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mass does not follow light:

dSphs are the most dark matter dominated systems known,

a unique testing ground for cosmology

Dark Haloes in
dSphs

Nicola C.
Amorisco

dSphs and
Near-Field
Cosmology

Pitfalls and
Improvements

Cores from
multiple stellar
populations
Jeans’ modelling
Mass estimators

Phase-space
modelling
Virial Theorem

Line Profiles
Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions




Dynamics and Near-Field Cosmology

dark halo stellar populations
m mass profile? m orbital structure?
m core or cusp? m evolutionary history?
m concentration? m accreted/expelled gas?
m phase-space structure? m baryonic feedback?

Because of degeneracies,
it has not proved easy to address these questions.

Dark Haloes in
dSphs

Nicola C.
Amorisco

dSphs and
Near-Field
Cosmology

Pitfalls and
Improvements

Cores from
multiple stellar
populations
Jeans’ modelling
Mass estimators

Phase-space
modelling
Virial Theorem

Line Profiles
Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions




Dark Haloes in

Mass-Anisotropy degeneracy dsphs

Nicola C.
Amorisco

dSphs and
14 Near-Field
120 Sculptor 1 e Cosmology
=
— 10¢ m = Pitfalls and
~ 8 == 3 ) @ 107 Improvements
E =
= 6 o Cores from
C) E FW E ] & q
4 |sot{opl;:p(p,=o) 2 10 multllpltej stellar
2k Radial (8,=+0.3) E S populations
0 Tangential {(8,=-0.5) 5 108 Jeans’ modelling
Mass estimators
1 OO. N 1000 1 Oo Phase-space
Projected Radius [pc] — modelling
ng 10° Virial Theorem
™2 402 Line Profiles
= -3 Issues with Discrete
— 10 Data
Walker 2012  joh A Bayesian
i ramewor!
107° : Results: the dSphs

100 1000
r [pe]

Conclusions




# 1 - Jeans’ Pitfall

m luminous density p,
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# 1 - Jeans’ Pitfall

m luminous density p,

m gravitational potential ®
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# 1 - Jeans’ Pitfall

m luminous density p,
m gravitational potential ®

m orbital structure 3
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# 1 - Jeans’ Pitfall

luminous density px
halo potential d
orbital structure [

are NOT
independent quantities

Not all combinations guarantee f > 0!
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# 1 - Jeans’ Pitfall

luminous density px
halo potential d
orbital structure [

are NOT
independent quantities

Not all combinations guarantee f > 0!

Plummer or King is NOT a physical model
any cusped halo (Ciotti & Pellegrini 1992,
isotropic An & Evans 2009)
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# 1 - Jeans’ Pitfall

luminous density px
halo potential d
orbital structure [

are NOT
independent quantities

Not all combinations guarantee f > 0!

Plummer or King is NOT a physical model
any cusped halo (Ciotti & Pellegrini 1992,
isotropic An & Evans 2009)

m this introduces an artificial degeneracy

m no prediction for 3,
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# 3 - Unused data: Line Profiles

LOSVD

LOSVD

LOSVDs are the imprint of orbital structure.
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Cores from multiple stellar pops
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Jeans’ modelling in Sculptor for MP and MR stellar
populations.

m Marginal preference for a core
m NFW fit still statistically acceptable
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m significant improvement: metallicity distribution

m not a dynamical model: detailed information on the
halo? orbital structure?
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both kinematics and photometry.
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Choice of the Distribution Function

What level of complexity do we need?
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The tidal cut is incompatible with the MR stellar population.
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Choice of the Distribution Function

The energy-cut in phase-space of the MR population is not
tidal in origin. Possibly depending on the original gas
distribution.

Hence, we allow for different truncations.

Tlos

Tlos/(KMY/S)
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Choice of the Distribution Function
Michie-King DFs:

fo = fux(E, L) o« exp <‘_L2> {exp [@(7”372—19} _ 1}

252
2rio

These can cover a wide range of dependences on Energy
m from the isothermal limit: f, ~ exp(—F)
m up to strongly truncated systems: f, ~ (®(ry) — E)

This is equivalent to an ordering in the ratio ry/Ry,.

Isotropic in the center with an adjustable degree of radial
anisotropy at larger radii.

