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Impact of a Warm Dark Matter late-time 
velocity dispersion on the cosmic web

A- Specific features of WDM

- “Low mass” (1 keV)

- Collisionless dark matter particles as for CDM

significant velocity dispersion and free-streaming

small-scale density fluctuations are erased by free-streaming 
(mostly during the relativistic era)

high-k cutoff for the (linear) density power spectrum

- This may solve some small-scale problems of CDM (galaxy satellites, 
cores/cusps, ..) (but baryon processes may be an alternative)

P.V., arXiv:1206.0554



B- Dynamics

1) Analytic description at early times

In the non-relativistic regime, the system is described by the Vlasov-Poisson system:
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In practice, one is mostly interested in the density and peculiar velocity fields.
Can one simplify the description ?
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2) Numerical simulations at late times (non-linear regime)

- Neglect the late-time velocity dispersion

the only difference from CDM is the high-k cutoff of the 
“initial” power spectrum at zi ∼ 50− 100

- Add a random velocity to each “macro-particle” (M ∼ 105M!)

mimic the upper bound on the coarse-grained f(x,p) (Liouville theorem)

However, this can lead to spurious effects: 
gives rise to an high-k tail in the initial 

power spectrum

simulation set at z ¼ 40 and the power spectra measured at
z ¼ 20. Unlike the previous case, no differences between the
power spectra were detected. In other words, as far as the initial
power spectrum is concerned, it does not matter if the simula-
tion is started at z ¼ 40 or 20.

Concern may arise about the structure of halos simulated in a
relatively small Lbox ¼ 10 h"1 Mpc box, especially in a WDM
cosmology, where there is a scale belowwhich the power spectrum
exponentially drops to zero. Avila-Reese et al. (2001) discussed
this potential issue and concluded that in order to be confident
about the simulated halo structure, a box size greater than the fil-
tering length kf should be used. For our simulations Lbox is 2.5
larger than kf . In any case, we also experimented with other box
sizes, namely, 15 and 20 h"1 Mpc (not shown in the tables), for
vrms ¼ 0 and found results similar to those reported here for the
10 h"1 Mpc box.

The bound density maxima (BDM) group-finding algorithm
(Klypin et al. 1999a), or a variant of it (Kravtsov et al. 2004), is
used to locate the halos in the simulations and to generate their
density profiles. The BDMfinds positions of local maxima in the
density field smoothed at the scale of interest and applies phys-
ically motivated criteria to test whether a group of particles is a
gravitationally bound halo.

Aside from those halos shown in Table 1, for the halo D with
vrms ¼ 0, we have also run a very high resolution simulation with

about 31 million particles in the high-resolution zone. This halo
was taken from the same 10 h"1 Mpc box run, but it has 1283 par-
ticles in the LMR mode. As far as we know, this is the highest
resolution simulation of a halo run in a WDM cosmology. The
same halo was also simulated with lower resolution for a con-
vergence test. The parameters of the sequence of halos D are
listed in Table 2.
The simulations presented here differ in several aspects from

previous WDM simulations. First, it should be emphasized that
our aim, rather than to discuss a specific WDM model, is to ex-
plore the influence of the truncation of the power spectrum and/or
the addition of random velocities on the structure of dark halos of
masses close to the truncation scale. For this aim we need to sim-
ulate (1) halos with very high resolution and (2) halos withmasses
close toMf . The halos simulated in Avila-Reese et al. (2001) had
several times fewer particles than the best resolved halos presented
here, and the aims in that paper were to explore general halo prop-
erties for a concreteWDMmodel. Other papers aimed to study the
properties of WDM halos (Bode et al. 2001; Knebe et al. 2002;
Busha et al. 2007), focused more in the statistical aspects than in
details of the inner halo structure; therefore, the halos in these
papers had resolutions much lower than those attained here. The
properties of theWDM halos simulated here are in general agree-
ment with previous findings; for example, their concentrations are
systematically lower (Avila-Reese et al. 2001; Eke et al. 2001;
Bode et al. 2001) and they form later (Knebe et al. 2002; Busha
et al. 2007) than the corresponding !CDM halos.

3.1. Discreteness Effects

One of the motivations of this paper is to investigate the struc-
ture of well-resolved halos with masses close to or below the
damping (truncation) scale in the power spectrum,Mf . The origin
of these halos is controversial. Halos with masses close to Mf

(truncation halos) could be formed by a quasi-monolithic collapse
of filaments of size#kf (e.g., Avila-Reese et al. 2001). They could
also just be the result of an incomplete collapse, highly deviated
from the spherical-symmetric case, of originally larger structures
assembled hierarchically (Busha et al. 2007). On the other hand, it
has been suggested that halos with masses considerably less than
Mf form by fragmentation of the shrinking filaments of size#kf
(e.g., Valinia et al. 1997; Avila-Reese et al. 2001; Bode et al. 2001;
Götz & Sommer-Larsen 2003; Knebe et al. 2003). However, it is
also known that the filaments in hot dark matter simulations that
start from a cubic lattice break up into regularly spaced clumps,
which reflect the initial grid pattern. Therefore, some of these ha-
los seen in WDM simulations could be spurious, the product of
discreteness effects. Recently, Wang &White (2007) have shown
that this artifact is present even for a glasslike initial particle load
(White 1996).
As Wang &White (2007) show, halos of masses smaller than

a given effective fraction ofMf , which depends on the resolution
of the simulation, will be spurious. We selected theWDMmodel
(x 2) and the number of particles in the simulations in such a way

TABLE 2

High Resolution Halo D Parameters

Lbox
(h"1 Mpc) Name Tag vrms

Time Step

(10"3)

Resolution

(h"1 kpc)

mp

(h"1 M$)

Mvir

(1012 h"1 M$)

10................................ D10240.0 off 0.5 0.040 7.75 ; 104 1.28

10................................ D5120.0 off 0.5 0.152 6.20 ; 105 1.27

10................................ D2560.0 off 0.5 0.305 4.96 ; 106 1.27

10................................ D1280.0 off 0.5 0.610 3.97 ; 107 1.25

Fig. 1.—Comparison of the power spectra measured at z ¼ 40 for the simula-
tion started at z ¼ 40 (solid line) and the one started at z ¼ 100 (squares). The
longest plotted wavelength is Lbox, while the highest frequency is (2!/Lbox)256.
[See the electronic edition of the Journal for a color version of this figure.]

COLÍN, VALENZUELA, & AVILA-REESE206 Vol. 673

zi = 100

zi = 40

z = 40 Colin et al. (2008)

White-noise 
velocity field

P (k) ∝ k2



Including the effects of a late-time (z<100) velocity dispersion is not so easy, 
in either the analytic or numerical approaches.

Estimate the impact of a late-time velocity dispersion,
to check that it can be neglected on large scales
(outside of halos).

Estimate the sensitivity on the “initial” redshift of the simulations.



From the linearized Vlasov equation one can derive:
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C- Effective Euler equation

Boyanovsky et al.(2008), 
Boyanovsky & Wu (2011)

free-streaming wavenumber ~ Jeans wavenumber 

~ sound speed

- However, there is no thermodynamical pressure

- S = SNB + SB
inhomogeneous term (integral over the “initial” distribution at 
matter-rad. eq.), subdominant/growing mode

memory term (integral over the past) ∝ (k/kfs)4 at low k
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We consider the CDM-like hydrodynamical equations, with a new pressure-like  term

{

- Simplest closure that agrees with the Vlasov analysis at linear order (with S=0)

- is better behaved than∇ρ

ρ̄
= ∇δ

∇δ

1 + δ
= (1− δ + ... + (−1)pδp + ..)∇δ

always mimics the slow-down of gravitational collapse due to 
the non-zero velocity dispersion

- We use for       the result from the linearized Vlasov eq. cs



PL,WDM(k, z = 0) = PL,CDM(k, z = 0)T (k)2

T (k) = [1 + (αk)2ν ]−5/ν

α = 0.049
( m

1keV

)−1.11
(

Ωm

0.25

)0.11 (
h

0.7

)1.22

h−1Mpc ν = 1.12

We use as initial conditions,  at redshift zi = 100

the linear power spectrum with the WDM high-k cutoff :

Viel et al.(2005)

We can compare the impact of the late-time velocity dispersion (z<100)
with the impact of the high-k cutoff (early free-streaming).
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FIG. 1: Upper panel: ratio T (k)2 = PL,WDM/PL,CDM of the
linear WDM and CDM power spectra at z = 0, from Eq.(15).
Lower panel: linear growing mode D+(k, τ ) normalized to the
scale factor a(τ ) as a function of wavenumber. We show our
results at z = 0 and z = 3 for the CDM case (black dashed
lines) and the WDM case (red solid lines) with m = 1keV.

[56]. However, this shows that it is not easy to include
the WDM velocity dispersion in numerical simulations
in a realistic fashion. This is another motivation for the
analytic study presented in this paper.

In the following, as in [44], for numerical computations
we adopt a background cosmology that is consistent with
WMAP7 [2], Ωm = 0.2726, ΩΛ = 0.7274, Ωb = 0.046,
h = 0.704, ns = 0.963, and σ8 = 0.809. We focus on
the case of a 1 keV dark matter particle, and we take
ȳ2 = 12.939 as for thermal fermions (or sterile neutri-
nos produced via the Dodelson-Widrow [30] nonresonant
mixing mechanism) and gd = 10.75 [18, 40].

III. RESULTS

A. Matter density power spectrum

Since the equations of motion (11)-(12) have the same
form as those studied in [55] in the context of modified
gravity models (but with a different kernel ε(k, τ)) we use
the same methods as in [55] for our numerical computa-
tions. We refer the reader to [55] for a description of our
analytical methods.
Because of the explicit dependence on k introduced in

the left hand side of the Euler equation (12) by the factor
ε(k, τ), the linear growing and decaying modes of the den-
sity contrast now depend on k. As explained above, they
also satisfy Eq.(4), with S = 0, where the dependence
on k is explicit. This pressure-like term, −k2c2s, slows
down the growth of density perturbations at high k. For
k > kfs, which plays the role of a Jeans wavenumber, den-
sity perturbations would no longer grow but oscillate. We
show in the lower panel of Fig. 1 the linear growing mode
D+(k, τ) as a function of wavenumber. (We normalize all
linear growing modes to the CDM mode at the initial red-
shift zi.) We clearly see the decrease of the growing mode
above k ∼ 1h Mpc−1. For comparison, we also plot in
the upper panel the ratio PL,WDM/PL,CDM = T (k)2 of
the linear WDM to CDM power spectra, from Eq.(15).
All curves deviate from the CDM prediction at about the
same wavenumber, but as expected the damping of the
linear power spectrum is stronger than the damping of
the late-time linear growing mode. Indeed, the damping
of the linear power spectrum shown in the upper panel
is mostly due to early-time effects, when the dark matter
particles were still relativistic. In contrast, by definition
of our initial conditions at zi = 100, the damping found in
the lower panel is a late-time effect at z < zi, due to the
small non-zero velocity dispersion. This effect declines
with time as the comoving wavenumber kfs(τ) grows as√
a from Eq.(6). However, it is not zero and we will es-

timate in the following the magnitude of this late-time
effect.
Next, we consider the non-linear density power spec-

trum in the perturbative regime in Figs. 2 and 3. We
compare the results associated with the reference ΛCDM
scenario, the WDM scenario with cs = 0 (i.e., the only
difference from CDM arises from the initial power (15)),
and the WDM scenario with cs $= 0 (i.e., the differ-
ence from CDM arises from both the initial power (15)
and the late-time velocity-dispersion). To emphasize the
difference between various curves we plot the ratios of
our results by a common reference linear power with-
out baryonic oscillations, from [57], in Fig. 2 We plot
both the “standard” one-loop perturbative result [58]
and the “steepest-descent resummation” [59–61], which
agrees with the standard result up to one-loop and con-
tains a partial resummation of higher order terms [73].
We recover the suppression of the nonlinear power

spectrum due to the high-k cutoff (16) [46]. As in the
usual CDM case, we can see that the nonlinear dynamics

D- Results

ratio of the WDM/CDM 
linear power spectra

linear growing mode D+(k, z)

(normalized “initially” to:                                   )D+(k, zi) = D+,CDM(zi)

Because of the “pressure-like” term              the linear growing and decaying modes 
depend on    .

−k2c2
s

k

high-k cutoff due to early free-streaming

slower linear growth at high k since z=100 
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FIG. 2: Ratio of the power spectrum P (k) to a smooth ΛCDM linear power spectrum PLs(k) without baryonic oscillations,
from [57]. We show our results for the reference CDM scenario (black lines), the WDM scenario with cs = 0 (green lines) and
with cs != 0 (red lines). In each case, we plot the linear power (lower dashed lines), the nonlinear one-loop “steepest descent”
resummation (solid lines), and the “standard” 1-loop result (upper dotted lines).

FIG. 3: Relative deviation of the power spectrum from the CDM reference, for the WDM scenarios with cs = 0 (green lines)
and with cs != 0 (red lines). For both cases we show the relative deviations of the linear power spectrum (upper dashed lines)
and of the nonlinear power spectrum (lower solid lines), obtained from the one-loop “steepest descent” resummation.

amplifies the power spectrum while erasing some of the
baryonic oscillations. The difference between the “stan-
dard” and the “resummed” perturbative predictions is
similar to the one obtained in the CDM scenario and it is
larger than the difference between the CDM and WDM
results. This means that on these scales the standard
perturbation theory is not accurate enough to describe
the deviations between the CDM and WDM predictions
(for m ≥ 1keV), which are on the order of 1% as seen in
Fig. 3.

On the other hand, we can see that nonlinear contri-
butions amplify these deviations, as compared with the
linear power spectra. This is more clearly seen in Fig. 3,
where we plot the relative deviations from the reference
linear and nonlinear CDM power spectra. The compari-
son of the curves obtained with cs = 0 and cs "= 0 shows
that most of the damping with respect to the CDM case
is due to the cutoff (16) of the initial power spectrum.

