

Cornell University

The galaxy-halo connection: insights from ALFALFA

'near field cosmology' with the ALFALFA HI survey

Manolis Papastergis, Cornell University, USA Chalonge Meudon Workshop 2012 7 June 2012

http://egg.astro.cornell.edu/alfalfa/

- ALFALFA is a blind, wide area 21-cm line survey done with the Arecibo telescope.
- Presently available catalog:
 - ~3,000 deg² of sky
 - ~11,000 'Code 1' detections.
- ALFALFA has produced the *largest HI-selected sample to date*.

http://egg.astro.cornell.edu/alfalfa/

- ALFALFA directly measures three galactic properties:
 - redshift
 - integrated flux
 - velocity width
 - (HI mass)

 $M_{HI}(M_{\odot}) = 2.35 \ 10^5 \ {\rm x} \ D^2 \ ({\rm Mpc}) \ {\rm x} \ S_{int} \ ({\rm Jy \ km sec^{-1}})$

- ALFALFA cannot measure any spatially-resolved property:
 - size
 - inclination
 - shape

http://egg.astro.cornell.edu/alfalfa/

- ALFALFA directly measures three galactic properties: • redshift • negrated nux • velocity width • (HI mass) $M_{HI}(M_{\odot}) = 2.35 \, 10^5 \, \mathrm{x} \, D^2 \, (\mathrm{Mpc}) \, \mathrm{x} \, S_{int} \, (\mathrm{Jy \, km sec^{-1}})$
- ALFALFA cannot measure any spatially-resolved property:
 - size
 - inclination
 - shape

http://egg.astro.cornell.edu/alfalfa/

ALFALFA directly measures three galactic properties:
rodebift
integrated flux
velocity within
(HI mass)
M_{HI}(M_☉) = 2.35 10⁵ x D² (Mpc) x S_{int} (Jy kmsec⁻¹)
ALFALFA cannot measure any spatially-resolved property:

1500

2000

2500

3000

Velocity [km/s]

3500

4000

- size
- inclination
- shape

http://egg.astro.cornell.edu/alfalfa/

- ALFALFA directly measures three galactic properties:
 - redshift

velocity width

 $M_{HI}(M_{\odot}) = 2.35\,10^5 \; {\rm x} \; D^2 \; ({\rm Mpc}) \; {\rm x} \; S_{int} \; ({\rm Jy \; km sec^{-1}})$

- ALFALFA cannot measure any spatially-resolved property:
 - size
 - inclination
 - shape

http://egg.astro.cornell.edu/alfalfa/

- ALFALFA directly measures three galactic properties:
 - redshift
 - integrated flux
 - velocity width
 - (HI mass)

 $M_{HI}(M_{\odot}) = 2.35 \ 10^5 \ \text{x} \ D^2 \ (\text{Mpc}) \ \text{x} \ S_{int} \ (\text{Jy kmsec}^{-1})$

 ALFALFA cannot measure any spatially-resolved property:

> size inclination shape

"A direct measurement of the Baryonic Mass Function of galaxies & implications for the galactic baryon fraction"

Papastergis E., Cattaneo A., Huang S., Giovanelli R., Haynes M.P. (in prep)

• HI mass from ALFALFA, stellar mass from SDSS

stellar mass from SDSS, HI mass limits from ALFALFA

• connecting galaxies with halos: 'abundance matching'

connecting galaxies with halos: 'abundance matching'

• low "stellar conversion efficiency", $\eta_* = (M_*/M_h) / f_b$

• "baryon retention fraction" also low, $\eta_b = (M_b/M_h) / f_b$

• "baryon retention fraction" also low, $\eta_b = (M_b/M_h) / f_b$

Papastergis+ (2012, in prep)

• requires: expelled mass \approx 100 x stellar mass

Papastergis+ (2012, in prep)

the ALFALFA velocity width function

"The Velocity Width Function of Galaxies from the 40% ALFALFA Survey: Shedding Light on the Cold Dark Matter Overabundance Problem"

Papastergis E., Martin A.M., Giovanelli R., Haynes M.P. ApJ, 739, 38 (2011)

the Cold Dark Matter paradigm

Lovell+ (2012)

the Cold Dark Matter paradigm

Klypin+ (2011) "Bolshoi simulation"

Lovell+ (2012)

the Cold Dark Matter paradigm

Klypin+ (2011) "Bolshoi simulation"

Lovell+ (2012)

http://egg.astro.cornell.edu/alfalfa/

- The velocity width of a galaxy is ~twice its maximum circular velocity (projected on the line-of-sight)
- Direct indicator of dynamical mass

the ALFALFA velocity width function

- abundance of galaxies as a function of their velocity width
- modified Schechter function with a "shallow" measured slope of $\alpha = -0.85$, down to w = 20 km/s

the ALFALFA velocity width function

- abundance of galaxies as a function of their velocity width
- modified Schochtor function with a "shallow" measured slope of $\alpha = -0.85$, lown to w = 20 km/s

does the halo host a single galaxy ?

what is the stellar mass of the galaxy ?

what is the gas mass of the galaxy ?

is the DM halo distorted under the influence of the baryons ?

how extended is the HI disk ?

observation vs. theory

 the ALFALFA WF is in fair agreement with theoretical predictions for massive galaxies.

observation vs. theory

at low widths (w < 150 km/sec) the observational and theoretical distributions disagree.

