Sterile neutrino dark matter and constraints on its properties from astrophysics and cosmology

Oleg RUCHAYSKIY (CERN)

Warm Dark Matter Workshop. Meudon. June 9, 2011

Concordance model at cosmological scales

- ACDM: about 20% of total energy density is in the form of non-baryonic matter
- This dark matter is scale-free (noninteracting, "cold", ...)
- Standard Model neutrinos do not contribute significantly to the Universe mass balance at matter-dominated epoch (CMB, LSS, ...)

Dark matter - a fundamental physics problem

- Is evidence for DM convincing?
 yes
- Is DM made up of particles? most plausible assumption
- Is DM baryonic? no (MACHO searches; BBN constraints; structure formation problems)
- Is DM made from neutrinos? no (neutrino DM would contradict the observed LSS)

- Any DM candidate must be produced in the early Universe before matter-radiation equality and have correct relic abundance
- It should be stable or cosmologically long-lived
- Its non-gravitational interaction with ordinary matter or electromagnetic radiation should be feeble (to be "dark")
- Its clustering properties should allow to explain the observed large scale structure

- Phenomenologically we know little about the properties of dark matter particles
- Theoretical bias aside, dark matter particles should generically have "weaker-than-weak" interaction strength with the Standard Model sector (*super-weakly interacting* particles)
- Such DM candidates indeed appear in many extensions of the Standard Model (sterile neutrinos, gravitino, axion, axino, Majoron,...)
- For super-weakly interacting particles laboratory "direct detection" methods may be quite challenging =>

For Super-WIMPs astrophysics and cosmology may be our main tools to discover the true nature of dark matter particles

Example of super-weakly interacting particles: sterile neutrinos

- Neutrino oscillations: $m_{\nu} \sim \sqrt{\Delta m_{\rm atm}^2} \sim 10^{-2} \text{ eV}.$ See-saw mechanism $m_{\nu} \sim v^2 / \Lambda$, where $v = \langle H \rangle = 174 \text{ GeV}$ and new scale $\Lambda \sim 10^{15} \text{ GeV}$
- **Dark matter** (not a SM particle!)
 - particles with weak cross-section will have correct abundance $\Omega_{\rm DM}$ ("WIMP miracle"). New scale ~ 1 TeV
 - Axions. New scale $10^{10} 10^{12}$ GeV.
- **Baryon asymmetry of the Universe**: what ensured that for each 10^{10} anti-protons there was $10^{10} + 1$ proton in the early Universe?
 - Sakharov conditions: CP-violation; B-number violation; out-ofequilibrium processes (leptogenesis, phase transitions, etc.)
- Fine-tuning problems: CP-problem, hierarchy problem, grand unification, cosmological constant problem

Standard Model

Standard Model neutrinos are strictly massless

Right-chiral neutrino counterparts?

The most natural explanation of neutrino experiments – adding rightchiral counterparts to the Standard Model

- Charges of right neutrinos?
 - SU(3) : singlets
 - SU(2) : singlets ($\nu = L\tilde{H}$ singlet combination)
 - $U_Y(1)$: singlets ($Y(\nu) = Y(Higgs)$)
- Right-chiral neutrinos carry no charge under the Standard Model interactions sterile neutrinos
- Can add for them a Majorana mass

$$\mathcal{L}_{ ext{see-saw}} = i ar{N}_{I} \not \! \partial N_{I} + \underbrace{egin{pmatrix} ar{
u}_{e} - N_{I} \ ar{
u}_{\mu} - N_{J} \ \dots \ egin{pmatrix} ar{
u}_{\mu} - N_{J} \ egin{pmatrix} egin{pmatr$$

Standard Model neutrino masses are given by **see-saw formula**:

Neutrino mass matrix – 9 parameters. Dirac+Majorana mass matrix – 11 (18) parameters for 2 (3) sterile neutrinos. Two sterile neutrinos are enough to fit the neutrino oscillations data.

Scale of Dirac and Majorana masses is not fixed by neutrino oscillation data!