The late-time velocity dispersion only slightly amplifies
the damping on these scales. Thus, for practical pur-
poses this late-time effect may be neglected. This jus-
tifies the use of N-body simulations, initially built for
CDM, to study gravitational clustering on these scales
[44, 46]. However, for m ≥ 1keV the difference from the
CDM power is not larger than 1.5% on these scales. This
means that, as expected, most of the constraints that can
be set from observations on the WDM scenario arise from
smaller scales. However, because these smaller scales are
also more difficult to predict (since they are deeper in the
nonlinear or nonperturbative regime) it is interesting to
check the signal that can be expected on the larger per-
turbative scales shown in Figs. 2 and 3, which are better
controlled since they can be described by systematic per-
turbative schemes.
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and with cs != 0 (red lines). For both cases we show the relative deviations of the linear power spectrum (upper dashed lines)
and of the nonlinear power spectrum (lower solid lines), obtained from the one-loop “steepest descent” resummation.

amplifies the power spectrum while erasing some of the
baryonic oscillations. The difference between the “stan-
dard” and the “resummed” perturbative predictions is
similar to the one obtained in the CDM scenario and it is
larger than the difference between the CDM and WDM
results. This means that on these scales the standard
perturbation theory is not accurate enough to describe
the deviations between the CDM and WDM predictions
(for m ≥ 1keV), which are on the order of 1% as seen in
Fig. 3.

On the other hand, we can see that nonlinear contri-
butions amplify these deviations, as compared with the
linear power spectra. This is more clearly seen in Fig. 3,
where we plot the relative deviations from the reference
linear and nonlinear CDM power spectra. The compari-
son of the curves obtained with cs = 0 and cs "= 0 shows
that most of the damping with respect to the CDM case
is due to the cutoff (16) of the initial power spectrum.

The late-time velocity dispersion only slightly amplifies
the damping on these scales. Thus, for practical pur-
poses this late-time effect may be neglected. This jus-
tifies the use of N-body simulations, initially built for
CDM, to study gravitational clustering on these scales
[44, 46]. However, for m ≥ 1keV the difference from the
CDM power is not larger than 1.5% on these scales. This
means that, as expected, most of the constraints that can
be set from observations on the WDM scenario arise from
smaller scales. However, because these smaller scales are
also more difficult to predict (since they are deeper in the
nonlinear or nonperturbative regime) it is interesting to
check the signal that can be expected on the larger per-
turbative scales shown in Figs. 2 and 3, which are better
controlled since they can be described by systematic per-
turbative schemes.

One-loop power spectrum (on perturbative scales)

power spectrum:

relative deviation 
from CDM:

- relative deviation from CDM on perturbative scales is very small (1%)

- below the accuracy of standard perturbation theory

- the effect of the late-time velocity dispersion is negligible 
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FIG. 4: Halo mass functions for the reference CDM scenario (black dotted lines), the WDM scenarios with cs = 0 (green dashed
lines), and with cs != 0 (red solid lines).

B. Halo mass function

Another key statistics of large-scale structures is the
mass function of collapsed halos. As in [55] we define
halos by a nonlinear density contrast of 200. Then, we
obtain the halo mass function from the spherical dynam-
ics, using the Press-Schechter scaling variable ν [62],

n(M)
dM

M
=

ρm
M

f(ν)
dν

ν
, (18)

with

ν =
F−1

q (200)

σ2
q

, (19)

and the scaling function f(ν) from [63]

f(ν) = 0.502
[

(0.6ν)2.5 + (0.62ν)0.5
]

e−ν2/2, (20)

which has been fitted to ΛCDM numerical simulations.
This ensures that the halo mass function is always nor-
malized to unity and obeys the large-mass tail n(M) ∼
e−ν2/2 for any spherical-collapse mapping Fq. We obtain
the spherical dynamics associated with the equations of
motion (11)-(12) as in [55]. This provides the spherical-
collapse mapping, δLq "→ δx = Fq(δLq), from the linear
density contrast on the Lagrangian radius q to the non-
linear density contrast on the Eulerian radius x.
We show our results in Fig. 4. The low mass tail should

be considered with caution because its exponent may de-
pend on the shape of the linear power spectrum and be
different from the CDM case. Thus, numerical simula-
tions suggest that a simple recipe of the form (18), which
involves a scaling function f(ν) fitted to CDM simula-
tions, overestimates the low mass tail in WDM scenarios
[44]. In contrast, the large-mass tail is better controlled
because it is governed by spherically symmetric saddle-
points (and it does not involve the multiple mergers that
affect the low-mass tail).

As is well known, the WDM scenario leads to a much
smaller halo mass function at low masses than in the
CDM case, because of the lack of power on small scales
[11, 44, 46]. For our purposes, Fig. 4 shows that the
impact of the late-time velocity dispersion on the halo
mass function at z ≤ 5 can be neglected for m ≥ 1keV.
Indeed, the difference between the two WDM curves as-
sociated with either cs &= 0 or cs = 0 at z ≤ zi is much
smaller than the deviation from the CDM reference. It
is also smaller than the accuracy of halo mass functions
that can be obtained from phenomenological models or
numerical simulations. Again, this means that standard
N-body codes can be used to predict the halo mass func-
tion for WDM scenarios (with m ≥ 1keV).

C. Probability distribution of the density contrast

Finally, we consider the probability distribution P(δx)
of the density contrast within spheres of radius x. As in
[55], we use a steepest-descent approach to obtain P(δx)
from the spherical dynamics [63, 64]. This is valid in the
mildly nonlinear regime. We plot our results in Fig. 5
at z = 3, on scales that correspond to Lyman-α clouds.
Indeed, depending on the details of the models Lyman-
α clouds are associated with scales from ∼ 10h−1kpc to
∼ 1h−1Mpc (from the small Lyman-α forest clouds to
damped systems) [65–67].
We recover the characteristic asymmetry induced by

the nonlinear gravitational dynamics, with a shift of the
peak towards underdensities (most of the volume is un-
derdense), a very sharp low-density cutoff (δx ≥ −1 since
the matter density is always positive), and an extended
high-density tail (most of the mass is within overdensi-
ties). On large scales, x ≥ 1h−1Mpc, all curves are very
close and the deviations between the CDM and WDM
scenarios are small. On smaller scales, the lack of small
scale power in the WDM scenario leads to a less advanced
stage of the nonlinear evolution: the peak shifts closer to

n(M)
dM

M
=

ρ̄m

M
f(ν)

dν

ν
δc(M) = F−1

q (200)

Halo mass function

Press-Schechter scaling:

ν =
δc(M)

σq

Because of the pressure-like term in the equations of motion, the spherical 
dynamics and the threshold       depend on scale, whence on mass.δc

- the effect of the late-time velocity dispersion is negligible (at z<=5)
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FIG. 5: Probability distribution P(δx) of the matter density contrast within spheres of radius x, for three radii. We show our
results at z = 3 for the reference CDM scenario (black dotted lines), the WDM scenarios with cs = 0 (green dashed lines), and
with cs != 0 (red solid lines).

the mean δx = 0 and the tails are sharper. The late-time
velocity dispersion even further impedes the nonlinear
evolution and makes the large density tail sharper. This
suggests that accurate measures of the probability distri-
bution of the flux decrement of distant quasars, due to
Lyman-α absorption lines, which is closely related to the
probability distribution of the matter density on these
scales [65, 68], could be sensitive to this late-time ve-
locity dispersion. Thus, numerical simulations that do
not include this effect are likely to underestimate some-
what the difference between the CDM and WDM scenar-
ios with respect to Lyman-α absorption lines.
It is not surprising that this statistics is more sensitive

to the late-time velocity dispersion than the quantities
studied in previous figures (the power spectrum on large
perturbative scales and the halo mass function). Indeed,
it is well-known that, because they probe relatively small
scales, Lyman-α clouds are a sensitive probe of WDM
scenarios. Most works focus on the decrease of the flux
power spectrum due to the high-k damping of the WDM
power spectrum set by the relativistic free-streaming [18–
20]. Figure 5 shows that the late-time velocity dispersion
also has a non-negligible effect.

D. Impact of lower initial redshift

In the previous figures we set the initial conditions at
redshift zi = 100. In this section, we investigate the
impact of using a lower initial redshift, zi = 50. This
should make the two WDM results, with cs = 0 and
cs != 0, closer to each other, since the velocity disper-
sion decreases with time. However, because it also sets
the nonlinear contributions to zero at zi = 50 instead of
zi = 100, this also further underestimates gravitational
clustering.
In the standard ΛCDM scenario, we usually take the

limit zi → ∞ within analytical approaches because one

is only interested in accurate predictions [61, 61, 69].
Moreover, numerical simulations often use second-order
Lagrangian perturbation theory for their initial condi-
tions to decrease the sensitivity to the initial redshift [70].
However, WDM simulations often use linear theory to set
up their initial conditions. Indeed, a second-order imple-
mentation should in principle make use of a second-order
analysis of the Vlasov equation at early times, while most
works use the results obtained from the linearized Vlasov
equation. On the other hand, the choice of the initial red-
shift is not so obvious in WDM scenarios, because a high
initial redshift zi can lead to spurious effects due to in-
adequate modeling of the large velocity dispersion [52],
whereas a low initial redshift alleviates this problem but
can lead to an underestimate of gravitational clustering.

The dependence on the initial redshift zi is easily in-
cluded within our analytic approach as follows. In the
perturbative framework, used for the large-scale power
spectrum shown in Figs. 1-2, the integrals over time asso-
ciated with the one-loop and higher-order contributions
run from zi down to the redshift z of interest. In the
spherical dynamics, used for the mass function and the
density probability distribution shown in Figs. 4 and 5,
the equations of motion are also integrated from the ini-
tial redshift zi. This allows us to obtain the dependence
on zi of the large-scale structures built at a given redshift
z, as in numerical simulations initialized at linear order
at this redshift zi. We show our results for the density
power spectrum, the halo mass function, and the density
probability distribution function, with zi = 50, in Fig. 6.

The comparison of the left panel of Fig. 6 with the
right panel of Fig. 3 shows that on perturbative scales,
k < 0.9hMpc−1 at z = 5, using an initial redshift of
zi = 50 leads to an underestimation of the power spec-
trum on the order of 1%. Moreover, this is larger than
the decrease of the power spectrum due to the change
from the CDM to the WDM power spectrum. On the
other hand, the difference between the cs = 0 and cs != 0

Probability distribution of the density contrast within spherical cells

- WDM leads to a less advanced stage of non-linear evolution

- the late-time velocity dispersion has a non-negligible effect on the PDF

- this may have a small impact on the PDF of the Lyman-alpha forest absorption lines
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FIG. 6: Left panel: relative deviation of the power spectrum from the CDM reference, as in Fig. 3, but using an initial redshift
zi = 50 instead of 100. Middle panel: halo mass function, as in Fig. 4 but with zi = 50. Right panel: probability distribution
of the matter density contrast, as in Fig. 5, but with zi = 50.

results is very small. The same behavior is found for the
halo mass function, as shown by the comparison between
the middle panel of Fig. 6 with the right panel of Fig. 4,
with an underestimation of the large-mass tail because of
the low initialization redshift zi that is on the order of or
larger than the true decrease due to the WDM scenario.
On the other hand, the comparison of the right panel of
Fig. 6 with the right panel of Fig. 5 shows that using a low
initial redshift zi = 50 does not significantly change the
probability distribution of the density contrast at z = 3,
for moderate density fluctuations. However, the differ-
ence between the cs = 0 and cs != 0 results remains
similar to the one obtained with zi = 100. Therefore,
starting at zi = 50 instead of zi = 100 degrades the
accuracy of measures of gravitational clustering at low
redshifts, since it significantly underestimates the nonlin-
earities (as measured by the large-scale power spectrum
or the halo mass function) and contaminates the signal
associated with the WDM high-k cutoff (on large pertur-
bative scales or on the large-mass tail of the halo mass
function). Moreover, it does not significantly reduce the
effect of the late-time velocity dispersion, as compared
with zi = 100. Thus, numerical simulations should use
a high initial redshift, zi ≥ 100, rather than a low value,
zi ≤ 50.

IV. CONCLUSION

Using an effective Euler equation, that agrees with the
Vlasov equation at the linear level (except for subdom-
inant memory terms), we have estimated the impact of
a late-time WDM velocity dispersion on the formation
of large-scale structures. We have only considered the
“cosmic web”, that is, large perturbative scales, moder-
ate density fluctuations, and the number counts of virial-
ized halos, which can be studied with analytic tools. We
have focussed on the case of a 1keV dark matter particle,

which is representative of current WDM scenarios (lower
masses are excluded by observations, such as Lyman-α
forest data, while higher masses become indistinguish-
able from the CDM limit).

We find that on perturbative scales the deviation of
the density power spectrum from the CDM case is only
on the order of 1%, at z ≤ 5, even though it is slightly
amplified by the nonlinear dynamics. This is below the
accuracy of the standard perturbative expansion and re-
quires efficient perturbative schemes. On the other hand,
the effects of the late-time velocity dispersion are negli-
gible over most of the perturbative range at z ≤ 5 (so
that one could use the same perturbative approaches de-
vised for the CDM case). We also find that the late-time
velocity dispersion has a negligible impact on the halo
mass function at z ≤ 5 (in any case, below the 10% accu-
racy that can be guaranteed by simulations). However,
it has a non-negligible effect on the probability distribu-
tion of the density contrast on scales x ≤ 0.1h−1Mpc at
z = 3. This means it should have some impact on the
probability distribution of the Lyman-α flux decrement,
measured on the spectra of distant quasars.

Finally, we note that numerical simulations should use
a high initial redshift, zi ≥ 100, rather than a low value,
zi ≤ 50. Indeed, such a low initial redshift can lead to
a significant underestimation of the power spectrum on
perturbative scales and of the large-mass tail of the halo
mass function, which is larger than the true signal asso-
ciated with the WDM scenario (but of course, on smaller
scales and on the low mass tail of the mass function one
is again dominated by the actual WDM signal). It does
not help much either for the probability distribution of
the density contrast on scales associated with Lyman-α
clouds.