Each stellar population has 3 free parameters:

(Rn, 7, B = B(Ry))
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Halo density profile R
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Maximum-likelihood Analysis

For each parametrization of the dark halo we have 8 free
parameters:

(T(]u £0; Rha fj'w Ba Rha ft; B)
We consider the likelihood
Liot = Laip (r0, po; Ru, 71, B) - Lnir (ro, po; Ru, 7, )
Xtot = Xmp + XA
For each population

> =x%+ 2
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Maximum-likelihood Analysis

For each parametrization of the dark halo we have 8 free
parameters:

(7“0,/)0§ Rh,f’t,B; Rha TAtB)

We consider the likelihood
Liot = Laip (r0, po; Ru, 71, B) - Lnir (ro, po; Ru, 7, )

Xtot = X12\4P + X12\,IR

For each population

> =x%+ 2

2 2 2 2
Xvp = Xz + Xo + Xr,
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Cusped

Halo
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Mass Profile

Both NFW halo and cored halo have approximately the same
mass profile in the range

200pc < r < 1.2kpc

M/M,

0} _ar ]

106 i 4 E

I L L L L
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Cores from the Virial Theorem

MP 2Kjps + Wips =0 both populations
MR 2K;,s + Wips =0 satisfy the Virial Theorem

o0
Kips / RdR %, o},
0

o R Pd
Wips X / RdR 2. / rldr —24m
0 0 R? —r?

A fundamental constrain
based on measured quantities only:
no dependence on the orbital structure (!

Agnello & Evans 2012
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Cores from the Virial Theorem > e
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Conclusions

Any core smaller than = 120pc
is not compatible (less than 20) with the VT.

Agnello & Evans 2012




Line Profiles

m Line Profiles constrain the orbital structure;
m break degeneracies: mass profile at the center and at
large radii;
m constrain feasible formation scenarios.
LOSVDs are usually assumed to be Gaussians. Deviations
are measured by using Gauss-Hermite expansions.

8

4
z
Sz

Gerhard 1993, van der Marel & Franx 1993
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Dark Haloes in

Issues with Discrete Data dsphs
) ) i i Nicola C.
m Gauss-Hermite series are best suited for continuous Amorisco
data; dSphs and
. . . . Near-Field
m non-uniform observational uncertainties; Cosmology
H H H H H Pitfalls and
m limited sampling limits the accuracy. improvements
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N Conclusions

Accuracy Limits: Standard Deviation for h3 and hs at sample size N.

For N smaller than 200,
noise may be larger than expected signal.




Issues with Discrete Data

A tracer v; & 0; is associated with the velocity distribution
£ *9(d;), rather than with the intrinsic .Z.

05F 010 . . : .
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Attenuation by observational uncertainties.
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Issues with Discrete Data

A tracer v; & 0; is associated with the velocity distribution
£ *9(d;), rather than with the intrinsic .Z.
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Attenuation by observational uncertainties.

On the contrary, a Bayesian implementation directly
measures the intrinsic distribution .Z.
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A Bayesian Framework

Using all available information
m the velocities v;;
m the uncertainties ¢;;

m the probabilities of membership p;.

N
L@) =TI » |2(6)+9()] ()

=1

O = {u,0} UBg, = {1, 0,5,a}
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A Bayesian Framework

Using all available information
m the velocities v;;
m the uncertainties ¢;;

m the probabilities of membership p;.

N
L@) =TI » |2(6)+9()] ()

=1
O = {u,0} UBg, = {1, 0,5,a}

m no binning in velocity space;
m reliable uncertainties for any parameter;

m intrinsic distribution .Z recovered.

Amorisco & Evans 2012
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Asymmetric deviations: a

The asymmetric distributions: Z (s, a;v).

Asymmetry is
driven by a
suitable
tranformation of
the symmetric
family:

Z(s,a;v) =
2L (s; X(s,a;v))
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Performance

Does it work any better?

StD(h3) , StD(hyg)

200 300 500 700

Comparing Accuracy: Standard Deviation for h3 and hy at a given
sample size N.

The relative gain in accuracy is significant even with no

observational uncertainties or probabilities of membership.
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Assessing Statistical Significance

200 300 500 700

N
What if this family is not
general enough?

Comparing the maximum likelihood

N

L= H Di [f(é) *%((Si)} (vi)

i=1

with the average likelihood for the
same parameters

N N
Iv: 2+9) = » /[j*%(di)]g
=1 i=1

and the natural scatter induced by
sample size

x = (L —(L))/StD[{L)]
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Carina dSph

758 giants with p; > 0.9; (6)/0 ~ 0.53
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Profiles in circular annuli for the Carina dSph; R; ~ 8.2arcmin. Data
from Walker et al. 2009.




