Ecole Internationale Daniel Chalonge Workshop CIAS Meudon 2012 WARM DARK MATTER GALAXY FORMATION IN AGREEMENT WITH OBSERVATIONS

INFN

CIAS Observatoire de Paris, Chateau de Meudon, Meudon campus 6, 7 and 8 June 2012

The MARE experiment and its capabilities to measure the mass of light (active) and heavy (sterile) neutrino

Elena Ferri for the MARE collaborations Università di Milano-Bicocca & INFN Milano-Bicocca

Outline

> Direct neutrino mass measurement

spectrometers vs. calorimeters

MARE: Microcalorimeter Array for a Rhenium Experiment

- calorimetric measurement sensitivity to light neutrinos
- → ¹⁸⁷Re vs. ¹⁶³Ho
- → ¹⁸⁷Re measurement systematics
- heavy (sterile) neutrinos detection

→ MARE project status

- path for isotope and technique selection
- MARE-1 experimental activities

Conclusions

Direct neutrino mass measurements

Different approaches to direct measurement

Spectrometers: source ≠ detector

Calorimeters vs Spectrometers

General experimental requirements:

- High statistics at the beta spectrum end-point:
 - low end point energy E₀
 - high source activity and high efficiency
- high energy resolution ΔE (same order of magnitude of m, sensitivity)
- high Signal to Noise ratio
- small systematic effects

Spectrometer: β **source** \neq **detector**

Advantages:

✓ high statistics✓ high energy resolution

Disavantages:

x systematics due to source effect *x* systematics due to decay to excitated states *x* background

Calorimeter: β **source** \subseteq **detector**

Advantages:

- ✓ no backscattering
- ✓ no energy losses in the source
- ✓ no solid state excitation
- ✓ no atomic/molecular final state effects

Disavantages:

- x limited statistics
- x systematics due to pile-up
- x background

Spectrometers present results

electrostatic integrating spectrometers (MAC-E filter)

Mainz with solid ³H source
Troitsk with gaseous ³H source

Meudon Workshop 2012, 6-8 June 2012

Spectrometers future: KATRIN

large electrostatic spectrometer with gaseous ³H source
▶ expected statistical sensitivity m_{ve} < 0.2 eV 90% CL
▶ start data taking in 2013/2014

Meudon Workshop 2012, 6-8 June 2012

Calorimetry of beta sources

Calorimeters measure the entire spectrum at once:

- low $E_{\alpha} \beta$ decaying isotopes for more statistics near the end-point
- best choice ¹⁸⁷Re: $E_0 = 2.5 \text{ keV}, \tau^{1/2} = 4 \times 10^{10} \text{ y}$ $\Rightarrow F(\Delta E = 10 \text{ eV}) \sim (\Delta E/E_0)^3 = 7 \times 10^{-8}$
- other option ¹⁶³Ho electron capture: $E_0 \approx 2.6$ keV, $\tau \frac{1}{2} \approx 4600$ y

Meudon Workshop 2012, 6-8 June 2012

Cryogenic detectors as calorimeters

Detection Principle:

- o Δ T=E/C where C is the total thermal capacity o low C: C~(T/ Θ_D)³ in superconductors below T_c & dieletric o low T (10 ÷ 100 mK)
- o ultimate limit to energy resolution: o statistical fluctuation of internal energy $\Delta E = (k_B T^2 C)^{1/2}$
- o detect all deposited energy, including short-lived excited states (100 μ s) o achieve very good energy resolution in the keV range

Resistive thermometers:thermistors

- doped semiconductors at Metal-Insulator-Transition
- at T \ll 10K \rightarrow phonon assisted variable range hopping conduction (VRH)

$$\rho(T) = \rho_0 \exp(T_0/T)^{\gamma}$$

► To increases with decreasing net doping N ► T < 1 K $\Rightarrow \gamma = 1/2$ (VRH with Coulomb Gap)