To go beyond the effective hydrodynamical equations
used in this work, one should use the nonlinear Vlasov
equation itself. However, this is a difficult task because
of the additional velocity coordinates, which makes nu-
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FIG. 2: Ratio of the power spectrum P (k) to a smooth ΛCDM linear power spectrum PLs(k) without baryonic oscillations,
from [57]. We show our results for the reference CDM scenario (black lines), the WDM scenario with cs = 0 (green lines) and
with cs != 0 (red lines). In each case, we plot the linear power (lower dashed lines), the nonlinear one-loop “steepest descent”
resummation (solid lines), and the “standard” 1-loop result (upper dotted lines).

FIG. 3: Relative deviation of the power spectrum from the CDM reference, for the WDM scenarios with cs = 0 (green lines)
and with cs != 0 (red lines). For both cases we show the relative deviations of the linear power spectrum (upper dashed lines)
and of the nonlinear power spectrum (lower solid lines), obtained from the one-loop “steepest descent” resummation.

amplifies the power spectrum while erasing some of the
baryonic oscillations. The difference between the “stan-
dard” and the “resummed” perturbative predictions is
similar to the one obtained in the CDM scenario and it is
larger than the difference between the CDM and WDM
results. This means that on these scales the standard
perturbation theory is not accurate enough to describe
the deviations between the CDM and WDM predictions
(for m ≥ 1keV), which are on the order of 1% as seen in
Fig. 3.

On the other hand, we can see that nonlinear contri-
butions amplify these deviations, as compared with the
linear power spectra. This is more clearly seen in Fig. 3,
where we plot the relative deviations from the reference
linear and nonlinear CDM power spectra. The compari-
son of the curves obtained with cs = 0 and cs "= 0 shows
that most of the damping with respect to the CDM case
is due to the cutoff (16) of the initial power spectrum.

The late-time velocity dispersion only slightly amplifies
the damping on these scales. Thus, for practical pur-
poses this late-time effect may be neglected. This jus-
tifies the use of N-body simulations, initially built for
CDM, to study gravitational clustering on these scales
[44, 46]. However, for m ≥ 1keV the difference from the
CDM power is not larger than 1.5% on these scales. This
means that, as expected, most of the constraints that can
be set from observations on the WDM scenario arise from
smaller scales. However, because these smaller scales are
also more difficult to predict (since they are deeper in the
nonlinear or nonperturbative regime) it is interesting to
check the signal that can be expected on the larger per-
turbative scales shown in Figs. 2 and 3, which are better
controlled since they can be described by systematic per-
turbative schemes.
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FIG. 6: Left panel: relative deviation of the power spectrum from the CDM reference, as in Fig. 3, but using an initial redshift
zi = 50 instead of 100. Middle panel: halo mass function, as in Fig. 4 but with zi = 50. Right panel: probability distribution
of the matter density contrast, as in Fig. 5, but with zi = 50.

results is very small. The same behavior is found for the
halo mass function, as shown by the comparison between
the middle panel of Fig. 6 with the right panel of Fig. 4,
with an underestimation of the large-mass tail because of
the low initialization redshift zi that is on the order of or
larger than the true decrease due to the WDM scenario.
On the other hand, the comparison of the right panel of
Fig. 6 with the right panel of Fig. 5 shows that using a low
initial redshift zi = 50 does not significantly change the
probability distribution of the density contrast at z = 3,
for moderate density fluctuations. However, the differ-
ence between the cs = 0 and cs != 0 results remains
similar to the one obtained with zi = 100. Therefore,
starting at zi = 50 instead of zi = 100 degrades the
accuracy of measures of gravitational clustering at low
redshifts, since it significantly underestimates the nonlin-
earities (as measured by the large-scale power spectrum
or the halo mass function) and contaminates the signal
associated with the WDM high-k cutoff (on large pertur-
bative scales or on the large-mass tail of the halo mass
function). Moreover, it does not significantly reduce the
effect of the late-time velocity dispersion, as compared
with zi = 100. Thus, numerical simulations should use
a high initial redshift, zi ≥ 100, rather than a low value,
zi ≤ 50.

IV. CONCLUSION

Using an effective Euler equation, that agrees with the
Vlasov equation at the linear level (except for subdom-
inant memory terms), we have estimated the impact of
a late-time WDM velocity dispersion on the formation
of large-scale structures. We have only considered the
“cosmic web”, that is, large perturbative scales, moder-
ate density fluctuations, and the number counts of virial-
ized halos, which can be studied with analytic tools. We
have focussed on the case of a 1keV dark matter particle,

which is representative of current WDM scenarios (lower
masses are excluded by observations, such as Lyman-α
forest data, while higher masses become indistinguish-
able from the CDM limit).

We find that on perturbative scales the deviation of
the density power spectrum from the CDM case is only
on the order of 1%, at z ≤ 5, even though it is slightly
amplified by the nonlinear dynamics. This is below the
accuracy of the standard perturbative expansion and re-
quires efficient perturbative schemes. On the other hand,
the effects of the late-time velocity dispersion are negli-
gible over most of the perturbative range at z ≤ 5 (so
that one could use the same perturbative approaches de-
vised for the CDM case). We also find that the late-time
velocity dispersion has a negligible impact on the halo
mass function at z ≤ 5 (in any case, below the 10% accu-
racy that can be guaranteed by simulations). However,
it has a non-negligible effect on the probability distribu-
tion of the density contrast on scales x ≤ 0.1h−1Mpc at
z = 3. This means it should have some impact on the
probability distribution of the Lyman-α flux decrement,
measured on the spectra of distant quasars.

Finally, we note that numerical simulations should use
a high initial redshift, zi ≥ 100, rather than a low value,
zi ≤ 50. Indeed, such a low initial redshift can lead to
a significant underestimation of the power spectrum on
perturbative scales and of the large-mass tail of the halo
mass function, which is larger than the true signal asso-
ciated with the WDM scenario (but of course, on smaller
scales and on the low mass tail of the mass function one
is again dominated by the actual WDM signal). It does
not help much either for the probability distribution of
the density contrast on scales associated with Lyman-α
clouds.

To go beyond the effective hydrodynamical equations
used in this work, one should use the nonlinear Vlasov
equation itself. However, this is a difficult task because
of the additional velocity coordinates, which makes nu-
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FIG. 4: Halo mass functions for the reference CDM scenario (black dotted lines), the WDM scenarios with cs = 0 (green dashed
lines), and with cs != 0 (red solid lines).

B. Halo mass function

Another key statistics of large-scale structures is the
mass function of collapsed halos. As in [55] we define
halos by a nonlinear density contrast of 200. Then, we
obtain the halo mass function from the spherical dynam-
ics, using the Press-Schechter scaling variable ν [62],

n(M)
dM

M
=

ρm
M

f(ν)
dν

ν
, (18)

with

ν =
F−1

q (200)

σ2
q

, (19)

and the scaling function f(ν) from [63]

f(ν) = 0.502
[

(0.6ν)2.5 + (0.62ν)0.5
]

e−ν2/2, (20)

which has been fitted to ΛCDM numerical simulations.
This ensures that the halo mass function is always nor-
malized to unity and obeys the large-mass tail n(M) ∼
e−ν2/2 for any spherical-collapse mapping Fq. We obtain
the spherical dynamics associated with the equations of
motion (11)-(12) as in [55]. This provides the spherical-
collapse mapping, δLq "→ δx = Fq(δLq), from the linear
density contrast on the Lagrangian radius q to the non-
linear density contrast on the Eulerian radius x.
We show our results in Fig. 4. The low mass tail should

be considered with caution because its exponent may de-
pend on the shape of the linear power spectrum and be
different from the CDM case. Thus, numerical simula-
tions suggest that a simple recipe of the form (18), which
involves a scaling function f(ν) fitted to CDM simula-
tions, overestimates the low mass tail in WDM scenarios
[44]. In contrast, the large-mass tail is better controlled
because it is governed by spherically symmetric saddle-
points (and it does not involve the multiple mergers that
affect the low-mass tail).

As is well known, the WDM scenario leads to a much
smaller halo mass function at low masses than in the
CDM case, because of the lack of power on small scales
[11, 44, 46]. For our purposes, Fig. 4 shows that the
impact of the late-time velocity dispersion on the halo
mass function at z ≤ 5 can be neglected for m ≥ 1keV.
Indeed, the difference between the two WDM curves as-
sociated with either cs &= 0 or cs = 0 at z ≤ zi is much
smaller than the deviation from the CDM reference. It
is also smaller than the accuracy of halo mass functions
that can be obtained from phenomenological models or
numerical simulations. Again, this means that standard
N-body codes can be used to predict the halo mass func-
tion for WDM scenarios (with m ≥ 1keV).

C. Probability distribution of the density contrast

Finally, we consider the probability distribution P(δx)
of the density contrast within spheres of radius x. As in
[55], we use a steepest-descent approach to obtain P(δx)
from the spherical dynamics [63, 64]. This is valid in the
mildly nonlinear regime. We plot our results in Fig. 5
at z = 3, on scales that correspond to Lyman-α clouds.
Indeed, depending on the details of the models Lyman-
α clouds are associated with scales from ∼ 10h−1kpc to
∼ 1h−1Mpc (from the small Lyman-α forest clouds to
damped systems) [65–67].
We recover the characteristic asymmetry induced by

the nonlinear gravitational dynamics, with a shift of the
peak towards underdensities (most of the volume is un-
derdense), a very sharp low-density cutoff (δx ≥ −1 since
the matter density is always positive), and an extended
high-density tail (most of the mass is within overdensi-
ties). On large scales, x ≥ 1h−1Mpc, all curves are very
close and the deviations between the CDM and WDM
scenarios are small. On smaller scales, the lack of small
scale power in the WDM scenario leads to a less advanced
stage of the nonlinear evolution: the peak shifts closer to

Impact of low initial redshift

zi = 100

power 
spectrum

mass function

- underestimation of the power spectrum on perturbative scales

- underestimation of the large-mass tail of the halo mass function

zi = 50
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FIG. 6: Left panel: relative deviation of the power spectrum from the CDM reference, as in Fig. 3, but using an initial redshift
zi = 50 instead of 100. Middle panel: halo mass function, as in Fig. 4 but with zi = 50. Right panel: probability distribution
of the matter density contrast, as in Fig. 5, but with zi = 50.

results is very small. The same behavior is found for the
halo mass function, as shown by the comparison between
the middle panel of Fig. 6 with the right panel of Fig. 4,
with an underestimation of the large-mass tail because of
the low initialization redshift zi that is on the order of or
larger than the true decrease due to the WDM scenario.
On the other hand, the comparison of the right panel of
Fig. 6 with the right panel of Fig. 5 shows that using a low
initial redshift zi = 50 does not significantly change the
probability distribution of the density contrast at z = 3,
for moderate density fluctuations. However, the differ-
ence between the cs = 0 and cs != 0 results remains
similar to the one obtained with zi = 100. Therefore,
starting at zi = 50 instead of zi = 100 degrades the
accuracy of measures of gravitational clustering at low
redshifts, since it significantly underestimates the nonlin-
earities (as measured by the large-scale power spectrum
or the halo mass function) and contaminates the signal
associated with the WDM high-k cutoff (on large pertur-
bative scales or on the large-mass tail of the halo mass
function). Moreover, it does not significantly reduce the
effect of the late-time velocity dispersion, as compared
with zi = 100. Thus, numerical simulations should use
a high initial redshift, zi ≥ 100, rather than a low value,
zi ≤ 50.

IV. CONCLUSION

Using an effective Euler equation, that agrees with the
Vlasov equation at the linear level (except for subdom-
inant memory terms), we have estimated the impact of
a late-time WDM velocity dispersion on the formation
of large-scale structures. We have only considered the
“cosmic web”, that is, large perturbative scales, moder-
ate density fluctuations, and the number counts of virial-
ized halos, which can be studied with analytic tools. We
have focussed on the case of a 1keV dark matter particle,

which is representative of current WDM scenarios (lower
masses are excluded by observations, such as Lyman-α
forest data, while higher masses become indistinguish-
able from the CDM limit).

We find that on perturbative scales the deviation of
the density power spectrum from the CDM case is only
on the order of 1%, at z ≤ 5, even though it is slightly
amplified by the nonlinear dynamics. This is below the
accuracy of the standard perturbative expansion and re-
quires efficient perturbative schemes. On the other hand,
the effects of the late-time velocity dispersion are negli-
gible over most of the perturbative range at z ≤ 5 (so
that one could use the same perturbative approaches de-
vised for the CDM case). We also find that the late-time
velocity dispersion has a negligible impact on the halo
mass function at z ≤ 5 (in any case, below the 10% accu-
racy that can be guaranteed by simulations). However,
it has a non-negligible effect on the probability distribu-
tion of the density contrast on scales x ≤ 0.1h−1Mpc at
z = 3. This means it should have some impact on the
probability distribution of the Lyman-α flux decrement,
measured on the spectra of distant quasars.

Finally, we note that numerical simulations should use
a high initial redshift, zi ≥ 100, rather than a low value,
zi ≤ 50. Indeed, such a low initial redshift can lead to
a significant underestimation of the power spectrum on
perturbative scales and of the large-mass tail of the halo
mass function, which is larger than the true signal asso-
ciated with the WDM scenario (but of course, on smaller
scales and on the low mass tail of the mass function one
is again dominated by the actual WDM signal). It does
not help much either for the probability distribution of
the density contrast on scales associated with Lyman-α
clouds.