"Popular" choices of see-saw parameters

- Yukawa couplings $F_{\alpha I} \sim 1$, i.e. Dirac masses $M_D \sim M_t$. Majorana masses $M_I \sim 10^{15}$ GeV.
- Attractive features:
 - Provides a mechanism of baryon asymmetry of the Universe
 - Scale of Majorana masses is possibly related to GUT scale
- This model does not provide the dark matter particle
- Alternative? Choose Majorana masses M_I of the order of masses of other SM fermions and make Yukawa couplings small

Mass spectrum of the νMSM

Sterile neutrinos behave as **superweakly interacting** heavy neutrinos

$M_I < 1 \; \mathrm{MeV}$	$M_I\gtrsim 1~{ m MeV}$	$M_I \gtrsim 140 \; {\rm MeV}$	
$N_I \to \nu \nu \bar{\nu}$	$N_I \to \nu e^+ e^-$	$N_I \to \pi^{\pm} e^{\mp}$	
$N_I ightarrow u \gamma$		$N_I \to \pi^0 \nu$	

Mixing angle with usual neutrinos θ_I :

$$\theta_I^2 = \sum_{\alpha=e,\mu,\tau} \frac{M_{\mathrm{Dirac},\alpha I}^2}{M_{\mathrm{Majorana},I}^2} \ll 1$$

Fermi constant: $G_F \rightarrow \boldsymbol{\theta} G_F$

Lifetime $\tau \propto \theta_I^{-2} M_I^{-5}$. Can be cosmologically long

Mixing angle $\theta \ll 1$ means that sterile neutrinos can be out of equilibrium in the early Universe

Neutrino Minimal Standard Model (*v*MSM) solves several beyond the Standard Model problems

- \checkmark ... explains neutrino oscillations
- \checkmark ... matter-antimatter asymmetry of the Universe
- ✓ ... provides a viable dark matter candidate that can be cold, warm or mixed (cold+warm)
- The vMSM is self-consistent and does not require any other particles ⇒ we have a complete description of the Universe from the time of reheating
- Coupled with Higgs inflation the vMSM is a complete and self-consistent theory Bezrukov & up to the Planck scale
 Coupled with Higgs inflation the vMSM is a complete and self-consistent theory Bezrukov & Shaposhnikov (2008)

Asaka, Shaposhnikov Laine, **O.R.**, Boyarsky et al (2005-2011)

- Mass not restricted to the GeV range
- Can decay into the SM particles
- Produced in many different ways, non-thermally. Have nonuniversal spectrum of primordial velocities
- Can be warm or cold

Sterile neutrino DM is not completely dark. Its decay signal can

be searched for in the spectra of astrophysical objects.

Lifetime of sterile neutrino DM candidate

- Dominant decay channel for sterile neutrino (for $M_s < 1$ MeV) is $N \rightarrow 3\nu$.
- Life-time $\tau = 5 \times 10^{26} \text{sec} \times \left(\frac{\text{keV}}{M_s}\right)^5 \left(\frac{10^{-8}}{\theta^2}\right)^2$
- Subdominant radiative decay channel

- **Wolfenshtein** Pal (1982)
 - **Barger Phillips** Sarkar (1995)

Boyarsky, O.R

(2006-2009)

17

et al.

Search for dark matter particles

- DM may be decaying with a cosmologically long life-time (age of the Universe or even longer). Can we detect such decay?
- Yes! if you multiply a small number (probability of decay) with a large number (typical amount of DM particles in a galaxy $\sim 10^{70}$ - 10^{100})

Signal $\propto \int \rho_{\rm DM}(r) dl$ line of sight

Expected signal from the galaxy at a particular energy

Search for dark matter particles

- DM may be decaying with a cosmologically long life-time (age of the Universe or even longer). Can we detect such decay?
- Yes! if you multiply a small number (probability of decay) with a large number (typical amount of DM particles in a galaxy $\sim 10^{70}$ - 10^{100})

Expected signal from a galaxy at a particular energy

In the case of decaying Dark Matter the signal, if detected, is easy to distinguish from astrophysical backgrounds

We have a lot of freedom in choosing observation targets and, therefore, can unambiguously check DM origin of a suspicious signal.

For decaying DM "indirect" search becomes very promising!

MW (HEAO-1) Boyarsky, O.R et al. 2005

Coma and Virgo clusters Boyarsky, O.R et al.

Bullet cluster Boyarsky, O.R et al. 2006

LMC+MW(XM Boyarsky, O.R et al. 2006

MW Riemer-Sørensen et al.; Abazajian et al.

MW (XMM) Boyarsky, O.R et al. 2007

Results of almost 20 published works.

M31 Watson et al. 2006; 22Boyarsky et al 2007

Sterile neutrino DM and Lyman- α

Window of parameters of sterile neutrino DM

Window of parameters of sterile neutrino DM

Asaka, Laine, Shaposhnikov

Laine, Shaposhnikov

O.R. and many others 2005-2010

Window of parameters of sterile neutrino DM

Laine,

Shaposhnikov

Asaka, Laine, Shaposhnikov

O.R. and many others 2005-2010

How sterile neutrino DM is produced?

