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mass does not follow light:

dSphs are the most dark matter dominated systems known,
a unique testing ground for cosmology



Dark Haloes in

dSphs

Nicola C.

Amorisco

dSphs and

Near-Field

Cosmology

Pitfalls and

Improvements

Cores from

multiple stellar

populations

Jeans’ modelling

Mass estimators

Phase-space
modelling

Virial Theorem

Line Profiles

Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions

dSphs and GCs

mass does not follow light:

dSphs are the most dark matter dominated systems known,
a unique testing ground for cosmology



Dark Haloes in

dSphs

Nicola C.

Amorisco

dSphs and

Near-Field

Cosmology

Pitfalls and

Improvements

Cores from

multiple stellar

populations

Jeans’ modelling

Mass estimators

Phase-space
modelling

Virial Theorem

Line Profiles

Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions

Dynamics and Near-Field Cosmology

dark halo

mass profile?

core or cusp?

concentration?

phase-space structure?

stellar populations

orbital structure?

evolutionary history?

accreted/expelled gas?

baryonic feedback?

Because of degeneracies,
it has not proved easy to address these questions.
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# 1 - Jeans’ Pitfall

luminous density ρ∗

gravitational potential Φ

orbital structure β

Solve the Jeans’ eq. and calculate the LOS kinematic profile

σ2

LOS(R) =
2

Σ∗(R)

∫

∞

R
rdr

(

1− β
R2

r2

)

ρ∗σ
2
r√

r2 −R2



Dark Haloes in

dSphs

Nicola C.

Amorisco

dSphs and

Near-Field

Cosmology

Pitfalls and

Improvements

Cores from

multiple stellar

populations

Jeans’ modelling

Mass estimators

Phase-space
modelling

Virial Theorem

Line Profiles

Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions

# 1 - Jeans’ Pitfall

luminous density ρ∗

gravitational potential Φ

orbital structure β

Solve the Jeans’ eq. and calculate the LOS kinematic profile

σ2

LOS(R) =
2

Σ∗(R)

∫

∞

R
rdr

(

1− β
R2

r2

)

ρ∗σ
2
r√

r2 −R2



Dark Haloes in

dSphs

Nicola C.

Amorisco

dSphs and

Near-Field

Cosmology

Pitfalls and

Improvements

Cores from

multiple stellar

populations

Jeans’ modelling

Mass estimators

Phase-space
modelling

Virial Theorem

Line Profiles

Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions

# 1 - Jeans’ Pitfall

luminous density ρ∗

gravitational potential Φ

orbital structure β

Solve the Jeans’ eq. and calculate the LOS kinematic profile

σ2

LOS(R) =
2

Σ∗(R)

∫

∞

R
rdr

(

1− β
R2

r2

)

ρ∗σ
2
r√

r2 −R2



Dark Haloes in

dSphs

Nicola C.

Amorisco

dSphs and

Near-Field

Cosmology

Pitfalls and

Improvements

Cores from

multiple stellar

populations

Jeans’ modelling

Mass estimators

Phase-space
modelling

Virial Theorem

Line Profiles

Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions

# 1 - Jeans’ Pitfall

luminous density ρ∗

gravitational potential Φ

orbital structure β

Solve the Jeans’ eq. and calculate the LOS kinematic profile

σ2

LOS(R) =
2

Σ∗(R)

∫

∞

R
rdr

(

1− β
R2

r2

)

ρ∗σ
2
r√

r2 −R2



Dark Haloes in

dSphs

Nicola C.

Amorisco

dSphs and

Near-Field

Cosmology

Pitfalls and

Improvements

Cores from

multiple stellar

populations

Jeans’ modelling

Mass estimators

Phase-space
modelling

Virial Theorem

Line Profiles

Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions

# 1 - Jeans’ Pitfall

luminous density ρ∗
halo potential Φ

orbital structure β







are NOT
independent quantities

Not all combinations guarantee f ≥ 0!

Plummer or King
any cusped halo

isotropic







is NOT a physical model
(Ciotti & Pellegrini 1992,

An & Evans 2009)

this introduces an artificial degeneracy

no prediction for Σ∗
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# 2 - Multiple stellar populations

Sculptor: Tolstoy et al. 2004
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# 3 - Unused data: Line Profiles

LOSVDs are the imprint of orbital structure.
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Cores from multiple stellar pops

Jeans’ modelling in Sculptor for MP and MR stellar
populations.