High impedance devices: $1M\Omega \rightarrow 100M\Omega$

Thermal detectors for calorimetric experiments

¹⁸⁷Re β decay

- $5/2^+ \rightarrow 1/2^-$ unique first forbidden transition $\Rightarrow S(E\beta)$
- end point $E_0 = 2.47 \text{ keV}$

$$^{187}\text{Re} \rightarrow ^{187}\text{Os} + e^- + \overline{\nu}_e$$

- half-life time $\tau_{1/2} = 43.2 \text{ Gy}$
- natural abundance a.i. = 63%
- 1 mg metallic Rhenium $\Rightarrow \approx 1.0$ decay/s

metallic rhenium single crystals

- superconductor with Tc=1.6K
- NTD thermistors
- MANU experiment (Genova)

dielectric rhenium compound (AgReO₄) crystals

- Silicon implanted thermistors
- MIBETA experiment (Milano)

Meudon Workshop 2012, 6-8 June 2012

Precursors of ¹⁸⁷Re experiment

- 1 crystal of metallic Re: 1.6 mg
- ¹⁸⁷Re activity \approx 1.6 Hz
- Ge-NTD thermistor
- $\Delta E = 96 \text{ eV FWHM}$
- 0.5 years live-time

- $m_v^2 = -462 + 579_{-679} eV^2$
- $m_v \le 26 \text{ eV} (95 \% \text{ C.L.})$

6.0×10⁶ ¹⁸⁷Re decays above 420 eV

MIBETA (2002-2003) Milano, Como, Trento

- 10 AgReO₄ crystals: 2.71 mg
- Isometry = 0.54 Hz/mgAl bonding wires Si thermistor
- Si thermistors (ITC-irst)
- ∆E= 28.5 eV FWHM
- 0.6 years live time

• $m_v^2 = -112 \pm 207_{stat} \pm 90_{sys} eV^2$ • $m_v \le 15 eV (90 \% C.L.)$

Meudon Workshop 2012, 6-8 June 2012

MARE - A project for a new Rhenium experiment

Goal: a sub-eV direct neutrino mass measurement complementary to the KATRIN experiment

MARE 1

- activities aiming at isotope/technique selection (187Re or 163Ho options)
- activities using medium sized arrays to improve ¹⁸⁷Re measurement understanding and possibly calorimetric m_v limit
- detector and absorber coupling R&D activities

MARE 2

- very large experiment with a $m_{\!_{\nu}}$ statistical sensitivity close to KATRIN but still improvable
- requires new improved detector technologies

MARE for sub-eV calorimetric m, measurement

MARE: Microcalorimeter Arrays for a Rhenium Experiment

Università di Genova e INFN Sez. di Genova, Italy Univ. di Milano-Bicocca, Univ. dell'Insubria e INFN Sez. di Milano-Bicocca, Italy Kirkhhof-Institute Physik, Universität Heidelberg, Germany University of Miami, Florida, USA Wisconsin University, Madison, Wisconsin, USA Universidade de Lisboa and ITN, Portugal Università di Roma "La Sapienza" e INFN Sez. di Roma1, Italy Goddard Space Flight Center, NASA, Maryland, USA PTB, Berlin, Germany FBK, Trento e INFN Sez. di Padova, Italy NIST, Boulder, Colorado, USA SISSA - Trieste, GSI Darmstad, JPL/Caltech, CNRS Grenoble, ...

Meudon Workshop 2012, 6-8 June 2012

¹⁸⁷Re – Statistical sensitivity 1

Number of detectors \mathbf{N}_{det} Analysis interval ΔE Pile-up fraction $f_{pp} = \tau_R X A_\beta$ Experimental exposure $\mathbf{t}_M = \mathbf{T} \times \mathbf{N}_{det}$

Meudon Workshop 2012, 6-8 June 2012

¹⁸⁷Re – Statistical sensitivity 2

 $\frac{\text{signal}}{\text{background}} = \sqrt{A_{\beta} N_{det} t_{M}} \frac{\left|F_{\Delta E}(m_{\nu}) - F_{\Delta E}(0)\right| t_{M}}{\sqrt{F_{\Delta E}(0) t_{M} + F_{\Delta E}^{pp} t_{M} + b \Delta E / A_{\beta}}} = 1.7 \text{ for } 90\% \text{ C.L.}$

$$\sum_{90} (m_{\nu}) \approx 1.13 \frac{E_0}{\sqrt[4]{N_{e\nu}}} \left[\frac{\Delta E}{E_0} + \frac{E_0}{\Delta E} \left(\frac{3}{10} f_{pp} + b \frac{E_0}{A_{\beta}} \right) \right]^{1/4}$$