Phenomenologically acceptable values of θ_1 are so small, that the rate of this interaction Γ of sterile neutrino with the primeval plasma is much slower than the expansion rate ($\Gamma \ll H$)

 \Rightarrow Sterile neutrino are never in thermal equilibrium

How sterile neutrino DM is produced?

Sterile neutrinos have non-equilibrium spectrum of primordial velocities, roughly proportional to the spectrum of active neutrinos

$$f_s(p) \propto \frac{\theta^2}{\exp(\frac{p}{T_\nu(t)}) + 1} \qquad \Omega_s h^2 \sim \theta^2 M_s$$

(for this distribution $\int dq \ q^2 f(q) \propto \theta^2 \ll 1$)

• Average momentum $\langle p \rangle \approx 3T_{max} \gg M_s$

Sterile neutrinos are produced highly relativistic

Probing primordial velocities of dark matter particles

- Sterile neutrino DM is produced at temperatures $T \sim 100$ MeV (for masses $\sim \text{ keV}$ created relativistic \Rightarrow warm dark matter
- Relativistic particles free stream out of overdense regions and smooth primordial inhomogeneities

$$\lambda_{FS}^{co} = \int_0^t \frac{v(t')dt'}{a(t')}$$

Power spectrum of primordial density perturbations is suppressed at scales below free-streaming horizon

- Free-streaming horizon determines power spectrum suppression scale. (i.e. by the time of matter-radiation equality certain small scale primordial perturbations are suppressed/erased)
- For particle with Fermi-Dirac spectrum (thermal relics)

Bode et al. 2001

$$f(v) = \frac{1}{\exp\left\{\frac{M_{\mathsf{DM}}v}{T(t)}\right\} + 1}$$

this suppression is strong:

$$T(k) \equiv \sqrt{\frac{P(k)}{P_{\Lambda \text{CDM}(k)}}} \propto \left(\frac{k_{\text{FS}}}{k}\right)^{10} \qquad k_{\text{FS}} \sim 0.5 \frac{h}{\text{Mpc}} \frac{M_{\text{DM}}}{\text{keV}}$$

- Primordial velocities affect:
 - Power-spectrum of density fluctuations (suppress normalization at large scale)
 - Halo mass function (number of halos of small mass decreases)
 - Dark matter density profiles in individual objects
- Scales probed by CMB and LSS experiments (linear regime of perturbation growth)

$$k \simeq \ell \times \frac{H_0}{2} = \frac{\ell}{6000} \frac{h}{\text{Mpc}}$$

- Is sensitive up to scales $k \leq 0.1 \ h/$ Mpc (See the next talk by Katarina Markovic about future sensitivity of LSS probes)
- Smaller scales? Non-linear stage of structure formation

Is small number of observed substructures due to dark matter free-streaming?

WDM substructure suppression

Thermal relics with mass $\sim 1~{\rm keV}$ would erase too many Maccio & substructures. Anything "colder" would produce enough structures $^{\rm Fontanot}_{(2009);}$ to explain observed Milky Way structures

Polisensky & Ricotti (2010)

Lyman- α forest and cosmic web

Neutral hydrogen in intergalactic medium is a tracer of overall matter density. Scales $0.3h/{
m Mpc} \lesssim k \lesssim 3h/{
m Mpc}$

Lyman- α forest and cosmic web

Image: Michael Murphy, Swinburne University of Technology, Melbourne, Australia

Neutral hydrogen in intergalactic medium is a tracer of overall matter density. Scales $0.3h/{\rm Mpc} \lesssim k \lesssim 3h/{\rm Mpc}$

- Astronomical data analysis of quasar spectra
- Astrophysical modeling of hydrogen clouds
- N-body+hydrodynamical simulations of DM clustering at non-linear stage
- Simultaneous fit of cosmological parameters ($\Omega_b, \Omega_M, n_s, h, \sigma_8 \dots$). Astrophysical parameters, describing IGM, are not known and should be fitted as well (another 20+ parameters)
- The data: Lyman-α+ CMB + maybe LSS . . . (thousands of data points, sometimes correlated)

0.1 $\Delta_{\rm F}^{\rm 2}({
m k})$ 0.01 0.001 0.01 $k [(km/s)^{-1}]$

Measured flux power spectrum is compared against CDM and non-CDM models

Seljak et al. '06

These bounds are for **non-resonantly produced** sterile neutrinos or **thermal relics** only!