To go beyond the effective hydrodynamical equations
used in this work, one should use the nonlinear Vlasov
equation itself. However, this is a difficult task because
of the additional velocity coordinates, which makes nu-
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FIG. 5: Probability distribution P(δx) of the matter density contrast within spheres of radius x, for three radii. We show our
results at z = 3 for the reference CDM scenario (black dotted lines), the WDM scenarios with cs = 0 (green dashed lines), and
with cs != 0 (red solid lines).

the mean δx = 0 and the tails are sharper. The late-time
velocity dispersion even further impedes the nonlinear
evolution and makes the large density tail sharper. This
suggests that accurate measures of the probability distri-
bution of the flux decrement of distant quasars, due to
Lyman-α absorption lines, which is closely related to the
probability distribution of the matter density on these
scales [65, 68], could be sensitive to this late-time ve-
locity dispersion. Thus, numerical simulations that do
not include this effect are likely to underestimate some-
what the difference between the CDM and WDM scenar-
ios with respect to Lyman-α absorption lines.
It is not surprising that this statistics is more sensitive

to the late-time velocity dispersion than the quantities
studied in previous figures (the power spectrum on large
perturbative scales and the halo mass function). Indeed,
it is well-known that, because they probe relatively small
scales, Lyman-α clouds are a sensitive probe of WDM
scenarios. Most works focus on the decrease of the flux
power spectrum due to the high-k damping of the WDM
power spectrum set by the relativistic free-streaming [18–
20]. Figure 5 shows that the late-time velocity dispersion
also has a non-negligible effect.

D. Impact of lower initial redshift

In the previous figures we set the initial conditions at
redshift zi = 100. In this section, we investigate the
impact of using a lower initial redshift, zi = 50. This
should make the two WDM results, with cs = 0 and
cs != 0, closer to each other, since the velocity disper-
sion decreases with time. However, because it also sets
the nonlinear contributions to zero at zi = 50 instead of
zi = 100, this also further underestimates gravitational
clustering.
In the standard ΛCDM scenario, we usually take the

limit zi → ∞ within analytical approaches because one

is only interested in accurate predictions [61, 61, 69].
Moreover, numerical simulations often use second-order
Lagrangian perturbation theory for their initial condi-
tions to decrease the sensitivity to the initial redshift [70].
However, WDM simulations often use linear theory to set
up their initial conditions. Indeed, a second-order imple-
mentation should in principle make use of a second-order
analysis of the Vlasov equation at early times, while most
works use the results obtained from the linearized Vlasov
equation. On the other hand, the choice of the initial red-
shift is not so obvious in WDM scenarios, because a high
initial redshift zi can lead to spurious effects due to in-
adequate modeling of the large velocity dispersion [52],
whereas a low initial redshift alleviates this problem but
can lead to an underestimate of gravitational clustering.

The dependence on the initial redshift zi is easily in-
cluded within our analytic approach as follows. In the
perturbative framework, used for the large-scale power
spectrum shown in Figs. 1-2, the integrals over time asso-
ciated with the one-loop and higher-order contributions
run from zi down to the redshift z of interest. In the
spherical dynamics, used for the mass function and the
density probability distribution shown in Figs. 4 and 5,
the equations of motion are also integrated from the ini-
tial redshift zi. This allows us to obtain the dependence
on zi of the large-scale structures built at a given redshift
z, as in numerical simulations initialized at linear order
at this redshift zi. We show our results for the density
power spectrum, the halo mass function, and the density
probability distribution function, with zi = 50, in Fig. 6.

The comparison of the left panel of Fig. 6 with the
right panel of Fig. 3 shows that on perturbative scales,
k < 0.9hMpc−1 at z = 5, using an initial redshift of
zi = 50 leads to an underestimation of the power spec-
trum on the order of 1%. Moreover, this is larger than
the decrease of the power spectrum due to the change
from the CDM to the WDM power spectrum. On the
other hand, the difference between the cs = 0 and cs != 0

zi = 100

- rather small effect on the PDF of the density contrast 
on the scales associated with Lyman-alpha cloud at z=3

zi = 50



- For most practical purposes, the late-time velocity dispersion has a negligible effect on 
large-scale structures (outside of virialized halos), in particular for the power spectrum 
on perturbative scales and the halo mass function (at least at low z).

- There is a small effect on the PDF of the density contrast on scales associated 
with Lyman-alpha clouds.

- Using a low initial redshift, z~50 (with linear theory initial conditions), 
significantly underestimates the power spectrum on perturbative scales 
and the large-mass tail of the halo mass function. 

- On large scales (cosmic web) one can use the tools used for CDM.

- It is possible to include a pressure-like term, which ensures consistency 
with the Vlasov linear analysis (with S=0).

E- Conclusion



Perturbative methods

Scales of interest: 
x > 10h−1Mpc

k < 0.4hMpc−1

Linear to weakly nonlinear regime

Future observations require a percent-level accuracy
for theoretical predictions
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A- Standard perturbation theory

1) Hydrodynamical approximation (single-stream approximation)

2) Solution as a perturbative expansion over powers of the linear mode

3) Gaussian average for statistical quantities

(C)DM+baryons: (pressure-less)
& irrotational perfect fluid

density contrast:

δ̃(k, τ) =
∞∑

n=1

δ̃(n)(k, τ) δ̃(n) ∝ (δ̃L)nwith

∂δ

∂τ
+∇ · [(1 + δ)v] = 0

∆φ =
3
2
ΩmH2δ

δ(x, t) =
ρ(x, t)− ρ̄

ρ̄

C2 = 〈δδ〉 = 〈δ(1)δ(1)〉 + 〈δ(3)δ(1)〉 + 〈δ(1)δ(3)〉 + 〈δ(2)δ(2)〉 + ...

∂v
∂τ

+Hv + (v ·∇)v = −∇Φ− c2
s
∇ρ

ρ̄



Using the Poisson equation, one obtains 2 equations for the density and velocity fields, 
which are quadratic.

Introduce the velocity divergence: θ = ∇ · v

a 2-component vector: ψ =
(

δ
−θ/ȧ

)

Quadratic equation of motion, with a linear operator that may depend on wavenumber
(pressure-like term or modified gravity):

O · ψ̃ = Ks · ψ̃ψ̃ O =




∂

∂ ln a −1

− 3Ωm
2 [1 + ε(k, a)] ∂

∂ ln a + 1−3wΩde
2





WDM pressure-like term:

Modified gravity:

ε(k, a) = − k2

kfs(a)2

ε(k, a) =
2β(a)2k2

k2 + m(a)2a2



O · ψ̃ = Ks · ψ̃ψ̃

ψ̃(x) =
∞∑

n=1

ψ̃(n)(x)Standard perturbative expansion: with ψ̃(n) ∝ (ψ̃L)n

O · ψ̃(n) = Ks(x;x1, x2)
n−1∑

!=1

ψ̃(!)(x1)ψ̃(n−!)(x2)

solved by recursion up to the required order n :

δ̃(k, a) =
∞∑

n=1

∫
dk1..dkn δD(k1 + .. + kn − k) F s

n(k1, ..,kn; a) δ̃L0(k1)..δ̃L0(kn)

If            depends on wavenumber the time-dependence of        does not factor out.ε(k, a) F s
n

P (k) = 〈δδ〉 = 〈δ(1)δ(1)〉 + 〈δ(3)δ(1)〉 + 〈δ(1)δ(3)〉 + 〈δ(2)δ(2)〉 + ...



P. Valageas: Impact of shell crossing and scope of perturbative approaches, in real space and redshift space. 7

Fig. 1. The power per logarithmic interval of k, as defined in Eq.(46), at redshifts z = 0 (left panel) and z = 2 (right
panel). The solid lines are the linear power spectrum “PL”, the nonlinear Zeldovich power spectrum “PZel”, given by
Eq.(13), the non-perturbative correction “Ps.c.”, given by Eq.(45), and the sum PZel + Ps.c. associated with the “sticky
model”, Eq.(41). The dot-dashed lines, which grow very fast and are only partly drawn, are the absolute values of the
standard perturbative terms |P (2)| and |P (3)|, from Eq.(23). The lower dashed lines are the “renormalized” perturbative

terms e−k2σ2
vP (n)

σv of the expansion (24), from Eq.(26), for n = 1 to 5 and n = 10, 15, 20, 30, 50, and 70. The peak moves to
higher k as the order n increases. The dotted lines that follow the nonlinear Zeldovich power spectrum until a Gaussian

decay are the partial sums e−k2σ2
v

∑N
n=1 P

(n)
σv (k), with N = 5, 10, 15, 20, and 30. All terms are multiplied by the factor

4πk3 of Eq.(46).

we go to higher orders contributions become narrower and
more densely packed, which implies that as we go deeper in
the nonlinear regime we need an increasingly large number
of perturbative terms per logarithmic interval of wavenum-
ber.

We also plot a few partial sums of expansion (24), that

is, e−k2σ2
v

∑N
n=1 P

(n)
σv (k), with N = 5, 10, 15, 20, and 30. We

can check that they agree with the full nonlinear power
spectrum (13) until the wavenumber associated with the

peak of e−k2σ2
vP (N)

σv , after which they follow the Gaussian
decay associated with the prefactor e−k2σ2

v . These partial
sums are also slightly more efficient than those obtained
from the standard expansion (19) at the same order (not
shown in the figure).

As expected, the non-perturbative correction (45) is
very small at quasi-linear scales, so that there is indeed
a range where higher order terms of the perturbative ex-
pansions (19) and (24) (i.e. beyond the first order asso-
ciated with the linear regime) are relevant. At higher k
the non-perturbative correction becomes dominant and the
perturbative expansions become irrelevant, since one can
no longer neglect the physics beyond shell crossing.

In the highly nonlinear regime we recover the
well-known decay of the Zeldovich logarithmic non-
linear power spectrum (Schneider & Bartelmann 1995;
Taylor & Hamilton 1996; Valageas 2007b). This is due to
the fact that particles escape to infinity after shell cross-
ing (i.e. keep moving on their straight trajectories) and
these random trajectories (in the sense of random ini-
tial conditions) erase small-scale features in the density
field. This is expressed by the Gaussian decaying factor
e−k2[σ2

v−I0−(1−3µ2)I2] in Eq.(13), where the quantity within

brackets is always positive as can be seen from the expres-
sion (9). Even though this leads to a decay at high k, the
falloff is not Gaussian because of the integration over the
Lagrangian distance q (Taylor & Hamilton 1996). In par-
ticular, for power law initial power spectra, PL(k) ∝ kn

with −3 < n < −1, one finds that ∆2(k) ∝ k3(n+3)/(n+1)

(Valageas 2007b) (the Zeldovich dynamics is not well de-
fined for n ≥ −1 because of ultraviolet divergences). Note
that, contrary to the gravitational case, the nonlinear power
spectrum decreases faster at high k for larger values of n.
This is due to the greater smearing out of small-scale fea-
tures by the larger amplitude of the random linear displace-
ments at small wavelengths.

It is interesting to note that, thanks to its shell-crossing
correction (45), the nonlinear power spectrum (41) of the
“sticky model” does not show this fast decay and its log-
arithmic power shows a significant increase in the nonlin-
ear regime. This is due to the prescription (34), which in
a sense prevents particles from escaping to infinity along
one direction, as they stick together. This models in an
approximate fashion the formation of Zeldovich pancakes,
associated with collapse along one axis (although there is
no precise relationship, since Eq.(34) is only a statistical
model and does not take into account the “cloud-in-cloud”
problem). Thus, small-scale structures are no longer erased
as we keep a trace of planar features. This is expressed by
the factor (1− µ2) in the exponential argument in expres-
sion (45). This implies that for |µ| ∼ 1 the Gaussian de-

caying term of the form e−k2
is suppressed, and by power

counting we see that this generically leads to a contribution
∆µ ∼ k−2, whence Ps.c.(k) ∼ k−2 at high k, as would be
the case for a density field where planar objects are the rel-
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B- Path-integral formulation

1) Generating functional of many-body correlations

2) Use perturbative schemes to compute Z[j]

Power spectrum, bispectrum, ...

eq. of motion Gaussian init. cond.

Z[j] = 〈ej·ψ〉 =
∫
DµI ej·ψ[µI ]− 1

2 µI ·∆−1
I ·µI

Z[j] =
∫
DψDλ ej·ψ+λ·(−O·ψ+Ks·ψψ)+ 1

2 λ·∆I ·λ

ψ =
(

δ
−θ/ȧ

)
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séries infinies de diagrammes en termes des propagateurs linéaires CL et RL, telle que celle représentée sur la
figure 2.11, qui sont obtenues en substituant les expressions données sur les figures 2.8 et 2.9. En particulier,
ce diagramme (a) contient les cinq premiers diagrammes de la figure 2.6. De la même façon, les quatre derniers
diagrammes de la figure 2.10 contiennent aussi les quatres derniers diagrammes de la figure 2.6. On vérifie donc
à nouveau que cette méthode du col directe redonne les diagrammes du développement perturbatif standard
(mais organisés de manière différente) jusqu’à l’ordre de tronquation, auxquels sont ajoutés une série infinie
(incomplète) de diagrammes d’ordres supérieurs.

Les fonctions de corrélation d’ordre supérieur, à p points, s’obtiennent de la même manière. Il convient de
noter que, contrairement à l’approximation usuelle basée sur la tronquation de la hiérarchie BBGKY (qui relie
la fonction de corrélation Cp à la fonction d’ordre suivant Cp+1, et que l’on ferme généralement en prenant
Cp+1 = 0 à un certain ordre), dans ce développement de grand N toutes les fonctions de corrélation Cp sont
non-nulles même après tronquation à un ordre fini en 1/N pour les termes de “self-energy” Σ et Π et les vertex
propres Γp.

2.5.2 Action effective 2PI

Une approche alternative à la méthode du col directe présentée dans les paragraphes précédents est fournie
par la méthode de “l’action effective 2-particules irréductible” (2PI) [178, 181]. Elle consiste à introduire en
premier lieu la double transformée de Legendre ΓN [ψ, C] de la fonctionnelle WN = lnZN , où ZN est à nouveau
la fonctionnelle (2.33), et à calculer ensuite ΓN sous la forme d’un développement en puissances de 1/N . C’est
pour cette raison que nous avons appelé la méthode précédente “méthode du col directe”, car le développement en
1/N s’appliquait directement à la fonctionnelle génératrice des fonctions de corrélation, W , tandis que dans cette
deuxième méthode il s’applique à sa transformée de Legendre Γ. Comme la transformation de Legendre est une
opération non-linéaire ces deux développements ne sontpas identiques, et fournissent donc des résultats différents
selon que l’on tronque à un ordre fini sur W ou sur Γ. Il convient de noter qu’à l’ordre d’une boucle étudié ici,
cette approche coincide avec les méthodes “de couplage de modes” utilisées par exemple en hydrodynamique ou
en physique statistique [29]. Plus récemment, en transposant ces dernières approches au cas de la dynamique
gravitationnelle en cosmologie, Taruya et al. [166, 167] ont ainsi retrouvé les équations présentées ci-dessous,
puis étudié en détail l’application de cette méthode au calcul du spectre de puissance dans le régime associé aux
oscillations acoustiques baryoniques (en introduisant quelques approximations supplémentaires pour faciliter les
calculs numériques).
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Fig. 2.12 – Une série de diagrammes inclus dans les fonctions à deux points données par la méthode de l’action
effective 2PI, à l’ordre d’une boucle, qui n’étaient pas pris en compte par la méthode du col directe au même
ordre.

