$ ${}^{187}_{75}\text{Re} \rightarrow {}^{187}_{76}\text{Os} + e^- + \bar{\nu}_e$ • 5/2+→ 1/2- unique first forbidden transition ⇒ S(E_β)
• end point E₀ = 2.47 keV
• half-life time τ_{1/2} = 43.2 Gy
• natural abundance a.i. = 63%
• 1 mg metallic Rhenium ⇒ ≈1.0 decay/s

metallic rhenium single crystals

- ► superconductor with $T_c = 1.6 K$
- NTD thermistors
- MANU experiment (Genova)
- dielectric rhenium compound (AgReO₄) crystals
 - Silicon implanted thermistors
 - MIBETA experiment (Milano)

 $m_{\rm v} < \approx 15 \ {\rm eV}$

MIBETA experiment results

A project for a New Rhenium Experiment: MARE

goal: a sub-eV direct neutrino mass measurement complementary to the KATRIN experiment

MARE-1

- activities using medium sized arrays to improve ¹⁸⁷Re measurement understanding and possibly calorimetric *m*, limit
- detector and absorber coupling R&D activities

~100 element array

$$2 \sim 4 \text{ eV}$$

 m_v sensitivity

0.2 eV

MARE-2

 \triangleright very large experiment with a m_{ν} statistical sensitivity close to KATRIN but still improvable

requires new improved detector technologies

~10000 element array *m*, sensitivity

MARE project for sub-eV calorimetric m, measurement

MARE: Microcalorimeter Arrays for a Rhenium Experiment Università di Genova e INFN Sez. di Genova, Italy Univ. di Milano-Bicocca, Univ. dell'Insubria e INFN Sez. di Milano-Bicocca, Italy Kirkhhof-Institute Physik, Universität Heidelberg, Germany University of Miami, Florida, USA Wisconsin University, Madison, Wisconsin, USA Universidade de Lisboa and ITN, Portugal Università di Roma "La Sapienza" e INFN Sez. di Roma1, Italy Goddard Space Flight Center, NASA, Maryland, USA funded R&D PTB, Berlin, Germany FBK, Trento e INFN Sez. di Padova, Italy NIST, Boulder, Colorado, USA SISSA - Trieste, GSI Darmstad, JPL/Caltech, CNRS Grenoble, ...

http://crio.mib.infn.it/wig/silicini/proposal/

¹⁸⁷Re calorimetric experiment statistical sensitivity / 1

¹⁸⁷Re calorimetric experiment statistical sensitivity / 2

$$\frac{\text{signal}}{\text{bkg}} = \frac{\left| F_{\Delta E}(m_{\nu}) - F_{\Delta E}(0) \right| t_{M}}{\sqrt{F_{\Delta E}(0) t_{M} + F_{\Delta E}^{pp} t_{M}}} \approx \sqrt{t_{M}} \frac{A_{\beta} N_{det} \frac{\Delta E^{3}}{E_{0}^{3}} \frac{3m_{\nu}^{2}}{2\Delta E^{2}}}{\sqrt{A_{\beta} N_{det} \frac{\Delta E^{3}}{E_{0}^{3}} + 0.3\tau_{R} A_{\beta}^{2} N_{det} \frac{\Delta E}{E_{0}}}} = 1.7 \text{ for } 90\% \text{ C.L.}$$

$$\sum_{90} (m_{\nu}) \approx 1.13 \frac{E_0}{\sqrt[4]{N_{e\nu}}} \left[\frac{\Delta E}{E_0} + \frac{3}{10} f_{pile-up} \frac{E_0}{\Delta E} \right]^{1/4}$$
Optimal energy interval ΔE
$$\Delta E = max(0.55E_0 \sqrt{\tau_R A_\beta}, \Delta E_{FWHM})$$