Lyman- α forest and warm DM

- Previous works put bounds on free-streaming $\lambda_{FS} \lesssim 150$ kpc Viel et al. ("WDM mass" > 8 keV) $\gtrsim 150$ kpc Viel et al. 2005-2007; Seljak et
- The simplest WDM with such a free-streaming would not modify al.(2006) visible substructures:

Maccio & Fontanot (2009);

Polisensky & Ricotti (2010)

Thermal relic with exponential cut-off ~ 1 Mpc (= NRP sterile neutrino with the mass ~ 4.5 keV) would erase too many substructures. Anything "colder" would produce enough structures to explain observed Milky Way structures

Does this mean that sterile neutrino dark matter *ruled out*? – **NO**!

Window of parameters of sterile neutrino DM

Once again:

Laine, Shaposhnikov

Window of parameters of sterile neutrino DM

Asaka, Laine, Shaposhnikov

Laine, Shaposhnikov Quick reminded: necessary conditions for generation of baryon ⁽¹⁹⁶⁷⁾ asymmetry of the Universe (Sakharov conditions): Kuzmin, Rubakov,

 (\bullet) B-number violation \rightarrow sphalerons

(?) CP (and C) non-conservation \rightarrow phase of the CKM matrix

Out-of-equilibrium processes \rightarrow no phase transition in the SM for $\frac{\text{Kajantie et al.}}{(1996)}$ $m_H > 72 \text{ GeV!}$

What changes in the ν MSM?

Shaposhnikov

Shaposhnikov

(1985)

Farrar &

(1994)

Necessary conditions for generation of baryon asymmetry of the ⁽¹⁹⁶⁷⁾ Universe (Sakharov conditions): Kuzmin,

(+) B-number violation \rightarrow sphalerons

? CP (and C) non-conservation → phase of the CKM matrix plus additional CP phases in the Dirac mass matrix of sterile neutrinos

Kajantie et al. (1996)

Rubakov,

(1985)

Farrar &

(1994)

Shaposhnikov

Shaposhnikov

 \bigcirc Out-of-equilibrium processes \rightarrow no phase transition in the ν MSM for $m_H > 72$ GeV! but Yukawa couplings of sterile neutrinos are small enough to keep them out of thermal equilibrium at $T \sim 100$ GeV

Baryo- and lepto-genesis in the νMSM

At $T > T_{sph}$ lepton asymmetry gets converted to baryon asymmetry by sphalerons — baryogenesis

• At $T_{\rm sph} > T > T_+$ lepton asymmetry continues to be generated where $|F|^2 T_+ = \frac{T_+^2}{M}$ (the Yukawa coupling $|F|^2 \sim \frac{Mm_{\rm atm}}{v^2}$ from neutrino oscillations)

Resonant production

The presence of lepton asymmetry in primordial plasma makes active-sterile mixing much more effective – resonant production Shi Fuller'98

Shi Fuller'98 Laine, Shaposhnikov

Maximal amount of DM produced resonantly:

 $\Omega_{\rm RP}h^2 \propto M_s L_6$

- independent of the mixing angle!

Laine, Shaposhnikov'08; Boyarsky, O.R., Shaposhnikov'09

Oleg Ruchayskiy

Velocity spectra of resonantly produce sterile neutrinos with the mass 2 keV, produced at different lepton asymmetries

Transfer functions of resonantly produce sterile neutrinos with the mass 2 keV, produced at different lepton asymmetries

Models with admixture of cold DM component (relevant for resonantly produced sterile neutrino DM, gravitino DM)

- *k*_{FSH} depends on mass, does not depend on WDM fraction
- T(k) falls slower if more CDM
- For small WDM fraction T(k) cannot be distinguished from CDM within the precision of the data

Boyarsky, Lesgourgues, **O.R.**, Viel JCAP, PRL 2009;

Boyarsky, O.R., Shaposhnikov Ann. Rev. Nucl. Part. Sci. 2009

- Revised version of these bounds in CDM+WDM (mixed, CWDM) models demonstrates that
 - The primordial spectra are not described by free-streaming
 - There exist viable models with the masses as low as 2 keV

Boyarsky, O.R., Lesgourgues, Viel JCAP & PRL (2009)

Halo substructure with sterile neutrino DM

Lovell, Frenk, Theuns, **O.R** and others, 2011

work in progress

Halo substructure with CDM

Aq-A2 halo

Halo substructure with sterile neutrino DM

Aq-A-2 CDM halo

PRELIMINARY: *Aq-A-2 halo* made of sterile neutrino DM (Gao, Theuns, Frenk, **O.R.**, ...)