Marginal preference for a core

NFW fit still statistically acceptable
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Cores from mass estimators

Mass estimator

M(Rh) ≈ K
Rhσ

2

los

G

Walker et al. 2009,
Wolf et al. 2010,

Amorisco & Evans 2011
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Cores from mass estimators

significant improvement: metallicity distribution

not a dynamical model: detailed information on the
halo? orbital structure?
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Cores from phase-space modelling

We adopt the observables as in Battaglia et al. 2008
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MP: [Fe/H] < −1.7 MR: [Fe/H] > −1.5

The phase-space approach gives a prediction for
both kinematics and photometry.
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Choice of the Distribution Function

What level of complexity do we need?

f∗ ∝ exp

[

Φ(rt)− E

σ2

]

− 1
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The tidal cut is incompatible with the MR stellar population.
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Choice of the Distribution Function

The energy-cut in phase-space of the MR population is not
tidal in origin. Possibly depending on the original gas
distribution.

Hence, we allow for different truncations.
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Choice of the Distribution Function

Also, isotropic models are not enough, and a mild radial
anisotropy is needed:
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Choice of the Distribution Function

Michie-King DFs:

f∗ = fMK(E,L) ∝ exp

( −L2

2r2aσ
2

){

exp

[

Φ(rt)− E

σ2

]

− 1

}

These can cover a wide range of dependences on Energy

from the isothermal limit: f∗ ∼ exp(−E)

up to strongly truncated systems: f∗ ∼ (Φ(rt)− E)

This is equivalent to an ordering in the ratio rt/Rh.

Isotropic in the center with an adjustable degree of radial
anisotropy at larger radii.

Each stellar population has 3 free parameters:

(Rh, rt, β̄ ≡ β(Rh))
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Halo density profile

the usual NFW profile

ρ(r) =
ρ0

(

r
r0

)(

1 + r
r0

)2

an intermediate cusp

ρ(r) =
ρ0

(

r
r0

)1/2 (

1 + r
r0

)3/2

a cored halo

ρ(r) =
ρ0

(

1 +
(

r
r0

)2
)3/2
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Maximum-likelihood Analysis

For each parametrization of the dark halo we have 8 free
parameters:

(r0, ρ0; R̂h, r̂t, β̄; R̂h, r̂t, β̄)

We consider the likelihood

Ltot = LMP(r0, ρ0; R̂h, r̂t, β̄) · LMR(r0, ρ0; R̂h, r̂t, β̄)

χtot = χ2

MP + χ2

MR

For each population

χ2 = χ2

Σ + χ2

σ

χ2

MP = χ2

Σ + χ2

σ + χ2

rt
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Cored Halo

Amorisco & Evans 2012
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Cusped Halo

∆χ2

tot ≈ 12

c / 17

r−1-cusp 99.95%
r−0.5-cusp 98.6%
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Mass Profile

Both NFW halo and cored halo have approximately the same
mass profile in the range

200pc ≤ r ≤ 1.2kpc
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Cores from the Virial Theorem

MP 2Klos +Wlos = 0
MR 2Klos +Wlos = 0

}

both populations
satisfy the Virial Theorem

Klos ∝
∫

∞

0

RdR Σ∗ σ2

los

Wlos ∝
∫

∞

0

RdR Σ∗

∫ R

0

r2dr
ρdm√
R2 − r2

A fundamental constrain
based on measured quantities only:

no dependence on the orbital structure β!

Agnello & Evans 2012
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Cores from the Virial Theorem

ρdm = ρ0 (ǫ2 + r2/r2s)
−1/2(1 + r2/r2s)

Deviations from spherical symmetry

Self-gravity contributions

Any core smaller than ≈ 120pc
is not compatible (less than 2σ) with the VT.

Agnello & Evans 2012
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Line Profiles

Line Profiles constrain the orbital structure;

break degeneracies: mass profile at the center and at
large radii;

constrain feasible formation scenarios.

LOSVDs are usually assumed to be Gaussians. Deviations
are measured by using Gauss-Hermite expansions.

Gerhard 1993, van der Marel & Franx 1993



Dark Haloes in

dSphs

Nicola C.