Cette méthode “2PI” mène en fait aux mêmes équations exactes (2.35) (qui peuvent en fait être vues
comme des définitions des termes correctifs Σ et Π par rapport au régime linéaire), mais avec une expression
différente des termes de “self-energy” Σ et Π. En fait, au lieu de s’écrire sous la forme d’un développement
diagrammatique en puissances des propagateurs linéaires CL et RL, Σ et Π sont maintenant donnés sous la
forme d’un développement diagrammatique en puissances des propagateurs non-linéaires C et R. A l’ordre
d’une boucle on obtient la même structure que les éqs.(2.37)-(2.38), où l’on remplace simplement CL et RL par
C et R :

Σ(x, y) = 4Ks(x; x1, x2)Ks(z; y, z2)R(x1, z)C(x2, z2) (2.45)

Π(x, y) = 2Ks(x; x1, x2)Ks(y; y1, y2)C(x1, y1)C(x2, y2). (2.46)

En termes diagrammatiques, cela signifie que Σ et Π sont donnés par les diagrammes de la figure 2.7 mais où
les lignes simples sont remplacées par des lignes doubles. Comme nous avons encore les équations de Schwinger-
Dyson (2.35), les propagateurs non-linéaires, R et C, sont à nouveau donnés par les expressions (2.39) et (2.40),
donc par les premières égalités des figures 2.8 et 2.9, mais où dans les bulles les lignes simples sont remplacées par

1-loop order
a) Standard perturbation theory

b) Direct steepest-descent method
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De plus, comme l’action S0 correspond à Ks = 0, elle correspond en fait au régime linéaire usuel ainsi qu’on l’a
vu en (2.24)-(2.25), et nous avons donc (ainsi qu’on pourrait aisément le vérifier à partir de l’expression de S0)

〈ψ〉0 = 〈λ〉0 = 0, 〈ψ(x1)ψ(x2)〉0 = CL(x1, x2), 〈ψ(x1)λ(x2)〉0 = RL(x1, x2), 〈λ(x1)λ(x2)〉0 = 0. (2.27)
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Fig. 2.4 – Les symboles utilisés pour les fonctions à deux points, CL = 〈ψψ〉0 et RL = 〈ψλ〉0 (la troisième
possibilité est identiquement nulle, 〈λλ〉0 = 0).

En terme de diagrammes, nous représentons ces propagateurs linéaires comme sur la figure 2.4. Nous avons
ajouté une flèche pour le propagateur RL = 〈ψ(x1)λ(x2)〉0 pour marquer la flèche du temps associée à la
causalité (η1 > η2), qui est exprimée par le facteur de Heaviside dans l’éq.(2.25). Ainsi, la réponse RL “courre”
du “champ de réponse” λ vers le champ physique ψ (puisque RL(x1, x2) = 〈ψ(x1)λ(x2)〉0). Comme chaque
vertex Ks est associé à un champ λ et deux champs ψ, à travers la combinaison (λ.Ks.ψψ) de l’action (2.19)
(voir aussi le développement (2.26)), chaque vertex Ks, représenté par un disque noir sur la figure (2.5) et les
suivantes, dôıt être connecté à une ligne sortante (i.e. une réponse RL) et deux lignes entrantes (en lisant la
corrélation symmétrique CL avec deux lignes sortantes, c’est-à-dire avec une flèche pointant vers l’extérieur à
chaque extrêmité).

2  =

+ 2 

+ 8 

+ 4 

(a) (b)

(c) (d)

C

Fig. 2.5 – Les diagrammes associés au développement (2.26) en puissances de Ks pour la fonction de corrélation
à deux points C2. Les disques noirs sont le vertex à trois pattes Ks, les lignes sont les propagateurs linéaires CL

et RL de la figure 2.4. Seuls les diagrammes pertinents à l’ordre d’une boucle, éqs.(2.28)-(2.29), sont dessinés.

Le développement (2.26) de la fonction de corrélation à deux points s’écrit donc de manière explicite, jusqu’à
l’ordre d’une boucle,

C2 = Ctree
2 + C1loop

2 + ..., avec Ctree
2 = CL et (2.28)

C1loop
2 =

1

2
〈ψ(x1)ψ(x2)(λKsψψ)2〉0 = 8RL(KsRLCLKs)CL + 2RL(KsCLCLKs)RL + 4RLCLKs(RLKsCL).

(2.29)
Les diagrammes associés aux termes (2.28)-(2.29) sont représentés sur la figure 2.5. Nous n’avons pas inclus cinq
termes supplémentaires qui s’annulent car ils contiennent un facteur 〈λλ〉0 ou une boucle fermée sur une suite de
réponses RL (qui s’annule du fait des facteurs de Heaviside). De plus, le diagramme (d) de la figure 2.5 est nul, car
le vertex Ks de droite étant attaché à une boucle fermée surCL il est de la forme Ks(0;q,−q), qui est nul d’après
les expressions (2.13) des noyaux γs

i;i1,i2 . On peut alors vérifier que le diagramme (b) redonne le diagramme
(b) de la figure 2.2 et de l’éq.(2.6), tandis que le diagramme (c) redonne le diagramme (c) de la figure 2.2 et
de l’éq.(2.7). Comme prévu, nous retrouvons ainsi le développement perturbatif standard. Cependant, ces deux
développements équivalents ont des structures différentes. Ainsi, le développement de la figure 2.5, dérivé de
l’intégrale de chemin (2.18), ne contient que le vertex à trois pattes Ks, mais deux propagateurs CL et RL (avec
quatre indices), tandis que le développement standard de la figure 2.2 contient de nouveaux vertex F s

p , avec un
nombre croissant de pattes, lorsque l’on augmente l’ordre de tronquation, mais une seule fonction à deux point,
le spectre de puissance linéaire PL0.

Les fonctions de corrélation d’ordre supérieur s’obtiennent comme dans l’éq.(2.26) en développant sur Ks.
Cela donne ainsi pour la fonction à trois points :

C3 = 〈ψ(x1)ψ(x2)ψ(x2)

(

λKsψ
2 +

(λKsψ2)3

6
+ ..

)

〉0, (2.30)

et nous obtenons jusqu’à l’ordre d’une boucle

Ctree
3 = RLKsCLCL + 5 perm., (2.31)
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Fig. 2.4 – Les symboles utilisés pour les fonctions à deux points, CL = 〈ψψ〉0 et RL = 〈ψλ〉0 (la troisième
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vertex Ks est associé à un champ λ et deux champs ψ, à travers la combinaison (λ.Ks.ψψ) de l’action (2.19)
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(b) de la figure 2.2 et de l’éq.(2.6), tandis que le diagramme (c) redonne le diagramme (c) de la figure 2.2 et
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l’intégrale de chemin (2.18), ne contient que le vertex à trois pattes Ks, mais deux propagateurs CL et RL (avec
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le spectre de puissance linéaire PL0.
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CHAPITRE 2. MÉTHODES PERTURBATIVES 19

la fonction exponentielle, y(x) = ex, en résolvant numériquement l’équation y′ = y plutôt qu’en sommant
y(x) =

∑

xn/n!).
Remarquons ici que, dans le cadre des méthodes de grand N , l’ordre “à p boucles” du développement

perturbatif réfère à l’ordre de tronquation de la série infinie de diagrammes obtenue pour les “self-energies” Σ et
Π, et non pas à l’ordre de tronquation des fonctions de corrélation et de réponse. En effet, comme nous venons
de le voir à l’ordre d’une boucle, un ordre fini en terme de Σ et Π conduit automatiquement à une resommation
partielle infinie de termes de tous ordres pour R et C. Cependant, ces resommations ne sont complètes que
jusqu’au même ordre que pour les “self-energies” (i.e. il manque certains des diagrammes d’ordre supérieur).

I
  

=

 +

  =    +   2   

... ... 

... ... 

C C

Fig. 2.9 – Les diagrammes obtenus à l’ordre d’une boucle pour la fonction de corrélation C dans le cadre de
la “méthode du col directe”. La première égalité correspond à l’éq.(2.40), où l’on note par des lignes doubles la
réponse non-linéaire R. La deuxième égalité montre les deux séries de diagrammes bulles resommés à cet ordre,
obtenues en remplaçant R par son expression en fonction de CL et RL, représentée sur la figure 2.8.

Ensuite, la solution de la première éq.(2.35) peut s’écrire [178, 181]

C = R × CL(ηI) × RT + R.Π.RT , (2.40)

où le premier produit ne contient aucune intégration sur le temps et nous prenons la limite ηI → −∞. De plus,
il convient de noter que dans le régime linéaire nous avons

CL = RL × CL(ηI) × RT
L . (2.41)

A partir des éqs.(2.39)-(2.41) et de la figure 2.8, nous voyons qu’à “l’ordre d’une boucle” (pour Σ et Π) l’ex-
pression (2.40) a resommé les deux séries de “diagrammes bulles” représentées sur la figure 2.9. Nous pouvons
vérifier que nous retrouvons en particulier les diagrammes obtenus à l’ordre d’une boucle sur la figure 2.5 dans
le cadre du développement perturbatif en puissances du vertex d’interaction cubique Ks (qui est équivalent à
la théorie des perturbations standard). En supplément, l’intégration des équations différentielles linéaires (2.35)
nous a permis de resommer un infinité (partielle) de diagrammes d’ordres supérieurs.

Ainsi, nous retrouvons le fait que les développements de grand N et la théorie des perturbations standard
coincident jusqu’à l’ordre de tronquation et ne diffèrent que par des termes d’ordre supérieur. Cette propriété
est essentielle, puisque nous visons à décrire le régime faiblement non-linéaire, en ce qu’elle nous assure que les
termes perturbatifs d’ordre le plus bas sont exactement pris en compte. L’espoir associé à de telles méthodes est
donc d’allier l’exactitude de la théorie des perturbations standard, qui décrit les premiers termes correctifs au
régime linéaire, à un comportement qualitatif (et si possible quantitatif) régularisé dans le régime non-linéaire, en
espérant par exemple que les resommations incluses dans ces approches évitent l’apparition de termes séculiers.
Ceci pourrait alors améliorer la convergence du développement perturbatif et agrandir son domaine de validité.

Fonctions à trois points

Le développement de grand N décrit dans le paragraphe précédent n’est pas limité au calcul des fonctions
de corrélation à deux points, et s’applique aussi aux fonctions de corrélation et de réponse d’ordre supérieur. En
particulier, dans le cadre général du formalisme d’intégrale de chemin la fonction de corrélation à trois points
peut s’écrire sous la forme [199]

C3(x1, x2, x3) = −C(x1, x
′
1)C(x2, x

′
2)C(x3, x

′
3)Γ3(x

′
1, x

′
2, x

′
3), (2.42)

où Γ3 est le “vertex à trois points habillé” (i.e. le vertex d’interaction Ks auquel on a rajouté les corrections
adéquates associées aux non-linéarités du système). Ici nous avons traité sur un même pied les champs ψ et λ,
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Ceci pourrait alors améliorer la convergence du développement perturbatif et agrandir son domaine de validité.

Fonctions à trois points

Le développement de grand N décrit dans le paragraphe précédent n’est pas limité au calcul des fonctions
de corrélation à deux points, et s’applique aussi aux fonctions de corrélation et de réponse d’ordre supérieur. En
particulier, dans le cadre général du formalisme d’intégrale de chemin la fonction de corrélation à trois points
peut s’écrire sous la forme [199]

C3(x1, x2, x3) = −C(x1, x
′
1)C(x2, x

′
2)C(x3, x

′
3)Γ3(x

′
1, x

′
2, x

′
3), (2.42)

où Γ3 est le “vertex à trois points habillé” (i.e. le vertex d’interaction Ks auquel on a rajouté les corrections
adéquates associées aux non-linéarités du système). Ici nous avons traité sur un même pied les champs ψ et λ,
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la fonction exponentielle, y(x) = ex, en résolvant numériquement l’équation y′ = y plutôt qu’en sommant
y(x) =

∑

xn/n!).
Remarquons ici que, dans le cadre des méthodes de grand N , l’ordre “à p boucles” du développement

perturbatif réfère à l’ordre de tronquation de la série infinie de diagrammes obtenue pour les “self-energies” Σ et
Π, et non pas à l’ordre de tronquation des fonctions de corrélation et de réponse. En effet, comme nous venons
de le voir à l’ordre d’une boucle, un ordre fini en terme de Σ et Π conduit automatiquement à une resommation
partielle infinie de termes de tous ordres pour R et C. Cependant, ces resommations ne sont complètes que
jusqu’au même ordre que pour les “self-energies” (i.e. il manque certains des diagrammes d’ordre supérieur).

I
  

=

 +

  =    +   2   
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Fig. 2.9 – Les diagrammes obtenus à l’ordre d’une boucle pour la fonction de corrélation C dans le cadre de
la “méthode du col directe”. La première égalité correspond à l’éq.(2.40), où l’on note par des lignes doubles la
réponse non-linéaire R. La deuxième égalité montre les deux séries de diagrammes bulles resommés à cet ordre,
obtenues en remplaçant R par son expression en fonction de CL et RL, représentée sur la figure 2.8.