Simulated sterile neutrino DM halo (right) is fully compatible with the Lyman-α forest data but provides a structure of Milky way-size halo different from CDM Large satellites

Lovell, Frenk, Eke, ..., **O.R.** 1104.2929 [astro-ph.CO]

- Neutrino Minimal Standard Model (vMSM) provides resolution of all major observational BSM problems and gives a complete history of the Universe from inflationary era till today.
- Sterile neutrino dark matter can leave its imprints on formation of structures and can be detected via its monochromatic decays to photons
- Thermal relics WDM with interesting astrophysical and cosmological applications are ruled out by Lyman-*α*
- Sterile neutrino dark matter (as a part of the ν MSM model) is a viable dark matter candidate, consistent with the Lyman- α constraints within a wide range of the model parameters.

Thank you for your attention!

A couple of slides about dark matter surface density

Observations vs. simulations

O.R., Macciò and others, 0911.1774

- More than half of all objects obey the derived relation between parameters of DM density profiles
- For most of them $\rho_s r_s \propto \rho_c r_c$
- Observable not sensitive to the choice of dark matter density profile?
- Dark matter column density

$$\mathcal{S} = \int_{\text{l.o.s.}} \rho_{\text{DM}}(r) dl \propto \rho_{\star} r_{\star}$$

• r_{\star} is a characteristic scale ($r_{\star} = r_s$ for NFW, $r_{\star} = 6.1r_c$ for ISO).

 ρ_{\star} – average density inside r_{\star}

DM surface density for different types of galaxies.

Baryonic surface density for different types of galaxies.

- There exist many works on dark matter distribution in individual objects
- Going through the literature we collected a "catalog" of ~1000 DM 0911.1774 density profiles for ~300 individual objects, ranging from dwarf spheroidal satellites of the Milky Way to galaxy clusters
- Different groups of astronomers use different dark matter profiles to fit the mass distribution (ISO, NFW, BURK, ...)
- Often fits to different DM density profiles exist for the same object. How to relate their parameters?

Fitting the same (simulated) data with two different profiles

- one finds a relation between parameters of two DM density distribution, fitting the same data
 0911.1774
 - NFW vs. ISO : $r_s \simeq 6.1 r_c$; $\rho_s \simeq 0.11 \rho_c$
 - NFW vs. BURK : $r_s \simeq 1.6 r_B$; $\rho_s \simeq 0.37 \rho_B$
- Is this relation actually observed?

About 60 objects with both NFW and ISO profiles

Number of profiles

- The data spans many orders of magnitude in halo masses ($10^8 M_{\odot}$ $10^{15} M_{\odot}$)
- The relation between S and M_{halo} is observed for halos of all scales
- Actual observed halos reproduce concentration-mass relation known in simulations for decades but never probed before over such a large mass scale
- Its median value and scatter coincide remarkably well with pure dark matter numerical simulations
- Separately the slope of subhalos is reproduced
- No visible features universal (scale-free) dark matter down to the lowest observed scales and masses?

Dark Matter Search Using Chandra Observations of Willman 1, and Loewenstein 8 a Spectral Feature Consistent with a Decay Line of a 5 keV Sterile Kusenko (Dec'2009) Neutrino

Can the excess in the FeXXVI Ly gamma line from the Galactic Prokhorov & Center provide evidence for 17 keV sterile neutrinos?
Silk (Jan'2010

Do we see this line anywhere else? Objects with comparable $S_{\rm MW}$ Msun/pc² expected signal for which 600 archival data is available 500 Fornax dSph (XMM) $\mathcal{S}_F = 54.4 M_{\odot} \mathrm{pc}^{-2}$ 400 M31 Sculptor dSph 300 (Chandra) $S_{Sc} = 140 M_{\odot} \, \mathrm{pc}^{-2}$ Willman 1 200 Sculptor 100 Andromeda galaxy Fornax • (M31): 0 $S_{M31} \sim 100 - 600 M_{\odot} / \mathrm{pc}^2$ 150 50 100 0

Do we see this 2.5 keV line?