 $w = 2v_{\rm rot}\sin i + w_{\rm eff}$

observation vs. theory

The "overabundance" problem of CDM

- "missing satellites" problem
- "void phenomenon"
- sizes of mini-voids in local volume
- flatness of stellar & H mass functions

Possible solutions ?

extent of HI disk

• HI disks in dwarf galaxies are often rising to the last measured point.

extent of HI disk

• HI disks in dwarf galaxies are often rising to the last measured point.

extent of HI disk

• $v_{rot} \approx 1.5 v_{halo}$ for MW-sized galaxies

 M_{vir} $(h^{-1} M_{sun})$ 10^{11} 10¹² 10¹³ Papastergis+ (2011) Reyes et al. (2011) 80 90100 150 200 250 300 350 $v_{halo} (km s^{-1})$

external datasets:

MW mass: Klypin+ (2002), Xue+ (2008), Smith+ (2007)

> Andromeda mass: Klypin+ (2002)

stacked weak lensing & satellite kinematics: Dutton+ (2010), Reyes+ (2012)

- In CDM, HI rotational velocities must underestimate the true halo mass.
- The underestimate is a factor of ~2 at v_{rot} = 20 km/sec.

- In CDM, HI rotational velocities must underestimate the true halo mass.
- The underestimate is a factor of ~2 at v_{rot} = 20 km/sec.

the "mini-void" size problem

 Galaxies brighter then M_B = -12 should be hosted by halos with v_{max} > 35 km/sec.

Name	M_B	Axial ratio	W_{50}	$V_{\rm rot}$]
E349-031,SDIG	-12.10	0.82	20.0	17.5	
KKH5	-12.27	0.62	37.0	23.6	
KKH6	-12.38	0.60	31.0	19.4	
KK16	-12.65	0.37	24.0	12.9	
KKH18	-12.39	0.57	34.0	20.7	
KKH34,Mai13	-12.30	0.56	24.0	14.5	
E489-56,KK54	-13.07	0.53	33.8	19.9	
KKH46	-11.93	0.86	25.0	24.5	
U5186	-12.98	0.23	42.0	21.6	
E321-014	-12.70	0.43	39.8	22.0	
KK144	-12.59	0.33	44.0	23.3	
E443-09,KK170	-12.03	0.75	29.0	21.9	
KK182,Cen6	-11.89	0.60	16.0	10.0	
DDO181,U8651	-12.97	0.57	42	23.7	
DDO183,U8760	-13.13	0.32	30.0	15.8	
HIPASS1351-47	-11.88	0.60	38.8	24.2	

Tikhonov & Klypin (2009)

the "mini-void" size problem

 Galaxies brighter then M_B = -12 should be hosted by halos with v_{max} > 35 km/sec.

Name	M_B	Axial ratio	W ₅₀	Vrot
E349-031,SDIG	-12.10	0.82	20.0	17.5
KKH5	-12.27	0.62	37.0	23.6
KKH6	-12.38	0.60	31.0	19.4
KK16	-12.65	0.37	24.0	12.9
KKH18	-12.39	0.57	34.0	20.7
KKH34,Mai13	-12.30	0.56	24.0	14.5
E489-56,KK54	-13.07	0.53	33.8	19.9
KKH46	-11.93	0.86	25.0	24.5
U5186	-12.98	0.23	42.0	21.6
E321-014	-12.70	0.43	39.8	22.0
KK144	-12.59	0.33	44.0	23.3
E443-09,KK170	-12.03	0.75	29.0	21.9
KK182,Cen6	-11.89	0.60	16.0	10.0
DDO181,U8651	-12.97	0.57	42	23.7
DDO183,U8760	-13.13	0.32	30.0	15.8
HIPASS1351-47	-11.88	0.60	38.8	24.2

Tikhonov & Klypin (2009)

dwarf galaxy rotation curves

dwarf galaxy rotation curves

CDM challenges

MW satellites

field dwarfs

Warm Dark Matter (WDM)

 in a ~keV warm dark matter universe, lowmass halos would be far less numerous.

Warm Dark Matter (WDM)

merci pour votre attention! questions?

- the ALFALFA measurement of the velocity width function is in disagreement with CDM expectations, given current galaxy semi-analytical modeling.
- Two main solutions: WDM or the inaccurate modeling of the HI disk (dynamical tracer)
- Constrains from the observed WF and the inner structure of dwarf galaxies currently pose the strongest challenges on the CDM paradigm of structure formation.
- imperative to understand baryonic process, but feedback required may be difficult to obtain.

- HI mass from ALFALFA, stellar mass from SDSS
 - HI-selected sample biased against red-sequence

"A direct measurement of the Baryonic Mass Function of galaxies & implications for the galactic baryon fraction"

Papastergis E., Cattaneo A., Huang S., Giovanelli R., Haynes M.P. (in prep)

- HI mass from ALFALFA, stellar mass from SDSS
 - HI-selected sample biased against red-sequence

• stellar mass from SDSS, HI mass limits from ALFALFA

• low "stellar conversion efficiency", $\eta_* = (M_*/M_h) / f_b$

Papastergis+ (2012, in prep)

• "baryon retention fraction" also low, $\eta_b = (M_b/M_h) / f_b$

• requires: expelled mass \approx 100 x stellar mass