Sub-eV m_v statistical sensitivity with ¹⁸⁷Re

¹⁸⁷Re past mesurements

► total statistics $N_{ev} \approx 10^7$ events

Effect of background on statistical sensitivity

$$\sum_{90} (m_{\nu}) \approx 1.13 \frac{E_0}{\sqrt[4]{N_{e\nu}}} \left[\frac{\Delta E}{E_0} + \frac{E_0}{\Delta E} \left| \frac{3}{10} f_{pp} + b \frac{E_0}{A_{\beta}} \right| \right]^{1/4}$$

b bkg counts/keV/s/det

Optimal energy interval
$$\Delta E = max(E_0\sqrt{\frac{3}{10}}f_{pp}+b\frac{E_0}{A_g}, \Delta E_{FWHM})$$

MARE statistical sensitivity: ¹⁸⁷Re option

	exposure required for 0.2 eV <i>m</i> , sensitivity					bka = 0
	\boldsymbol{A}_{β}	τ _R	ΔE	N _{ev}	exposure	DKG = 0
	[Hz]	[µS]	[eV]	[counts]	[det×year]	
	1	1	1	0.2×10 ¹⁴	7.6×10 ⁵	5000 pixels/arrav
	10	1	1	0.7×10 ¹⁴	2.1×10 ⁵	> 8 arrays
	10	3	3	1.3×10 ¹⁴	4.1 ×10 ⁵	10 years
	10	5	5	1.9×10 ¹⁴	6.1×10 ⁵	400 g ^{nat} Re
	10	10	10	3.3×10 ¹⁴	10.5×10 ⁵	
	<mark>expo</mark> s	ure requii	ed for 0.	1 eV <i>m</i>, se	nsitivity	
	\boldsymbol{A}_{β}	τ _R	ΔE	N _{ev}	exposure	
	[Hz]	[µs]	[eV]	[counts]	[det×year]	
-	1	0.1	0.1	1.7×10 ¹⁴	5.4×10 ⁶	-
	10	0.1	0.1	5.3×10 ¹⁴	1.7×10 ⁶	20000 nivels/array
	10	1	1	10.3×10 ¹⁴	3.3×10 ⁶	16 arravs
	10	3	3	21.4×10 ¹⁴	6.8×10 ⁶	10 years
	10	5	5	43.6×10 ¹⁴	$13.9{ imes}10^{6}$	3.2 kg ^{nat} Re

MARE extensions: ¹⁶³Ho electron capture measurement

^{163}Ho + $\text{e}^{\text{-}} \rightarrow ^{163}\text{Dy}^{*}$ + ν_{e}

electron capture from shell \ge M1

A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- rate at end-point may be as high as for ¹⁸⁷Re but depends on $Q_{\rm EC}$
 - ► Q_{EC} ? Measured: Q_{EC} = 2.3÷2.8 keV. Recommended: Q_{EC} = 2.555 keV
- $\tau_{1/2} \approx 4570$ years: few active nuclei are needed
 - can be implanted in any suitable microcalorimeter absorber
- ¹⁶³Ho production by neutron irradiation of ¹⁶²Er enriched Er

¹⁶³Ho spectrum simulation

- no high statistics and clean **calorimetric** measurement so far
 - see for example F. Gatti et al., Phys. Lett. B, 398 (1997) 41
- $Q_{\rm EC}$ and atomic de-excitation spectrum poorly known
- complex pile-up spectrum