Ensuite, la solution de la première éq.(2.35) peut s’écrire [178, 181]

C = R × CL(ηI) × RT + R.Π.RT , (2.40)

où le premier produit ne contient aucune intégration sur le temps et nous prenons la limite ηI → −∞. De plus,
il convient de noter que dans le régime linéaire nous avons

CL = RL × CL(ηI) × RT
L . (2.41)

A partir des éqs.(2.39)-(2.41) et de la figure 2.8, nous voyons qu’à “l’ordre d’une boucle” (pour Σ et Π) l’ex-
pression (2.40) a resommé les deux séries de “diagrammes bulles” représentées sur la figure 2.9. Nous pouvons
vérifier que nous retrouvons en particulier les diagrammes obtenus à l’ordre d’une boucle sur la figure 2.5 dans
le cadre du développement perturbatif en puissances du vertex d’interaction cubique Ks (qui est équivalent à
la théorie des perturbations standard). En supplément, l’intégration des équations différentielles linéaires (2.35)
nous a permis de resommer un infinité (partielle) de diagrammes d’ordres supérieurs.

Ainsi, nous retrouvons le fait que les développements de grand N et la théorie des perturbations standard
coincident jusqu’à l’ordre de tronquation et ne diffèrent que par des termes d’ordre supérieur. Cette propriété
est essentielle, puisque nous visons à décrire le régime faiblement non-linéaire, en ce qu’elle nous assure que les
termes perturbatifs d’ordre le plus bas sont exactement pris en compte. L’espoir associé à de telles méthodes est
donc d’allier l’exactitude de la théorie des perturbations standard, qui décrit les premiers termes correctifs au
régime linéaire, à un comportement qualitatif (et si possible quantitatif) régularisé dans le régime non-linéaire, en
espérant par exemple que les resommations incluses dans ces approches évitent l’apparition de termes séculiers.
Ceci pourrait alors améliorer la convergence du développement perturbatif et agrandir son domaine de validité.

Fonctions à trois points

Le développement de grand N décrit dans le paragraphe précédent n’est pas limité au calcul des fonctions
de corrélation à deux points, et s’applique aussi aux fonctions de corrélation et de réponse d’ordre supérieur. En
particulier, dans le cadre général du formalisme d’intégrale de chemin la fonction de corrélation à trois points
peut s’écrire sous la forme [199]

C3(x1, x2, x3) = −C(x1, x
′
1)C(x2, x

′
2)C(x3, x

′
3)Γ3(x

′
1, x

′
2, x

′
3), (2.42)

où Γ3 est le “vertex à trois points habillé” (i.e. le vertex d’interaction Ks auquel on a rajouté les corrections
adéquates associées aux non-linéarités du système). Ici nous avons traité sur un même pied les champs ψ et λ,

c) 2PI effective action method 
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séries infinies de diagrammes en termes des propagateurs linéaires CL et RL, telle que celle représentée sur la
figure 2.11, qui sont obtenues en substituant les expressions données sur les figures 2.8 et 2.9. En particulier,
ce diagramme (a) contient les cinq premiers diagrammes de la figure 2.6. De la même façon, les quatre derniers
diagrammes de la figure 2.10 contiennent aussi les quatres derniers diagrammes de la figure 2.6. On vérifie donc
à nouveau que cette méthode du col directe redonne les diagrammes du développement perturbatif standard
(mais organisés de manière différente) jusqu’à l’ordre de tronquation, auxquels sont ajoutés une série infinie
(incomplète) de diagrammes d’ordres supérieurs.

Les fonctions de corrélation d’ordre supérieur, à p points, s’obtiennent de la même manière. Il convient de
noter que, contrairement à l’approximation usuelle basée sur la tronquation de la hiérarchie BBGKY (qui relie
la fonction de corrélation Cp à la fonction d’ordre suivant Cp+1, et que l’on ferme généralement en prenant
Cp+1 = 0 à un certain ordre), dans ce développement de grand N toutes les fonctions de corrélation Cp sont
non-nulles même après tronquation à un ordre fini en 1/N pour les termes de “self-energy” Σ et Π et les vertex
propres Γp.

2.5.2 Action effective 2PI

Une approche alternative à la méthode du col directe présentée dans les paragraphes précédents est fournie
par la méthode de “l’action effective 2-particules irréductible” (2PI) [178, 181]. Elle consiste à introduire en
premier lieu la double transformée de Legendre ΓN [ψ, C] de la fonctionnelle WN = lnZN , où ZN est à nouveau
la fonctionnelle (2.33), et à calculer ensuite ΓN sous la forme d’un développement en puissances de 1/N . C’est
pour cette raison que nous avons appelé la méthode précédente “méthode du col directe”, car le développement en
1/N s’appliquait directement à la fonctionnelle génératrice des fonctions de corrélation, W , tandis que dans cette
deuxième méthode il s’applique à sa transformée de Legendre Γ. Comme la transformation de Legendre est une
opération non-linéaire ces deux développements ne sontpas identiques, et fournissent donc des résultats différents
selon que l’on tronque à un ordre fini sur W ou sur Γ. Il convient de noter qu’à l’ordre d’une boucle étudié ici,
cette approche coincide avec les méthodes “de couplage de modes” utilisées par exemple en hydrodynamique ou
en physique statistique [29]. Plus récemment, en transposant ces dernières approches au cas de la dynamique
gravitationnelle en cosmologie, Taruya et al. [166, 167] ont ainsi retrouvé les équations présentées ci-dessous,
puis étudié en détail l’application de cette méthode au calcul du spectre de puissance dans le régime associé aux
oscillations acoustiques baryoniques (en introduisant quelques approximations supplémentaires pour faciliter les
calculs numériques).
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Fig. 2.12 – Une série de diagrammes inclus dans les fonctions à deux points données par la méthode de l’action
effective 2PI, à l’ordre d’une boucle, qui n’étaient pas pris en compte par la méthode du col directe au même
ordre.

Cette méthode “2PI” mène en fait aux mêmes équations exactes (2.35) (qui peuvent en fait être vues
comme des définitions des termes correctifs Σ et Π par rapport au régime linéaire), mais avec une expression
différente des termes de “self-energy” Σ et Π. En fait, au lieu de s’écrire sous la forme d’un développement
diagrammatique en puissances des propagateurs linéaires CL et RL, Σ et Π sont maintenant donnés sous la
forme d’un développement diagrammatique en puissances des propagateurs non-linéaires C et R. A l’ordre
d’une boucle on obtient la même structure que les éqs.(2.37)-(2.38), où l’on remplace simplement CL et RL par
C et R :

Σ(x, y) = 4Ks(x; x1, x2)Ks(z; y, z2)R(x1, z)C(x2, z2) (2.45)

Π(x, y) = 2Ks(x; x1, x2)Ks(y; y1, y2)C(x1, y1)C(x2, y2). (2.46)

En termes diagrammatiques, cela signifie que Σ et Π sont donnés par les diagrammes de la figure 2.7 mais où
les lignes simples sont remplacées par des lignes doubles. Comme nous avons encore les équations de Schwinger-
Dyson (2.35), les propagateurs non-linéaires, R et C, sont à nouveau donnés par les expressions (2.39) et (2.40),
donc par les premières égalités des figures 2.8 et 2.9, mais où dans les bulles les lignes simples sont remplacées par

1-loop order

P (k) = C2 =

a) Standard perturbation theory

b) Direct steepest-descent method

I
    =    +   2   C C = ... ...  + ... ... 

c) 2PI effective action method 
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Fig. 9. The power per logarithmic interval of k, as defined in Eq.(45), at redshifts z = 0.35, 1, and 3. The symbols are
the results from the numerical simulations described in Sect. 4. The black solid line is the linear power spectrum, ∆2

L,
and the blue dotted line that is somewhat below at high k is the 2-halo contribution (27), ∆2

2H. The steep solid line ∆2
1H

is the 1-halo contribution (35), for the halo model described in Sect. 3.2. The green solid line is the full nonlinear power
spectrum, ∆2 = ∆2

2H + ∆2
1H. The dashed (resp. dotted) green line, that is slightly larger (resp. smaller) at high k, is

the result obtained by using the concentration relation for c(M) given by Dolag et al. (2004) (resp. Duffy et al. (2008))
instead of Eq.(40). The magenta dot-dashed line ∆2

S , that is somewhat below these new N-body results at high k, is the
fit to older simulations from Smith et al. (2003).

As discussed in Sect. 3.1, we can check that the 2-halo
term ∆2

2H remains well-behaved at high k and is subdom-
inant with respect to the 1-halo term ∆2

1H. It falls some-
what below the linear power ∆2

L, contrary to the one-loop
resummation of ∆2

pert given by the direct steepest-descent
scheme, which becomes very close to∆2

L as seen in Valageas
(2007a), because of the prefactor F2H(1/k) in Eq.(27).

In agreement with the discussion of Sect. 2.3, we can
also check that the 1-halo term shows a fast decline at
low k. At high k we can see that it is possible to reach
a good agreement with the numerical simulations by using
an appropriate prescription for the concentration parame-
ter c(M), such as the one given in Eq.(40) and represented
by the green solid line. The formula given in Eq.(40) is
obtained by looking for values of the free parameters (the
normalization and the two exponents) that provide a rea-
sonable match with the power spectrum measured in the
simulations at high k (looking among a few values close to
the fits already proposed in the literature). Nevertheless, it
is interesting to note that using fits for c(M) proposed in
previous analysis of the halo profiles formed in numerical
simulations, one obtains predictions that are either larger
(Dolag et al. 2004) or smaller (Duffy et al. 2008) than the
one associated with Eq.(40). This shows that the nonlin-
ear power spectrum is fully consistent in this range with
a simple halo model, such as (35), and with the proper-
ties of halos seen in numerical simulations. This also gives
an estimate of the dependence of the power spectrum on
the prescription used for c(M). In agreement with previous
works (Huffenberger & Seljak 2003; Giocoli et al. 2010), we
recover the fact that the nonlinear power ∆2(k) is larger
and steeper at high k for concentration relations c(M) that
have a larger normalization and a steeper dependence on
M . A nice feature is that the nonlinear power is largely in-
dependent of the details of the halo model up to ∆2 < 100,
so that models such as the one studied in this article re-
main quite predictive. Even at higher k, we can see that up

to ∆2 < 103, or k < 100hMpc−1, using any of these pre-
scriptions for c(M) provides a reasonable estimate of the
power spectrum and even fares better than the direct fit to
P (k) that was obtained from older simulations (Smith et al.
2003). This suggests that models based on phenomenolog-
ical ingredients such as the halo model may prove more
robust than direct fits to numerical results. However, our
model for P (k) should not be trusted beyond the domain
where it has been checked, that is k ≤ 100hMpc−1 and
z ≤ 3.

In order to obtain predictions at much higher redshifts
and wavenumbers, one should use a prescription for c(M)
that is based on some physical arguments rather than sim-
ple fits such as Eq.(40). This would probably lead to a loss
of accuracy in the range tested in Fig. 9, as compared with
the use of Eq.(40), but this is likely to be more robust as
we extrapolate to other regimes. However, we shall not in-
vestigate the building of physical models for c(M) in this
article, as this is a topic by itself.

We can see in Fig. 9 that the full nonlinear power spec-
trum (22) obtained by our approach, combining a pertur-
bative expansion with a phenomenological halo model, is
able to reproduce the results measured in numerical simu-
lations, up to a reasonable accuracy. Let us point out that
the perturbative part, Ppert(k), which dominates at large
scales, contains no free parameter, since it is given by a sys-
tematic perturbation theory. The 1-halo contribution that
dominates at small scales clearly contains some parame-
ters, through the choice of the halo mass function and halo
density profile. However, the mass function and the shape
of the halo profile are already set by other measures from
numerical simulations, so that the main free parameter is
the concentration c(M), which is not as well constrained.
However, as seen in Fig. 9, this uncertainty only affects the
very high-k tail. Moreover, even in this region the resulting
model is competitive with direct fits to the power spectrum
measured in older simulations. Therefore, models such as
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Fig. 10. The ratio of the nonlinear power spectrum P (k) to a smooth linear power spectrum PLs without acoustic
baryonic oscillations, from Eisenstein & Hu (1999). The points with error bars are the results from N-body simulations.
The black solid line PL is the linear power spectrum, and the upper blue dashed line P1loop is the prediction of standard
perturbation theory up to one-loop order. The green solid line P is the full nonlinear power spectrum, from Eq.(22),
whereas the lower blue dotted line Ppert is the perturbative part. The magenta dot-dashed line PS is the fit to simulations
from Smith et al. (2003) (which was not specifically designed to reproduce the baryon oscillations).

the ones developed in this article should prove useful to
obtain reliable predictions for P (k). Another advantage of
such models, as compared with simpler fitting formulas, is
that they should be quite accurate at large scales since they
are consistent with perturbation theory, up to the order of
truncation of the computation.

Thus, we plot in Fig. 10 the ratio of the power spec-
trum to a “no-wiggle” linear power spectrum PLs(k) which
does not include baryonic acoustic oscillations, in order to
see more clearly the low-k behavior. We can check that in
this range our model, based on the direct steepest-descent
resummation, shows a good match with the numerical sim-
ulations. As could be expected, it fares better than a di-
rect fit from Smith et al. (2003) which was not designed
to model this range with a high accuracy (but still re-
mains surprisingly good). Furthermore, the use of the di-
rect steepest-descent resummation proves to provide sig-
nificantly more accurate results than the standard pertur-
bation theory, truncated at one-loop order, given by the
well-known expressions

P1loop(k) = PL(k) + P22(k) + P31(k), (46)

where formulas for the terms P22 and P31 may be found
for instance in Bernardeau et al. (2002). Let us recall here
that the term Ppert(k) given by this direct steepest-descent
scheme contains no free parameter, nor any interpolation
procedure, and is consistent with standard perturbation
theory up to one-loop order (i.e. the difference between
P1loop and Ppert is due to the partial resummation of higher-
order terms). We can see in the left panel, at z = 0.35, that
around k ∼ 0.14hMpc−1 the curve Ppert is slightly above
the full nonlinear power spectrum P . This is due to the pref-
actor F2H(1/k) in Eq.(27), which is slightly below unity.
However, this is only a very small effect at these scales.
On the other hand, at higher k (e.g., k > 0.26hMpc−1 at
z = 0.35) the nonlinear power spectrum rises above Ppert

and keeps growing, while Ppert remains close to PL at high
k as seen in Fig. 9. This is due to the 1-halo contribution,
which starts being non-negligible. However, note that on
these scales the dependence on the details of the halo model
is extremely weak. Indeed, the three green curves plotted in

Fig. 9, associated with the prescription (40) for the concen-
tration c(M) and the two fits given by Dolag et al. (2004)
and Duffy et al. (2008), are also plotted in Fig. 10. However,
they almost exactly fall on top of each other and cannot be
distinguished in the figure.