Amorisco

dSphs and

Near-Field

Cosmology

Pitfalls and

Improvements

Cores from

multiple stellar

populations

Jeans’ modelling

Mass estimators

Phase-space
modelling

Virial Theorem

Line Profiles

Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions

Issues with Discrete Data

Gauss-Hermite series are best suited for continuous
data;

non-uniform observational uncertainties;

limited sampling limits the accuracy.

Accuracy Limits: Standard Deviation for h3 and h4 at sample size N .

For N smaller than 200,
noise may be larger than expected signal.



Dark Haloes in

dSphs

Nicola C.

Amorisco

dSphs and

Near-Field

Cosmology

Pitfalls and

Improvements

Cores from

multiple stellar

populations

Jeans’ modelling

Mass estimators

Phase-space
modelling

Virial Theorem

Line Profiles

Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions

Issues with Discrete Data

Gauss-Hermite series are best suited for continuous
data;

non-uniform observational uncertainties;

limited sampling limits the accuracy.

Accuracy Limits: Standard Deviation for h3 and h4 at sample size N .

For N smaller than 200,
noise may be larger than expected signal.



Dark Haloes in

dSphs

Nicola C.

Amorisco

dSphs and

Near-Field

Cosmology

Pitfalls and

Improvements

Cores from

multiple stellar

populations

Jeans’ modelling

Mass estimators

Phase-space
modelling

Virial Theorem

Line Profiles

Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions

Issues with Discrete Data

A tracer vi ± δi is associated with the velocity distribution
L ∗ G (δi), rather than with the intrinsic L .

Attenuation by observational uncertainties.

On the contrary, a Bayesian implementation directly
measures the intrinsic distribution L .
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A Bayesian Framework

Using all available information

the velocities vi;

the uncertainties δi;

the probabilities of membership pi.

L(~Θ) =

N
∏

i=1

pi

[

L (~Θ) ∗ G (δi)
]

(vi)

~Θ = {µ, σ} ∪ ~Θsh = {µ, σ, s, a}

no binning in velocity space;

reliable uncertainties for any parameter;

intrinsic distribution L recovered.

Amorisco & Evans 2012
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A Bayesian Framework

Using all available information

the velocities vi;

the uncertainties δi;

the probabilities of membership pi.

L(~Θ) =

N
∏

i=1

pi

[

L (~Θ) ∗ G (δi)
]

(vi)

~Θ = {µ, σ} ∪ ~Θsh = {µ, σ, s, a}

no binning in velocity space;

reliable uncertainties for any parameter;

intrinsic distribution L recovered.

Amorisco & Evans 2012
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Symmetric deviations: s

The symmetric distributions: L (s; v).

Constructed by using the simple model

f(vr, |~vt|) ∝ |~vt|−2s exp

[

−v2r + |~vt|2
2σ2

r

]

with anisotropy β = s and los direction ϕ(s).
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Asymmetric deviations: a

The asymmetric distributions: L (s, a; v).

Asymmetry is
driven by a
suitable
tranformation of
the symmetric
family:

L (s, a; v) ≡
L (s;X(s, a; v))
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Performance

Does it work any better?

Comparing Accuracy: Standard Deviation for h3 and h4 at a given
sample size N .

The relative gain in accuracy is significant even with no
observational uncertainties or probabilities of membership.



Dark Haloes in

dSphs

Nicola C.

Amorisco

dSphs and

Near-Field

Cosmology

Pitfalls and

Improvements

Cores from

multiple stellar

populations

Jeans’ modelling

Mass estimators

Phase-space
modelling

Virial Theorem

Line Profiles

Issues with Discrete
Data

A Bayesian
Framework

Results: the dSphs

Conclusions

Assessing Statistical Significance

What if this family is not
general enough?