MARE statistical sensitivity: ¹⁶³Ho option

	exposi	ure requir	ed for 0.	0 - 2200 aV		
	A _β	τ _R	ΔE	N _{ev}	exposure	$Q_{EC} = 2200 eV$
	[Hz]	[µS]	[eV]	[counts]	[det×year]	DKG = 0
	1	1	1	2.8×10 ¹³	9.0×10 ⁵	5000 pixels/array
	1	0.1	1	1.3×10 ¹³	4.3 ×10 ⁵	3 arrays
	100	0.1	1	4.6×10 ¹³	1.5×10 ⁴	1 year
	10	0.1	1	2.8×10 ¹³	9.0×10 ⁴	$\approx 2 \times 10^{17}$ ¹⁶³ Ho nuclei
	10	1	1	4.6×10 ¹³	1.5×10 ⁵	
	exposi	ure requir	ed for 0.	1 eV <i>m</i> , se	nsitivity	
	\boldsymbol{A}_{β}	τ _R	ΔE	Nev	exposure	
		1		C V		
	[Hz]	[μ s]	[eV]	[counts]	[det×year]	
	[Hz] 1	[μ s] 0.1	[eV] 0.3	[counts] 1.2×10 ¹⁴	[det×year] 3.9×10 ⁶	5000 nivels/array
$\left(\right)$	[Hz] 1 100	[μ s] 0.1 0.1	[eV] 0.3 0.3	[counts] 1.2×10 ¹⁴ 6.4×10 ¹⁴	[det×year] 3.9×10 ⁶ 2.0×10 ⁵	5000 pixels/array
([Hz] 1 100 100	[μ s] 0.1 0.1 0.1	[eV] 0.3 0.3 1	[counts] 1.2×10^{14} 6.4×10^{14} 7.4×10^{14}	[det×year] 3.9×10 ⁶ 2.0×10 ⁵ 2.4×10 ⁵	5000 pixels/array 4 arrays 10 years
([Hz] 1 100 100 10	[μ s] 0.1 0.1 0.1 0.1 0.1	[eV] 0.3 0.3 1 1	[counts] 1.2×10^{14} 6.4×10^{14} 7.4×10^{14} 4.5×10^{14}	[det×year] 3.9×10 ⁶ 2.0×10 ⁵ 2.4×10 ⁵ 1.5×10 ⁶	5000 pixels/array 4 arrays 10 years $\approx 3 \times 10^{17}$ ¹⁶³ Ho nuclei

Montecarlo analysis of systematics for ¹⁸⁷Re

Assessing systematic uncertainties with Montecarlo simulations

- effects due to incomplete/incorrect data modeling
 - generate simulated experimental spectra with systematic effect
 - ▷ analyze spectra without effect
 - \triangleright obtain $\Sigma_{90}(m_{y})$ and Δm_{y}^{2} as function of effect size
- uncertainty due to experimental parameter finite accuracy
 - generate simulated experimental spectra with randomly fluctuated parameter
 - ▷ analyze spectra with fixed average parameter
 - \triangleright obtain $\Sigma_{90}(m)$ and Δm^2 as function of uncertainty magnitude

• systematic uncertainties analyzed for $N_{ev}=10^{14}$, $\Delta E_{FWHM}=1.5$ eV and $f_{pp}=10^{-6}$

two main classes of systematics
source related systematic effects
instrumental systematic uncertainties

Source related systematic uncertainties: summary

electron surface escape

▷ investigation with MC methods

- $P = N'(E) = N(E) (1 a_{esc} E/E_0)$
- \triangleright for 1mg Re crystal $\rightarrow a_{\rm esc} \approx 2 \times 10^{-5}$

¹⁸⁷Re decay spectral shape

- improve theoretical description of electron spectrum
- $\triangleright N'(E) = N(E) (1 + a_1 E + a_2 E^2)$

▷ from Dvornicky-Simkovic (Medex09) → $f(E) = 1 - 2 \times 10^{-5}E + 3 \times 10^{-10}E^2 - 4 \times 10^{-15}E^3 + ...$

condensed matter effects: BEFS

 \triangleright observed in Re and AgReO₄: improve modeling and parametrization

pile-up spectrum spectral shape

▷ energy dependent rejection efficiency: investigation with MC methods

$$\triangleright \tau_{\mathsf{R}}^{\mathsf{eff}} = f(\tau_{\mathsf{R}}, A_{1}/A_{2}) \rightarrow N'_{\mathsf{pp}}(E) = N_{\mathsf{pp}}(E) f_{\mathsf{corr}}(E, f_{\mathsf{pp}})$$

source of uncertainty	<i>quantity</i> <i>describing the</i> <i>effect</i>	<i>maximum</i> effect for $\Delta m_{v}^{2} < 0.01 \text{ eV}^{2}$
electron surface escape	a _{esc}	10-5
composition to guednotic () and studies	$ a_1 $ ($a_2=0$)	10 ⁻⁹ eV ⁻¹
correction to quadratic β spectral shape	$ a_2 $ ($a_1=0$)	10 ⁻¹² eV ⁻²
correction to pile-up spectral shape	$f_{_{ m pp}}$	10-7