Sextans dSph D Holos

Nicola C.

424 giants with p; > 0.9; (0)/0 ~ 0.42 Amorisco
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6.5 : Conclusions
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Profiles in circular annuli for the Sextans dSph; Rcore =~ 16.6arcmin.
Data from Walker et al. 2009.




Sculptor dSph

1355 giants with p; > 0.9; (6)/0 ~ 0.33

osf T
0.10t 1
n L 1 & 0.05f 1
0.2 e © P S

0.0 0.00
-0.2§ . . . o . . . . .
0 10 20 30 40 0 10 20 30 40
R/arcmin R/arcmin
12F 0

a/(km/s)
© 6
%ﬂ

0 10 20 30 40
R/arcmin
Profiles in circular annuli for the Sculptor dSph; R;, ~ 11.3arcmin. Data
from Starkenburg et al. 2010 in

Dark Haloes in
dSphs

Nicola C.
Amorisco

dSphs and
Near-Field
Cosmology

Pitfalls and
Improvements

Cores from
multiple stellar
populations
Jeans’ modelling
Mass estimators

Phase-space
modelling
Virial Theorem

Line Profiles
Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions




Fornax dsph Darkd;‘:::;es in

Nicola C.

2409 giants with p; > 0.9; (6)/0 ~ 0.22 Amorisco
dSphs and
Near-Field
‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.10 J T T T T T ™ Cosmology
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= —0.5F t 1S 0003
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R/aremin . . ; . . ; R/arcmln Virial Theorem
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Profiles in circular annuli for the Fornax dSph; Rj, = 16.6arcmin. Data
from Walker et al. 2009.




Conclusions

Detailed modelling can tackle the dynamical structure of
dSphs

Multiple-pop. systems allow to probe the presence of cusps

Phase-Space modelling of both photometric and kinematic
data in Sculptor exclude an NFW halo

This result is confirmed by different analyses, by using
different data

A Bayesian framework for measuring line profiles allows to
double accuracy

Sextans, Carina and Sculptor have LOSVD more peaked
than Gaussian, suggesting some radial anisotropy

Fornax is the only system with flat-topped LOSVDs

Modelling that use all observables is required
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Rio10s(Ry)?

M (167 £0.04)Ry] = (5.85 40.2) =%




Independent Populations - Core

00 05 10 L5 20
R,

m MP: quasi isothermal, Ry, 1 =~ 79, x* = 40

m MR: signs of truncation, radially anisotropic, Ry 2
undetermined, x? = 2.1
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Independent Populations - NFW

m MP: mildly radial , Ry 1 < 0.257¢, x* = 49

m MR: strongly truncated, radially anisotropic, Ry 2
undetermined, 2 = 3.4
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<Rh,2)5 _ (alos,g(Rh,2)>2
Rh,l o Ulos,l(Rh,l)
= M AR,) [MAR,1)]

In (Rn2/Rn1)
If kr > k,, then

In ks,
F:1+2fk

>6+1
nKR
which is incompatible with p ~ 70~2
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Xz X5+ X5 X2+ 6 + X2,
NFW | 303, 41.5, 45.7 482, 669, 68.3 49.0, 67.8, 69.7
cored | 32.7, 363, 39.7 39.0, 54.3, 506 403, 55.7, 60.5
NFW | 23 56, 91 34 111 138 -
cored 1.1,33,49 2.1,6.8,9.9 -

Table: Results of the independent analysis of the metal-poor
(upper) and metal-rich (lower) stellar component. The table gives
the values of the y2-quantities referring, in order, to the best fit
models, to the 68% and to the 95% confidence regions.
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Figure: Metallicity distribution in the Fornax dSph.
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MR - Intermediate - MP R
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Kinematics
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Figure: Kinematics of the disentangled populations.
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...and Counter-Rotation s
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Figure: Metallicity distribution in the Sculptor dSphs.

Dark Haloes in
dSphs

Nicola C.
Amorisco

dSphs and
Near-Field
Cosmology

Pitfalls and
Improvements

Cores from
multiple stellar
populations
Jeans’ modelling
Mass estimators

Phase-space
modelling

Virial Theorem

Line Profiles
Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions




	dSphs and Near-Field Cosmology
	Pitfalls and Improvements
	Cores from multiple stellar populations
	Jeans' modelling
	Mass estimators
	Phase-space modelling
	Virial Theorem

	Line Profiles
	Issues with Discrete Data
	A Bayesian Framework
	Results: the dSphs

	Conclusions