Comparing the maximum likelihood

L̄ =

N
∏

i=1

pi

[

L (~Θ) ∗ G (δi)
]

(vi)

with the average likelihood for the
same parameters

〈
N
∏

i=1

pi L ∗ G 〉 =
N
∏

i=1

pi

∫

[L ∗ G (δi)]
2

and the natural scatter induced by
sample size

χ =
(

L̄− 〈L〉
)

/StD [〈L〉]
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Carina dSph

758 giants with pi ≥ 0.9; 〈δ〉/σ ≈ 0.53
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Profiles in circular annuli for the Carina dSph; Rh ≈ 8.2arcmin. Data
from Walker et al. 2009.
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Sextans dSph

424 giants with pi ≥ 0.9; 〈δ〉/σ ≈ 0.42
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Profiles in circular annuli for the Sextans dSph; Rcore ≈ 16.6arcmin.
Data from Walker et al. 2009.
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Sculptor dSph

1355 giants with pi ≥ 0.9; 〈δ〉/σ ≈ 0.33
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Profiles in circular annuli for the Sculptor dSph; Rh ≈ 11.3arcmin. Data
from Starkenburg et al. 2010 in green.
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Fornax dSph

2409 giants with pi ≥ 0.9; 〈δ〉/σ ≈ 0.22

Profiles in circular annuli for the Fornax dSph; Rh ≈ 16.6arcmin. Data
from Walker et al. 2009.
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Conclusions

Detailed modelling can tackle the dynamical structure of
dSphs

Multiple-pop. systems allow to probe the presence of cusps

Phase-Space modelling of both photometric and kinematic
data in Sculptor exclude an NFW halo

This result is confirmed by different analyses, by using
different data

A Bayesian framework for measuring line profiles allows to
double accuracy

Sextans, Carina and Sculptor have LOSVD more peaked
than Gaussian, suggesting some radial anisotropy

Fornax is the only system with flat-topped LOSVDs

Modelling that use all observables is required
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Mass Estimator

NFW halo

Rh/r0 = 0.3

M [(1.67 ± 0.04)Rh] = (5.85 ± 0.2)
Rhσlos(Rh)

2

G
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Independent Populations - Core

MP: quasi isothermal, Rh,1 ≈ r0, χ
2 = 40

MR: signs of truncation, radially anisotropic, Rh,2

undetermined, χ2 = 2.1
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Independent Populations - NFW

MP: mildly radial , Rh,1 < 0.25r0, χ
2 = 49

MR: strongly truncated, radially anisotropic, Rh,2

undetermined, χ2 = 3.4
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(

Rh,2

Rh,1

)δ

≤
(

σlos,2(Rh,2)

σlos,1(Rh,1)

)2

Γ =
ln [M(λRh,2)/M(λRh,1)]

ln (Rh,2/Rh,1)

If kR ≥ kσ, then

Γ = 1 + 2
ln kσ
ln kR

≥ δ + 1

which is incompatible with ρ ∼ rδ−2
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χ2

Σ
χ2

Σ
+ χ2

σ χ2

Σ
+ χ2

σ + χ2
rt

NFW 39.3, 41.5, 45.7 48.2, 66.9, 68.3 49.0, 67.8, 69.7
cored 32.7, 36.3, 39.7 39.0, 54.3, 59.6 40.3, 55.7, 60.5

NFW 2.3, 5.6, 9.1 3.4, 11.1, 13.8 -
cored 1.1, 3.3, 4.9 2.1, 6.8, 9.9 -

Table: Results of the independent analysis of the metal-poor
(upper) and metal-rich (lower) stellar component. The table gives
the values of the χ2-quantities referring, in order, to the best fit
models, to the 68% and to the 95% confidence regions.
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Disentangling Populations
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Figure: Metallicity distribution in the Fornax dSph.

L =

N
∏

i=1





∑

j

fj pR,j(Ri) pΣ,j(Σi)





Plummer density profiles

Gaussian metallicity distributions
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MR - Intermediate - MP
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MR: Rh ≈ 10.5arcmin,
〈Σ′

Mg〉 ≈ 0.55Å, f ≈ .1

Int: Rh ≈ 15.3arcmin,
〈Σ′

Mg〉 ≈ 0.45Å, f ≈ .6

MP: Rh ≈ 23arcmin,
〈Σ′

Mg〉 ≈ 0.26Å, f ≈ .3
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Kinematics
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Figure: Kinematics of the disentangled populations.
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...and Counter-Rotation

Lj =

N
∏

i=1

pie

[vi−(vsys,j+ΩMA,jxi+Ωma,jy)]
2

−2σ2
j
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Figure: ‘Unstable’ kinematics for the 2-pop division in the Fornax
dSph.
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Figure: Metallicity distribution in the Sculptor dSphs.
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