BEFS: Re vs. AgReO₄

BEFS: Beta Environmental Fine Structure Modulation of the electron emission probability due to the atomic and molecular surrounding of the decaying nucleus: it is explained by the wave structure of the electron (analogous of EXAFS)

BEFS is a possible source of systematic uncertainties in ¹⁸⁷Re neutrino mass experiments

BEFS in MIBETA spectrum with AgReO₄

Systematics from BEFS

28

Systematics from instrumental uncertainties: summary

source of uncertainty	<i>quantity</i> <i>describing the</i> <i>uncertainty</i>	<i>maximum</i> <i>uncertainty for</i> $\Delta m_v^2 < 0.01 \text{ eV}^2$
error on energy resolution ΔE	$\sigma_{_{ m err}}(\Delta E)/\Delta E$	0.02
tail in response function (λ =0.2eV ⁻¹)	A_{tail}	10-4
error on single pixel energy calibration K	σ(<i>K</i>)/ <i>K</i>	0.0004
spread in energy resolution ΔE in the array	$\sigma_{\sf spread}(\Delta E)/\Delta E$	0.1
hidden constant background	$N_{\rm ev}/N_{\rm bkg}$	10 ⁸
background linear deviation (<i>bT</i> =10 ⁵ c/eV)	b_{1}	0.1

the hidden background is a source of systematic uncertainties

Instrumental uncertainties: constant background

Systematics summary: calorimeters vs. spectrometers

Calorimetry systematics

- detector response function (energy dependence, shape,...)
- energy dependent background
- pile-up effects
- condensed matter effects: BEFS
- ¹⁸⁷Re decay spectral shape

Spectrometer systematics

- decays to excited final states
- energy losses in the source
- e⁻ T₂ elastic scattering
- spectrometer stability (HV)
- source stability (density, potential, charging...)
- energy dependent background

▼...?

⇒ completely different systematics!

Heavy neutrinos experimental approaches heavy neutrino emission in ¹⁸⁷Re β decay $v_{\rho} = v_{I} \cos\theta + v_{\mu} \sin\theta$ $N_{\beta}(E,m_{\mu},m_{\mu},\theta) = \cos^2\theta N_{\beta}(E,m_{\mu}) + \sin^2\theta N_{\beta}(E,m_{\mu})$ $0 < m_{\mu} < Q - E_{th}$ $m_{i} = 0$ 10000 $m_{\mu} = 1 \text{ keV}$ $-\sin^2\theta = 0$ 8000 $-\sin^2\theta = 0.2$ dE/dN [a.u.] $\sin^2\theta = 0.5$ 6000 $Q - m_{H}$ 4000

Heavy neutrinos limits from past ¹⁸⁷Re experiments / 1

Heavy neutrinos limits from past ¹⁸⁷Re experiments / 2

MARE sensitivity to heavy neutrinos: ¹⁸⁷Re option

MARE sensitivity to heavy neutrinos: ¹⁶³Ho option / 1

heavy neutrino emission in ¹⁶³Ho EC decay

Light and heavy relic neutrino detection in MARE?