Optimal energy interval: $\Delta E = max \left| E_0 \sqrt{0.3 f_{pp}} + b \frac{E_0}{A_{\beta}} \right|$, ΔE_{FWHM}

 $f_{pile-up} = \tau_R A_{\beta} \ll \frac{\Delta E^2}{E_0^2} \quad \rightarrow \text{ pile up is negligible}$ $\sum_{90} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{n=1}^{N} \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac{E_0^3 \Delta E}{A_{\beta} t_M}} \quad \longrightarrow \quad \sum_{\alpha \in \mathbb{N}_{pile}} (m_v) \approx 0.89 \sqrt[4]{\frac$

MonteCarlo Code

A MonteCarlo code has been developed to estimate the sensitivity of a neutrino mass measurement performed with thermal detectors

- Large number of simulated spectra N = 100÷1000
- Spectra are analysed as the real ones
- Input parameters:
 - Total statistics N_{ev}
 - Energy resolution ΔE_{FWHM}
 - Fraction of pile-up events f_{pp}
 - Constat background b
- Sensitivity at 90% CL:

Standard deviation of the distribution of the m_v^2 found by fitting the spectra

 $\Sigma_{90}(m_{\nu}) = \sqrt{1.7 \sigma_{\nu}^2}$

At this scale the MonteCarlo errors are negligible. In fact, the statistical error on the MonteCarlo results is around 3% and 1% for about 100 and 1000 simulated spectra.

Sub-eV m₁ statistical sensitivity with ¹⁸⁷Re

A.Nucciotti, E. Ferri and O. Cremonesi Astropart. Phys., 34 (2010) 80 [arXiv:0912.4638v1]

Effect of background on statistical sensitivity

$$\sum_{90} (m_{\nu}) \approx 1.13 \frac{E_0}{\sqrt[4]{N_{e\nu}}} \left| \frac{\Delta E}{E_0} + \frac{E_0}{\Delta E} \left| \frac{3}{10} f_{pp} + b \frac{E_0}{A_{\beta}} \right| \right|^{1/2}$$

b bkg counts/keV

Meudon Workshop 2012, 6-8 June 2012

E. Ferri

19

MARE statistical sensitivity: Re option

- only statistical analysis
- 50000+ detectors gradually deployed
 - arrays distributed in many laboratories around the world
 - \triangleright about 10¹³÷10¹⁴ events after 5 years

Exposure required for 0.2 eV m_n sensitivity

A _β	$ au_{R}$	ΔΕ	N _{ev}	exposure
[Hz]	[µs]	[eV]	[counts]	[det×year]
1	1	1	0.2 1014	7.6 10 ⁵
10	1	1	0.7 1014	2.1 10 ⁵
10	3	3	1.3 10 ¹⁴	4.1 10 ⁵
10	5	5	1.9 10 ¹⁴	6.1 10 ⁵
10	10	10	3.3 10 ¹⁴	10.5 10 ⁵

5000 pixels/array 8 arrays 10 years 400 g ^{nat}Re

Exposure required for 0.1 eV m_n sensitivity

A _β	τ _R	ΔE	Nev	exposure
[Hz]	[µs]	[eV]	[counts]	[det×year]
1	0.1	0.1	1.7×1014	5.4×10 ⁵
10	0.1	0.1	5.3×1014	1.7×10 ⁵
10	3	3	10.3×1014	3.3×105
10	5	5	21.4×10 ¹⁴	6.8×10 ⁵
10	10	10	43.6×1014	13.9×10 ⁵

MARE extensions: ¹⁶³Ho EC measurement

¹⁶³Ho + e⁻ \Rightarrow ¹⁶³Dy* + v_e

electron capture from shell \ge M1 A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