Thus, Figs. 9 and 10 show that by combining pertur-
bation theories and halo models it is possible to obtain a
good model for the nonlinear density power spectrum, both
at quasi-linear and highly nonlinear scales. However, we can
see in Fig. 9 that in the intermediate regime, where∆2 ∼ 5,
our predictions fall below the N-body results. This is also
apparent in the high-k parts of Fig. 10, where the full non-
linear prediction P (k) starts to grow more slowly than the
power measured in the numerical simulations. This regime
corresponds to the transition between the 2-halo and 1-halo
contributions (see Fig. 9) and as such it is at the limit of
validity of the approximations used for both terms.

On the perturbative side, that is the 2-halo term, the
discrepancy can be due to the truncation at one-loop order
of the perturbative term. Indeed, we can expect that by
going to higher orders we can extend the range of valid-
ity of the the perturbative term Ppert and push the down-
turn shown by the blue dotted curve in Fig. 10 to higher
k. Within such resummation schemes this means that we
include all diagrams up to n loops, and partial resumma-
tions for higher-order terms. We can note that the discrep-
ancy looks somewhat more severe at z = 3 in Fig. 9. More
precisely, the range of k where there is a noticeable mis-
match before the 1-halo term becomes dominant (larger
than PL) is somewhat more extended than at z = 0.35.
This agrees with the results of Valageas (2010), where it
was found (within the Zeldovich framework) that the scope
of perturbation theory is somewhat greater at higher red-
shift for CDM power spectra, in the sense that the range
where higher-order perturbative terms are important (i.e.
larger than the non-perturbative correction associated with
shell crossing effects) is wider and that the perturbative ex-
pansion makes sense up to higher orders. However, we shall
not try to go beyond one-loop order in this paper and we
leave such a task to future works.

On the non-perturbative side, it is clear that by defi-
nition halo models are only phenomenological models and
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Fig. 17. The real-space two-point correlation function ξ(x), at redshifts z = 0.35, 1, and 3. The symbols are the results
from the numerical simulations described in Sect. 4. The black dashed line is the linear correlation, ξL, and the blue
dotted line which is somewhat below at low x is the 2-halo contribution ξ2H. The steep solid line xi1H is the 1-halo
contribution, for the halo model described in Sect. 3.2. The green solid line is the full nonlinear correlation function,
ξ = ξ2H + ξ1H.

Fig. 18. The real-space two-point correlation function ξ(x), at redshifts z = 0.35, 1, and 3, as in Fig. 17 but at larger
scales. Since the 1-halo contribution is negligible at these scales we only show the linear correlation (black dashed line)
and the full nonlinear correlation (green solid line).

of Fig. 18. This also shows that the predictions at these
large scales are quite robust, since they are independent
of the underlying halo model and are given by systematic
perturbation theory. The effect of the 1-halo counterterm
is also very small so that we do not plot a specific figure to
compare the curves obtained with and without this coun-
terterm. Note that the difference between various curves in
Figs. 12 and 13 was amplified by the fact that we divided
by a “no-wiggle” linear power spectrum PLs(k).

8. Typical accuracy of combined models

In this last section before conclusion, as a summary of what
can be achieved from simple analytical models that com-
bine perturbation theories with halo models, we estimate
the accuracy reached by our fiducial model. Thus, we plot
in Fig. 20 the relative difference between our model, de-

scribed in Sects. 3 and 5, and the results from the N-body
simulations presented in Sect. 4,

∆P

P
(k) =

|Pmodel(k)− PN−body(k)|

PN−body(k)
. (58)

We also show the statistical error due to the finite num-
ber of modes in the simulation box, given by Eq.(43), and
the shot-noise error given by ∆Pshot−noise = L3

box/N . Since
the number of modes within a bin of fixed size ∆k scales
as k2∆k, the relative statistical error decreases at higher
k as 1/k, see Eq.(43). The sudden jumps are due to the
folding procedure, see Sect. 4.2 and Fig. 7. On the other
hand, the relative shot noise grows as 1/P (k) and domi-
nates at high k. It seems that the simple approximation
∆Pshot−noise = L3

box/N overestimates somewhat the inac-
curacy of the simulations, however we do not look for a bet-
ter estimate here, as this is already sufficient to understand
the high-k part of Fig. 20 and to mark the wavenumber
where shot noise becomes dominant.
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Fig. 17. The real-space two-point correlation function ξ(x), at redshifts z = 0.35, 1, and 3. The symbols are the results
from the numerical simulations described in Sect. 4. The black dashed line is the linear correlation, ξL, and the blue
dotted line which is somewhat below at low x is the 2-halo contribution ξ2H. The steep solid line xi1H is the 1-halo
contribution, for the halo model described in Sect. 3.2. The green solid line is the full nonlinear correlation function,
ξ = ξ2H + ξ1H.

Fig. 18. The real-space two-point correlation function ξ(x), at redshifts z = 0.35, 1, and 3, as in Fig. 17 but at larger
scales. Since the 1-halo contribution is negligible at these scales we only show the linear correlation (black dashed line)
and the full nonlinear correlation (green solid line).

of Fig. 18. This also shows that the predictions at these
large scales are quite robust, since they are independent
of the underlying halo model and are given by systematic
perturbation theory. The effect of the 1-halo counterterm
is also very small so that we do not plot a specific figure to
compare the curves obtained with and without this coun-
terterm. Note that the difference between various curves in
Figs. 12 and 13 was amplified by the fact that we divided
by a “no-wiggle” linear power spectrum PLs(k).

8. Typical accuracy of combined models

In this last section before conclusion, as a summary of what
can be achieved from simple analytical models that com-
bine perturbation theories with halo models, we estimate
the accuracy reached by our fiducial model. Thus, we plot
in Fig. 20 the relative difference between our model, de-

scribed in Sects. 3 and 5, and the results from the N-body
simulations presented in Sect. 4,

∆P

P
(k) =

|Pmodel(k)− PN−body(k)|

PN−body(k)
. (58)

We also show the statistical error due to the finite num-
ber of modes in the simulation box, given by Eq.(43), and
the shot-noise error given by ∆Pshot−noise = L3

box/N . Since
the number of modes within a bin of fixed size ∆k scales
as k2∆k, the relative statistical error decreases at higher
k as 1/k, see Eq.(43). The sudden jumps are due to the
folding procedure, see Sect. 4.2 and Fig. 7. On the other
hand, the relative shot noise grows as 1/P (k) and domi-
nates at high k. It seems that the simple approximation
∆Pshot−noise = L3

box/N overestimates somewhat the inac-
curacy of the simulations, however we do not look for a bet-
ter estimate here, as this is already sufficient to understand
the high-k part of Fig. 20 and to mark the wavenumber
where shot noise becomes dominant.
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Higher-order statistics: the bispectrum

In order to break degeneracies, it is useful to consider higher-order 
statistics beyond the power spectrum (i.e., 2-pt correlation). 

P. V. & T. Nishimichi, 2011

3-pt correlation / bispectrum

This is also useful to constrain primordial non-Gaussianities



〈δ̃(k1)δ̃(k2)δ̃(k3)〉 = δD(k1 + k2 + k3) B(k1, k2, k3)

As in the halo model (but from a Lagrangian point of view), 
we decompose the bispectrum as

“3-halo term”

perturbative contribution

“1- halo” and “2-halo” terms

nonperturbative contributions

B3H = Bpert

B1H =
∫

dν

ν
f(ν)

(
M

ρ̄(2π)3

)2 3∏

j=1

(
ũM (kj)− W̃ (kj qM )

)

B = B1H + B2H + B3H

B1H ∝ k2
j for kj → 0

B2H = PL(k1)
∫

dν

ν
f(ν)

M

ρ̄(2π)3

3∏

j=2

(
ũM (kj)− W̃ (kj qM )

)
+ 2 cyc. B2H ∝ PL(kj) for kj → 0

counterterms
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Fig. 4. The bispectrum Beq(k) = B(k, k, k) for equilateral configurations, at redshifts z = 0.35, 1, and 3. The symbols are
the results from the numerical simulations. We show the bispectrum obtained at tree order (black solid line), standard
1-loop order (blue dot-dashed line), using the full model (red solid line), as well as the 2-halo (cyan dotted line) and
1-halo (cyan dashed line) contributions. The magenta dot-dashed line labeled “Pan” is the phenomenological model of
Pan et al. (2007).

Fig. 5. The bispectrum B(k1, k2, k3) for isosceles configurations, k1 = k2 = k and k3 = k/α, at redshifts z = 0.35, 1, and
3. We consider the cases α = 2 (upper row) and α = 4 (lower row). The symbols are the same as in Fig. 4.

the detailed study performed in Valageas (2011) that com-
pares perturbative and nonperturbative contributions. On
the other hand, it is natural to expect the transition range
to be the most difficult to reproduce by models of the kind
studied in this paper. Indeed, this domain is already beyond
perturbation theory but does not correspond yet to the in-
ner relaxed cores of virialized halos. Therefore, it is at the
limit of validity of the two ingredients (perturbation the-
ory and halo model) used in our approach. We shall discuss

further this transition range, and possible improvements on
these scales, in Sects. 6.2 and 7 below.

We can clearly see in Fig. 4 the decay on large scales
of the 1-halo and 2-halo contributions, in agreement with
Eqs.(26) and (33). As explained in Sect. 2, this is due to the
new counterterms W̃ (kjqM ) of Eqs.(24) and (31), which en-
sure a physically meaningful behavior. On the other hand,
in agreement with Sefusatti et al. (2010), we can see that
taking into account the 1-loop perturbative contribution
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the detailed study performed in Valageas (2011) that com-
pares perturbative and nonperturbative contributions. On
the other hand, it is natural to expect the transition range
to be the most difficult to reproduce by models of the kind
studied in this paper. Indeed, this domain is already beyond
perturbation theory but does not correspond yet to the in-
ner relaxed cores of virialized halos. Therefore, it is at the
limit of validity of the two ingredients (perturbation the-
ory and halo model) used in our approach. We shall discuss

further this transition range, and possible improvements on
these scales, in Sects. 6.2 and 7 below.

We can clearly see in Fig. 4 the decay on large scales
of the 1-halo and 2-halo contributions, in agreement with
Eqs.(26) and (33). As explained in Sect. 2, this is due to the
new counterterms W̃ (kjqM ) of Eqs.(24) and (31), which en-
sure a physically meaningful behavior. On the other hand,
in agreement with Sefusatti et al. (2010), we can see that
taking into account the 1-loop perturbative contribution
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Fig. 6. The bispectrum B(k1, k2, k3) for isosceles configurations, k1 = k2, at redshifts z = 0.35, 1, and 3 (from top to
bottom in each panel). We show our results as a function of k1 = k2 at fixed k3 (upper row), and as a function of k3 at
fixed k1 = k2 (lower row). The symbols are the same as in Fig. 4.

Fig. 7. The reduced bispectrum, Qeq(k) = Beq(k)/[3P (k)2], for equilateral configurations, at redshifts z = 0.35, 1, and 3.
The symbols are the same as in Fig. 4. The vertical arrow in the upper right part shows the wavenumber beyond which
the simulation shot noise is greater than 10%.

achieved for the stable clustering ansatz, and more gener-
ally for multifractal models such that 〈ρpR〉c are governed by
a single fractal exponent α for the values of p that are con-
sidered. The density field described by a halo model clearly
violates these conditions1, as it does not display such scale
invariance, with a characteristic nonlinear mass associated

1 The halo model can be made to recover the stable-clustering
ansatz predictions if the mass function scales at low mass as
n(M)dM ∝ dM/M2 (Valageas 1999; Ma & Fry 2000b). This
unrealistic formal limit, where the apparent amount of matter

with the falloff of the halo mass function and reasonably
smooth profiles that depend on the mass scale (through
their concentration parameter). This implies that Qeq(k)
has to grow on small scales, as checked in Fig. 7.

per unit volume is infinite, corresponds to a multiple counting
of “halos”, which contain an infinite hierarchy of substructures
that are also counted in the mass function, in agreement with a
fractal model.

Equilateral triangles

Isosceles triangles at fixed length ratio = 4

Isosceles triangles at fixed equal-sides length



Spherical collapse

In CDM, before shell-crossing, all shells move independently.

If               depends on wavenumber, all shells are coupled.ε(k, a)

r̈ = −4πG
3

r

[
ρm(< r) + (1 + 3w)ρ̄de + ρ̄m

∫ ∞

0
dk 4πk2ε(k) δ̃(k) W̃ (kx)

]

dependence on the full density profile

A simple approximation: use a typical profile parameterized by the shell of interest:

δ(x) =
δxM

σ2
xM

∫

VM

dx′

VM
CδLδL(x,x′) δ̃(k) =

δxM

σ2
xM

PL(k) W̃ (kxM )



This implies that the dynamics of collapse depends on scale (or mass).

The linear density threshold         to reach a density contrast of 200 depends on mass.δc
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FIG. 8: Reference linear density contrast δc(Λ) = F−1
q (200)

associated with a nonlinear density threshold of 200 at red-
shift z = 0. We show our results as a function of the halo mass
M for four (n,m0) models, for typical initial profiles of the
form (104). In each case, the upper curve is the approximate
result from Eq.(102) and the lower curve the exact result from
Eq.(96).

shell M and it follows its spherical dynamics. Substitut-
ing the ansatz (101) into Eq.(96) gives the equation of
motion

d2yM
dη2

+

(

1

2
−

3

2
wΩde

)

dyM
dη

+
Ωm

2

(

y−3
M −1

)

yM

×
(

1 +
1

σ2
xM

∫ ∞

0
dk 4πk2ε(k)PL(k)W̃ (kxM )2

)

= 0.