DM in Andromeda galaxy (2008)

DM in Andromeda galaxy (2010)

Checking for DM line in M31

Willman 1 spectral feature excluded with high significance from archival observations of M31 and Fornax and Sculptor dSphs

- Many DM-dominated objects would provide comparable decay signal. Freedom in choosing observation targets that optimize the signal-to-noise ratio (with well-controlled astrophysical backgrounds).
- Candidate line can be distinguish from astrophysical backgrounds by studying its surface density and sky distribution.

For decaying dark matter indirect search becomes direct!

- CWDM Ly- α bounds: about 20% of DM can be rather warm
- Primordial velocities at MD epoch can be significant (~ 10 km/sec)
- Numerical simulations with velocities? Require high resolution

- CWDM Ly- α bounds: about 20% of DM can be rather warm
- Primordial velocities at MD epoch can be significant (~ 10 km/sec)
- Numerical simulations with velocities?

Effect of velocities is negligible at scales of interest:

Work in progress

$$\frac{\Delta P(k,z)}{P(k,z)} \simeq -3.2 \times 10^{-6} \left(\frac{k}{h \,\mathrm{Mpc}^{-1}}\right)^2 \left(\frac{\mathrm{keV}}{M_s}\right)^2 \left(\frac{0.27}{\Omega_M}\right) (1+z_i)$$

Concordance model at cosmological scales	.1
Dark matter - a fundamental physics problem	. 2
Properties of dark matter candidates	.3
DM candidates. What do we expect?	. 4
Super-Weakly Interacting Massive Particles	.5
Why (and where) we expect new physics?	. 7
Standard Model	. 8
Right-chiral neutrino counterparts?	. 9
Properties of right-chiral neutrinos	10
See saw Lagrangian	11
The scale of right-handed masses?	12
Neutrino Minimal Standard Model	13
Some general properties of sterile neutrino	14
Entire history of the Universe	15
Properties of sterile neutrino DM	16
Lifetime of sterile neutrino DM candidate	17
Search for dark matter particles	18
Search for dark matter particles	19

Decay vs. annihilation	20
······	21
Restrictions on life-time of decaying DM	22
Window of parameters of sterile neutrino DM	23
Window of parameters of sterile neutrino DM	24
Window of parameters of sterile neutrino DM	25
How sterile neutrino DM is produced?	26
How sterile neutrino DM is produced?	27
	28
Free-streaming	29
Suppression of power spectrum	30
Thermal relics	31
How to probe primordial velocities?	32
Halo substructure in "cold" DM universe	33
WDM substructure suppression	34
Luminosity vs. mass function	35
How to measure power spectrum	36
Lyman- α forest and cosmic web	37

Lyman- α forest and cosmic web	38
The Lyman- α method includes	39
Lyman- α forest flux power spectrum	40
Ly- α and non-resonant sterile neutrino	41
Lyman- α forest and warm DM	42
Lyman- α forest and sterile neutrinos	43
Window of parameters of sterile neutrino DM	44
Window of parameters of sterile neutrino DM	45
Sakharov conditions in the SM	46
Sakharov conditions in the ν MSM	47
Baryo- and lepto-genesis in the ν MSM	48
Resonant production	49
RP sterile neutrino spectra	50
Primordial velocities of sterile neutrino	51
Free-streaming of sterile neutrino DM	52
Cold+warm DM model (CWDM)	53
Power spectrum for sterile neutrinos	54
Lyman- α bounds for sterile neutrinos	55

Sterile neutrino DM in the ν MSM	56
Sterile neutrino DM in the ν MSM	57
Halo substructure with sterile neutrino DM	58
Halo substructure with CDM	59
Halo substructure with sterile neutrino DM	60
Large satellites	61
Conclusions	62
Future of sterile neutrino DM	63
Probing other sterile neutrinos	64
Improved bounds on DM decay	65
Surface density and simulations	67
Observations vs. simulations	68
Dark matter surface density	69
DM column density	70
Constant surface density?	71
An evidence in favor of MOND?	72
Comparing DM density profiles	73
Comparing DM density profiles	74

NFW vs. ISO	75
Independent determination of mass	76
Independent determination of mass	77
Universal scaling of DM column density	78
Checking DM origin of a line	79
Do we see this line anywhere else?	80
DM in Andromeda galaxy (2008)	81
DM in Andromeda galaxy (2010)	82
Checking for DM line in M31	83
How to check DM origin of a line?	84
Lyman- α analysis in CWDM models	85
Lyman- α analysis in CWDM models	86