• Calorimetric measurement of non-radiative Dy atomic de-excitations

Breit Wigner M,N,O lines have an end-point at the Q value

• rate at end-point may be as high as for ¹⁸⁷Re but depends on Q_{FC}

> Q_{FC} ? Measured: Q_{FC} = 2.3÷2.8 keV. Recommended: Q_{FC} = 2.555 keV

• $\tau_{1/2} \approx 4570$ years: few active nuclei are needed

can be implanted in any suitable microcalorimeter absorber

• ¹⁶³Ho production by neutron irradiation of ¹⁶²Er enriched Er

Meudon Workshop 2012, 6-8 June 2012

MARE statistical sensitivity:Ho option

				_
A _β	τ _R	ΔE	N _{ev}	exposure
[Hz]	[µs]	[eV]	[counts]	[det×year]
1	1	1	2.8×10 ¹³	9×10 ⁵
1	0.1	1	1.3×10 ¹³	4.3×10 ⁵
100	0.1	1	4.6×10 ¹⁴	1.5×10 ⁵
10	0.1	1	2.8×10 ¹⁴	9.0×10 ⁵
10	1	1	4.6×10 ¹⁴	1.5×10 ⁵

Exposure required for 0.2 eV m_n sensitivity

Exposure required for 0.1 eV m_n sensitivity

A _β	τ _R	ΔE	N _{ev}	exposure
[Hz]	[µs]	[eV]	[counts]	[det×year]
1	0.1	0.3	1.2×10 ¹⁴	3.9×10 ⁶
100	0.1	0.3	6.4×10 ¹⁴	2×10 ⁶
100	0.1	1	7.4×10 ¹⁴	2.4×10 ⁶
10	0.1	1	4.5×10 ¹⁴	1.5×10 ⁶
10	1	1	7.4×10 ¹⁴	2.4×10 ⁶

E. Ferri

Meudon Workshop 2012, 6-8 June 2012

5000 pixels/array 4 arrays 10 years $\approx 3 \times 10^{17}$ ¹⁶³Ho nuclei

Montecarlo analysis for systematics of ¹⁸⁷Re

Assessing systematic uncertainties with MonteCarlo simulations:

- Effects due to incomplete/incorrect data modelling
 - > generate simulated experimental spectra with systematic effect
 - > analyze spectra without effect
 - > obtain $\Sigma(m_v)$ and Δm^2 as function of effect size
- Uncertainty due to experimental parameter finite accuracy
 - generate simulated experimental spectra with randomly fluctuated parameter
 - > analyze spectra with fixed average parameter
 - > obtain $\Sigma(m_v)$ and Δm^2 as function of effect size
- > systematic uncertainties analyzed for $N_{ev} = 10^{14}$, $\Delta E_{FWHM} = 1.5 \text{ eV}$ and $f_{pp} = 10^{-6}$

Two main classes of systematics:

- source related systematics effect
- Instrumental systematics uncertainties

Summary of source related systematic uncertainties

Electron surface escape

- N'(E)= N(E)(1-a_{esc} E/E₀)
- for 1 mg Re crystal \rightarrow a_{esc} = 2 10⁻⁵

Spectral shape

- improve theoretical description of beta spectrum
- N'(E)=N(E)(1 + $a_1E + a_2E^2$)
- from Dvornicky-Simkovic (Medex09) $f(E) = 1 2 \times 10^{-5}E + 3 \times 10^{-10}E^2 4 \times 10^{-15}E^3 + 3 \times 10^{-10}E^2 3$

Beta Environmental Fine structure

observe in Re and in AgReO₄ improve modelling and parametrization

Pile up spectrum

•
$$\tau_R^{eff} = f(\tau_R, A_1/A_2) \rightarrow N'_{pp}(E) = N_{pp}(E) f_{corr}(E, f_{pp})$$

Source of uncertainties	Quantity describing the	Maximum effect for	
	effect	$\Delta m^2 < 0.1 \text{ eV}^2$	
Electron surface effect	a _{esc}	10-5	
Correction to quadratic β spectral	a ₁ (a ₂ =0)	10 ⁻⁹ eV ⁻¹	
shape	a ₂ (a ₁ =0)	10 ⁻¹² eV ⁻¹	
Correction to pile up spectral shape	f _{pp}	10-7	
Meudon Workshop 2012, 6-8 June 2012	E. Ferri	24	