5×10 ⁻⁸ 4×10 ⁻⁸ 3×10 ⁻⁸ 2×10 ⁻⁸ 1×10 ⁻⁸ 1×10 ⁻⁸ 90 2460	$m_{v} = 0$ $m_{v} = 2 e$ $Q - m_{v}$ $Re \beta$ ectrum er	Q 2465 nergy [eV]	$\Delta E_{\text{FWHM}} = Q + m$ \mathbf{v} \mathbf{v} \mathbf{v}	$\frac{1 \text{ eV}}{(\text{or } Q + m_{H})}$	
Interaction rates in KATRIN and MARE	relic v _e (CvB)	isotope mass	rate	sterile ∨ _µ m _µ = 1 keV	
ν + ³ H \rightarrow ³ He + e ⁻	0.1 y ⁻¹ g ^{-1 (1)}	100 μ g	10 ⁻⁵ y ⁻¹	100 sin ² 0 y ⁻¹ g ^{-1 (4)}	
ν + ¹⁸⁷ Re \rightarrow ¹⁸⁷ Os + e ⁻	$10^{-10} y^{-1} g^{-1}$ (2)	1000 g	10 ⁻⁷ y ⁻¹	10 ⁻⁷ sin²θ y⁻¹ g⁻¹	
$\overline{\nu}$ + e ⁻ + ¹⁶³ Ho \rightarrow ¹⁶³ Dy*	10 ⁻⁵ y ⁻¹ g ^{-1 (3)}	100 μ <mark>g</mark>	10 ⁻⁹ y ⁻¹	$10^{-3} sin^2 \theta y^{-1} g^{-1}$ (5)	
v densities $CvB: n_v \approx 55 v_e/cm^3$ WDM: $n_v \approx 3 \times 10^5 v_H/cm^3$ $Q_{EC} = 2.5 \text{ keV}$	 (1) R.Lazauskas et al., J. Phys. G: Part. Phys. 35, 025001 (2008) (2) A.G.Cocco et al., J. Cosmol. Astropart. Phys. 06, 15 (2007) R.Hodak et al., Progr. in Part. and Nucl. Phys. 66, 452 (2011) (3) M.Lusignoli, M.Vignati, Phys. Lett., B697, 11 (2011) (arXiv:1012.0760 [hep-ph]) (4) W.Liao, Phys. Rev., D82, 73001 (2010) Y.F.Li, Z.Z.Xing, Phys. Lett. B695, 205 (2011) (5) Y.F.Li, Z.Z.Xing, arXiv:1104-4000 [astro-ph] A. Nucciotti, Meudon Workshop 2011. 8-10 IUNE 2011 				

39

Two experimental phases: MARE-1 and MARE-2

MARE-2 full scale experiment aiming at 0.2÷0.1 eV m_v statistical sensitivity
 MARE-1 collection of activities aiming at isotope/technique selection

MARE-1 activities summary

Isotope physics investigation and systematics assessment

- ¹⁶³Ho + Si-impl/TES (U Genova <u>U Milano-Bicocca</u> U Lisbon/ITN)
- ► AgReO₄ + Si-impl (<u>U Milano-Bicocca</u> U Como NASA/GSFC UW Madison)

Sensor-Absorber coupling (¹⁸⁷Re/¹⁶³Ho) and single pixel design

- ¹⁸⁷Re + TES (U Genova U Miami U Lisbon/ITN)
- ► ¹⁸⁷Re + MMC (U Heidelberg)
- ▶ ¹⁶³Ho + TES (U Genova)
- ► ¹⁶³Ho + MMC (U Heidelberg)
- ► ¹⁶³Ho/¹⁸⁷Re + MKID (<u>U Milano-Bicocca</u> JPL/Caltech U Roma FBK)

Multiplexed sensor read-out

- SQUID multiplexing (U Genova PTB)
- SQUID microwave multiplexing (U Heidelberg)

Software tools

- ► Data Analysis (U Miami)
- Montecarlo simulations (U Miami <u>U Milano-Bicocca</u>)

MARE-1 @ Milano-Bicocca with Si implanted thermistors

MARE-1 @ Milano-Bicocca and heavy neutrinos

A. Nucciotti, Meudon Workshop 2011, 8-10 JUNE 2011 43

MARE-1 @ Milano-Bicocca ... / 2

- experimental set-up completed
- optimization in progress

25mK

Kevlar

cross

decoupling jig

fluorescence calibration source with lead shield

MARE-1 @ Genova with TES

- Single TES-Re pixel R&D
 - improve pulse rise time to $\approx \mu s$
 - improve energy resolution from 10 eV to few eV
- Large arrays ($\approx 10^3$ pixels) for 10^4 - 10^5 detector experiment
- Array design large scale experiment oriented
 - high reproducibility, stability, fully energy calibrated...
- Multiplexed SQUID read-out with large bandwidth
- 163Ho loaded absorbers: few kBq of 163Ho produced
- ¹⁶³Ho spectrum high statistics measurement

A. Nucciotti, Meudon Workshop 2011, 8-10 JUNE 2011 45

Counts / 2 eV

MARE-1 @ Heidelberg with Magnetic Micro Calorimeters

- Planar sensors on meander shaped pickup coils
- Optimization of MMCs with superconducting rhenium absorber
 - minimization of the rise-time
 - investigation of energy down-conversion in superconducting absorbers
 - investigating the energy resolution achievable with superconducting absorber
- Calorimetric investigation of new candidates for the neutrino mass direct measurements by electron capture decay
 - ▶ ¹⁶³Ho, ¹⁵⁷Tb, ¹⁹⁴Hg, ²⁰²Hg
 - Development of micro-structured MMCs for ion implantation at ISOLDE
- Microwave SQUID multiplexing for MMCs

MKIDs R&D @ Milano-Bicocca

- microwave (1-10 GHz) resonating superconducting devices
- exploit the temperature dependence of inductance in a superconducting film
 - **qp detectors** suitable for large absorbers
 - **fast** devices for high single pixel activity A_{β} and low pile-up f_{pp}
 - high energy resolution
 - easy multiplexing for large number of pixel

Conclusions

- \circ thermal calorimetry of ¹⁸⁷Re decay can give sub-eV sensitivity on m_{ν}
- \circ calorimetry of ¹⁶³Ho electron capture decay is an interesting alternative
- o ¹⁸⁷Re and ¹⁶³Ho calorimetry is sensitive to **1 keV scale heavy neutrinos**
- \circ MARE-1 activities are in progress to

▷ improve the understanding of ¹⁸⁷Re experiment systematics

- a few eVs light neutrino sensitivity ¹⁸⁷Re experiment is starting soon
- ▷ investigate ¹⁶³Ho decay spectrum
 - ¹⁶³Ho isotope has been produced and is ready for first tests
- Develop the single MARE pixel
 - R&D for coupling TES, MMC and MKID with ¹⁸⁷Re/¹⁶³Ho is in progress

implement read-out multiplexing schemes

• isotope and technique selection for MARE-2 is in progress

Sub-eV m_v statistical sensitivity / 2

Sub-eV m_v statistical sensitivity / 3

Electron escape systematic uncertainties

A. Nucciotti, Meudon Workshop 2011, 8-10 JUNE 2011

52

Beta spectrum shape systematic uncertainties

Pile-up spectrum systematic uncertainties / 1

Pile-up spectrum systematic uncertainties / 2

Pile-up spectrum systematic uncertainties / 3

$$\Delta E = 1.5 \text{ eV}; f_{pp} = 10^{-6}; N_{ev} = 10^{14}$$

Instrumental uncertainties: large arrays

A. Nucciotti, Meudon Workshop 2011, 8-10 JUNE 2011 57

Detector response function

X-ray peaks have tails on low energy side

 \blacklozenge 1~6 keV X-rays in AgReO4 have an attenuation length λ < 2 μm

- are the response functions for X-rays and for β s from ¹⁸⁷Re decay the same?
- need for a good phenomenological description of the X-ray peak shape

Instrumental uncertainties: response function tail

	relic ∨ _e (C∨B)	isotope mass	rate	sterile v _H m _H = 1 keV
ν + ³ H \rightarrow ³ H + e ⁻	0.08 y ⁻¹ g ⁻¹	50 μ g	4×10 ⁻⁶ y ⁻¹	200 sin²⊕ y⁻¹ g⁻¹
ν + ¹⁸⁷ Re \rightarrow ¹⁸⁷ Os + e ⁻	9×10 ⁻¹¹ y ⁻¹ g ⁻¹	1900 g	2×10 ⁻⁷ y ⁻¹	$2 \times 10^{-7} \sin^2 \theta \ y^{-1} \ g^{-1}$
$\overline{\mathbf{v}}$ + e ⁻ + ¹⁶³ Ho \rightarrow ¹⁶³ Dy*	3×10⁻⁵ y⁻¹ g⁻¹	100 μg	2×10 ⁻⁹ y ⁻¹	$2 \times 10^{-3} \sin^2 \theta \ y^{-1} \ g^{-1}$