Systematics from BEFS

BEFS: Beta Environmental Fine Structure

Modulation of the electron emission probability due to the atomic and molecular surrounding of the decaying nucleus: it is explained by the wave structure of the electron (analogous of EXAFS)

Systematics from instrumental uncertainties

source of uncertainty	quantity describing the uncertainty	maximum uncertainty for $\Delta m_{\nu}^2 < 0.01 \text{ eV}^2$
error on energy resolution ΔE	$\sigma_{err}(\Delta E)/\Delta E$	0.02
tail in response function (λ =0.2eV ⁻¹)	$A_{\rm tail}$	10-4
error on single pixel energy calibration K	σ(<i>K</i>)/ <i>K</i>	0.0004
spread in energy resolution ΔE in the array	$\sigma_{spread}(\Delta E)/\Delta E$	0.1
hidden constant background	$N_{\rm ev}/N_{\rm bkg}$	10 ⁸
background linear deviation ($bT=10^{5}c/eV$)	b_1	0.1

Systematics summary: calorimeters vs spectrometers

Calorimetry systematics

- detector response function (energy dependence, shape,...)
- energy dependent background
- pile-up effects
- condensed matter effects: BEFS
- ¹⁸⁷Re decay spectral shape
- ...?

Spectrometer systematics

- decays to excited final states
- energy losses in the source
- e⁻ T₂ elastic scattering
- spectrometer stability (HV)
- source stability (density, potential, charging...)
- energy dependent background
- ...?

⇒ completely different systematics!

⇒ very important to cross-check results!

Meudon Workshop 2012, 6-8 June 2012

Heavy neutrino and single beta decay

Connection point between astrophysics, cosmology and elementary particle physics is the explanation of the Dark Matter (DM).

A possible Warm Dark Matter (WDM) candidate is a sterile neutrino with a mass in the keV range

⇒ to test the assumption of heavy neutrino existence: ¹⁸⁷Re beta decay

Meudon Workshop 2012, 6-8 June 2012

Heavy neutrino limit form the past - MIBETA

MARE sensitivity to heavy neutrinos - Re option

Modification of the the MonteCarlo code to evaluate the capability of the MARE experiment to measure the mass of an heavy neutrino from some tens of eV to 2.5 keV.

MARE sensitivity to heavy neutrinos: Ho option 1

heavy neutrino emission in ¹⁶³Ho EC decay

Meudon Workshop 2012, 6-8 June 2012

MARE sensitivity to heavy neutrinos: Ho option 2

Meudon Workshop 2012, 6-8 June 2012

MARE 1

Goal: a sub-eV direct neutrino mass measurement complementary to the KATRIN experiment

MARE-1: collection of activities aiming at isotope/technique selection

- 0 187 Re high statistics measurement
 - o asses systematics
 - o test large arrays
 - o lower limit to few eV
- 0¹⁶³Ho high statistics measurement R&D for ¹⁶³Ho production
 - o measure Q_{EC}
 - o study spectrum shape
 - o asses systematics

Different techniques:

- TES Transition Edge Sensor
- MMC Magnetic MicroCalorimeter
- MKID Microwave Kinetic Inductance Detector

MARE 1 activities

- Isotope physics investigation and systematics assessment
 - ¹⁶³Ho + Si-impl/TES (U Genova U Milano-Bicocca U Lisbon/ITN)
 - AgReO₄ + Si-impl (U Milano-Bicocca U Como NASA/GSFC UW Madison)

• Sensor-Absorber coupling (187Re/163Ho) and single pixel design

- ¹⁸⁷Re + TES (U Genova U Miami U Lisbon/ITN)
- ¹⁸⁷Re + MMC (U Heidelberg)
- ¹⁶³Ho + TES (U Genova)
- ¹⁶³Ho + MMC (U Heidelberg)
- ¹⁶³Ho/¹⁸⁷Re + MKID (U Milano-Bicocca JPL/Caltech U Roma FBK)

Multiplexed sensor read-out

- SQUID multiplexing (U Genova PTB)
- SQUID microwave multiplexing (U Heidelberg)

Software tools

- Data Analysis (U Miami)
- Montecarlo simulations (U Miami U Milano-Bicocca)

MARE 1 @ Milano-Bicocca

6x6 NASA/GSFC arrays

- pixel 300x300x1.5 μm³
- developed for X-ray spectroscopy with HgTe absorber (ASTRO-E2)

flat AgReO₄ single crystal

• mass ~ 500µg per pixel (A_{β} ~ 0.3 dec/sec)

Detector R&D results

- best operating T \approx 85mK
- $\Delta E \approx 30 \text{ eV}$, $\tau \approx 250 \text{ }\mu\text{s}$

Cryogenic set-up of MARE 1 @ Milano Bicocca

MARE 1 in Milano: sensitivity

MonteCarlo approach

- setup designed for 8 arrays
- 288 AgReO₄ crystals
- now starting with 2 arrays (72 ch.)
- gradual deployment

Since only two arrays are installed up to now, it is useful to estimate the sensitivity on neutrino mass over the years by increasing the detectors number from year to year.

Analytic approach (1st order)

Meudon Workshop 2012, 6-8 June 2012

MARE 1 @ Milano-Bicocca and heavy neutrinos

MKDs R&D @ Milano-Bicocca

- resonator exploiting the *T* dependence of inductance in a superconducting film
 - up detectors suitable for large absorbers
 - fast devices for high single pixel activity A_b and low pile-up f_{pp}
 - high energy resolution
 - multiplexing for very large number of pixel

Sensitivity
$$AE = 5 eV$$

 $t_{M} = 36000 \text{ detectors x 3 years}$

$$A_{\beta} = 20 \text{ c/s/det}$$

$$\tau_{\rm rise} = 1 \,\mu s \Rightarrow m_v < 0.2 \, {\rm eV}$$

$$\tau_{\rm rise} = 100 \ \mu s \Rightarrow m_v < 0.4 \ eV$$

- KIDs developed for astrophysics
 application to bulky absorber
- application to bulky absorber still requires further efforts

MKDs for ¹⁶³Ho EC decay end point measurement

The length of the inductive section is much shorter than the wavelength at resonator frequency, ensuring uniform response.

The ¹⁶³Ho will be embedded in the inductive part of the resonator. 10¹² Ho nuclei are needed for a count rate of 10 Hz

The Ho needs to be deep enough to ensure low escape probability for 2 keV electrons.

But very thick films are difficult to grow

Nitrides with like TiN, TaN and HfN, will be investigated- A thickness of $\sim -0.5 \mu m$ can be enough

theoretical resolution $\Delta E_{th} = 2keV/N_{qp}^{1/2} = 1.5 eV$

MKDs R&D @ Milano-Bicocca

For our resonators, we obtained $Q = 7 \times 10^4 \div 10^5$ and $Q_c = 10^5 \div 10^6$. Consequently, since $Q^{-1} = Q_c^{-1} + Q_i^{-1}$, $Q_i = 2 \times 10^5 \div 4 \times 10^5$

Sweeping the temperature from 30mK up to ~1K it is possible to extract the gap parameter. For TiN a gap parameter of 0.7 meV has been measured, wich, accordingly to the BCS theroy, means $T_c \sim 4.6K$.

Conclusion

• Thermal calorimeter with Re can give a sub-eV sensitivity on neutrino mass

- Calorimetry of ¹⁶³Ho electron capture decay is an interesting alternative
- 0¹⁸⁷Re and ¹⁶³Ho calorimetry is sensitive to 1 keV scale heavy neutrinos
- MARE-1 activities are in progress to
 - o improve the understanding of ¹⁸⁷Re experiment systematics
 - a few eVs light neutrino sensitivity ¹⁸⁷Re experiment is starting soon
 - o investigate ¹⁶³Ho decay spectrum
 - 0¹⁶³Ho isotope has been produced and is ready for first tests
 - o develop the single MARE pixel
 - R&D for coupling TES, MMC and MKID with ¹⁸⁷Re/¹⁶³Ho is in progress
 - o implement read-out multiplexing schemes
- o isotope and technique selection for MARE-2 is in progress