(102)

The equation (102) is exact if ε does not depend on
wavenumber, in which case the parenthesis is equal to
(1 + ε(η)) and we recover the behaviour of Eq.(92). It
is also valid at order one over δL and ε when the ini-
tial perturbation has the linear profile (97) at early time.
Thus, it agrees with the typical profile (97), under the
constraint δLxM

at mass shell M , in the linear regime,
at zeroth order over ε. It is no longer exact at higher
orders over δL because the nonlinear dynamics changes
the shape of the density profile in a complex fashion. It
is not valid at order ε, even in the linear regime, because
the mean profile (97) is not a solution of the linear dy-
namics, as the linear growing mode D+(k, a) depends on
wavenumber. In our case, where ε # 1, this is a negligi-
ble effect and we would actually obtain similar results by
using in Eqs.(100) and (101) the reference ΛCDM linear
correlation CδLδL(Λ) and power PL(Λ).

C. Spherical-collapse mapping

In the linear regime we can check that Eq.(96) agrees
with Eq.(34) for the linear growing mode. Indeed, using

yL = 1−δLq/3, δLq =
∫

V dxδL(x)/V , and x = q at lowest
order, Eq.(96) becomes at linear order:

∫

V

dx

V

∫

dk eik·x
{

∂2δ̃L
∂η2

(k) +

(

1

2
−

3

2
wΩde

)

∂δ̃L
∂η

(k)

−
3Ωm

2
(1 + ε(k))δ̃L(k)

}

= 0. (103)

This agrees with Eq.(34) and we recover the linear solu-
tion δ̃L(k, η) = D+(k, η)δ̃L0(k).
At linear order, the ansatz (101) reads in Fourier-space

as δ̃L(k) = (δLqM /σ2
qM )PL(k)W̃ (kqM ). Substituting into

Eq.(103) remains exact if the profile of the perturbation
is given by Eq.(100) (or for the shell M , whatever the
initial profile, if ε does not depend on wavenumber).
We now consider the spherical dynamics of typical ini-

tial perturbations, of the form (97) at early times, which
we write as

δLq′(Λ) = δLq(Λ)

σ2
q,q′(Λ)

σ2
q(Λ)

, (104)

for the mean initial density contrast within arbitrary ra-
dius q′. Here, as explained in Sect. IVD1, we choose
to write the initial conditions in terms of the reference
ΛCDM linear field, which is simply an “update” at arbi-
trary time η of the initial field δL0 given at a fixed time.
This is more convenient than using the actual linear field
δL, which depends on the modified-gravity growing mode
D+(k, η) and mixes dependences on the initial conditions
and on the modified gravity parameters. In this fash-
ion, Eq.(104) describes the same initial condition for all
our models. Here σ2

q1,q2(Λ) is the cross-correlation of the
smoothed reference linear density contrast at scales q1
and q2,

σ2
q1,q2(Λ) = 〈δLq1(Λ)δLq2(Λ)〉

=

∫ ∞

0
dk 4πk2PL(Λ)(k)W̃ (kq1)W̃ (kq2),(105)

and σ2
q(Λ) = σ2

q,q(Λ). For each mass scale q, with M =

(4π/3)ρmq
3, and initial amplitude δLq(Λ), which define

the initial condition (104), we can solve the spherical dy-
namics (96) or the approximate dynamics (102). For the
“exact” dynamics (96) we consider for simplicity that in-
ner shells that have already collapsed to the center of the
halo remain at the center. (After shell crossing we should
modify Eq.(96) to take into account the change with time
of the mass enclosed within a given shell. However, we do
not consider this effect because radial orbits suffer from a
strong instability, which diverges at the time of collapse
to the center [61], and after that time one should include
transverse motions that lead to virialization.) As long as
shell crossing is restricted to inner shells, within the mass
scale M of interest, this is not a very serious problem be-
cause the dynamics is mostly sensitive to the total mass
enclosed within a given radius (as in the usual Newto-
nian case or for ε that does not depend on wavenumber)

ε(k, a) > 0case where

(mod.  grav.)



Halo mass function

M →∞ : ln[n(M)] ∼ − δc(M)2

2σ(M)2 δc(M) = F−1
q (200)with

Use the Press-Schechter scaling:

n(M)
dM

M
=

ρ̄m

M
f(ν)

dν

ν
with ν =

δc(M)
σ(M)
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FIG. 11: Halo mass function at redshift z = 0.

FIG. 12: Relative deviation from ΛCDM of the halo mass
function at redshift z = 0.

radius q, where the modifications from General Relativ-
ity do not vanish within our framework. In this limit,
the relative deviation of P(δx) from the ΛCDM reference
can grow up to unity. However, this appears far in the
low-density tail, which is characterized by a very sharp
cutoff, and this may not be a very efficient tool to probe
modified-gravity effects.

VII. HALO MASS FUNCTION

The computation of the probability distribution P(δx)
was described in the previous section for the quasilinear
regime, σx(Λ) → 0. However, this result is more general
and actually applies to rare events, where the path inte-
gral (110) is peaked around the minimum of the action
S. In the quasilinear limit any finite nonzero density con-
trast δx becomes a rare event, which is why Eq.(117) de-
termines the full probability distribution in this regime.

For arbitrary values of σx, Eq.(117) applies to rare events,
that is, to the tails of the probability distribution P(δx)
[61] (this again allows one to recover the results obtained
from a perturbative analysis [60]). However, for large
overdensities shell crossing appears at some stage (typi-
cally for δx > 200), after which Eq.(117) no longer holds
[61, 63]. Nevertheless, for lower densities one obtains the

asymptotic behaviourP(δx) ∼ e−δ2Lq(Λ)/(2σ
2
q(Λ)). This also

determines the large-mass tail of the halo mass function
n(M)dM/M , where we define halos as spherical objects
with a fixed density contrast threshold δ = 200,

M → ∞ : ln[n(M)] ∼ −
δL(Λ)(M)2

2σ(Λ)(M)2
, (119)

with

δL(Λ)(M) = F−1
q (δ), (120)

where σ(Λ)(M) = σq(Λ) with M = ρm4πq
3/3.

As in [57, 63], a simple approximation for the mass
function that satisfies the large-mass asymptote (119) can
be obtained using the Press & Schechter scaling variable
ν [67],

n(M)
dM

M
=

ρm
M

f(ν)
dν

ν
(121)

with

ν =
F−1

q (200)

σ(Λ)(M)
, (122)

where we choose to define halos by the nonlinear density
threshold δ = 200. The scaling function f(ν) is obtained
from a fit to ΛCDM numerical simulations that satisfies
the exponential tail f(ν) ∼ e−ν2/2 [63]

f(ν) = 0.502
[

(0.6ν)2.5 + (0.62ν)0.5
]

e−ν2/2. (123)

This ensures that the halo mass function is always nor-
malized to unity and obeys the large-mass tail (119), for
any spherical-collapse mapping Fq. The only change
from the ΛCDM cosmology is that the linear thresh-
old F−1

q (200) in Eq.(122) now depends on the mass M
through the scale q(M). The approximation (123) only
ensures that the large-mass tail is correct, but it may
happen that the low-mass power-law tail should depend
on ε. An analysis of such effects would require numer-
ical simulations because analytical methods cannot pre-
dict the low-mass tail of the halo mass function (which is
sensitive to mergers and non-local effects). Nevertheless,
we can expect modifications for moderate masses to be
less important and partly taken into account through the
normalization constraint of the mass function.
As compared with the excursion set approach pre-

sented in [59, 68, 69], we do not include screening effects
but we take into account the dependence on wavenum-
ber of the modified-gravity kernel ε(k, a). As explained

Relative deviation of the mass function

ε(k, a) > 0case where

(mod.  grav.)



Probability distribution of the density contrast

From the spherical dynamics we can also obtain the PDF of the density contrast
within spherical cells, in the weakly non-linear regime.

e−ϕ(y)/σ2
x ≡ 〈e−yδx/σ2

x〉 =
∫ ∞

−1
dδx e−yδx/σ2

x P(δx)

Introduce the cumulant generating function (Laplace transform):

e−ϕ(y)/σ2
x = (detC−1

δLδL
)1/2

∫
DδL e−S[δL]/σ2

x S[δL] = y δx[δL] +
σ2

x

2
δL · C−1

δLδL
· δL

For spherical cells, we can look for the spherical minimum (saddle-point)

On large scales, we obtain: σx → 0 : ϕ(y)→ min
δL

S[δL]

where



In GR the radial profile is given by: δLq′ = δLq

σ2
q,q′

σ2
q

and the Lagrangian radius q associated with the Eulerian radius x is given by:

q3 = (1 + δx) x3

δx = Fq(δLq)

{

This determines the Laplace transform          , whence the PDF              .P(δx)ϕ(y)
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which describes the gravitational dynamics, whereas if we
express the initial conditions in terms of the ε-dependent
linear field δL these modified gravity effects would appear
in all terms of the action. Of course, we adopt this for-
mulation because we wish to compare with this ΛCDM
reference several models that only show small deviations.
The action S does not depend on the normalization of

the linear power spectrum since both σ2
x(Λ) and CδLδL(Λ)

are proportional to PL(Λ). Then, in the quasilinear limit,
σx(Λ) → 0, the path integral (110) is dominated by the
minimum of the action [62],

σx(Λ) → 0 : ϕ(y) → min
δL(Λ)(x′)

S[δL(Λ)]. (112)

Using the spherical symmetry of the top-hat window W
that defines the spherical average δx, one obtains a spher-
ical saddle-point [62]. In General Relativity its linear
radial profile is given by Eq.(104), where q is the La-
grangian radius that corresponds to the Eulerian radius
x,

q3 = (1 + δx)x
3. (113)

Then, the amplitude δLq(Λ) of the saddle-point (104),
which also sets the scale q through Eq.(113), is given
by the spherical-collapse mapping,

δx = F(δLq(Λ)). (114)

This derivation agrees with the results that can be ob-
tained from a perturbative computation of the cumulants
〈δnx 〉c at leading order and a resummation of the series
(109) [60]. It also extends these results to the case where
the series (109) has a zero radius of convergence, which
occurs when P(δx) decreases more slowly than a simple
exponential at large densities [62] [78].
A nice feature of this derivation is that it bypasses

the computation of the cumulants 〈δnx 〉c through the ker-
nels F s

n of Eq.(52), as all spherically-averaged quantities
are given by the spherical-dynamics mapping F(δL(Λ))
(which includes terms at all orders by expanding over
δL(Λ)). However, the problem is more complex in our
case because of the dependence of ε(k, a) on wavenumber.
Indeed, this means that the nonlinear density contrast δx
at radius x does not depend on the linear density con-
trast δLq(Λ) at the Lagrangian radius q, associated with
the same mass M only. Indeed, as discussed in Sect. V,
the spherical dynamics (96) depends on the full shape of
the initial perturbation. Taking into account this modi-
fication changes the profile δL(Λ)(x

′) of the minimum of
the action S[δL(Λ)] in Eq.(112), because the functional
δx[δL(Λ)(x

′)] is no longer of the form δx = F(δLq(Λ)).
To simplify the analysis we neglect this change of the

profile of the saddle-point. This is actually valid to
first order over ε. Indeed, let us write the action S
as S = S0 + ε̂S1, where S0 is the usual ΛCDM ac-
tion (where ε = 0), and S1 is the modification due to
a nonzero ε(k, a) kernel, where we factored out a nor-
malization parameter ε̂ that scales as ε. Because of

FIG. 9: Probability distribution of the matter density con-
trast within spherical cells of radius 5h−1Mpc at z = 0 (all
curves almost fall on each other).

this new term ε̂S1, the saddle-point δL(Λ) is changed to
δL(Λ) = δL0(Λ) + ε̂δL1(Λ), where δL0(Λ) is the GR saddle-
point (104). Then, the generating function is changed to
ϕ(y) → S0[δL0(Λ) + ε̂δL1(Λ)] + ε̂S1[δL0(Λ) + ε̂δL1(Λ)]. Be-
cause δL0(Λ) is a saddle-point of the action S0, we have
S0[δL0(Λ)+ε̂δL1(Λ)] = S0[δL0(Λ)]+O(ε̂2), that is, S0[δL(Λ)]
is only modified by terms of order ε2. Because of the pref-
actor ε̂ we also have ε̂S1[δL0(Λ) + ε̂δL1(Λ)] = ε̂S1[δL0(Λ)]+
O(ε̂2). Therefore, S[δL(Λ)] = S[δL0(Λ)] + O(ε̂2) and we
can neglect the change of the saddle-point up to first or-
der over ε. In fact, we do better than this because we
only neglect the change of the radial profile but we keep
track of the dependence on ε of the amplitude δLq(Λ) of
the saddle-point.
On the other hand, if we use the approximation (102)

instead of Eq.(96), the functional δx[δL(Λ)(x
′)] is again

of the form δx = Fq(δLq(Λ)) and the saddle-point profile
(104) becomes exact within this approximation.
In both cases, whether we use the approximation (102)

or the exact equation (96), the function Fq now also de-
pends on the scale q, in contrast to the usual Newtonian
case.
Then, from this spherical-collapse mapping Fq(δLq(Λ)),

described in Sect. VC, we obtain the generating function
ϕ(y) as follows [62, 63]. Substituting the profile (104) into
Eq.(111) and using Eq.(114) the minimum (112) reads as

ϕ(y) = min
δLq(Λ)

[

yFq(δLq(Λ)) +
1

2

σ2
x(Λ)

σ2
q(Λ)

δ2Lq(Λ)

]

. (115)

Defining the function τ(ζ) through the parametric system
[62, 64],

ζ = δx = Fq(δLq(Λ)) and τ = −δLq(Λ)
σx(Λ)

σq(Λ)
, (116)
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FIG. 10: Relative deviation from General Relativity of the
probability distribution P(δx), at redshift z = 0 for a radius
x = 5h−1Mpc. For each (n,m0) model the deviation from
GR is positive at low and high densities and negative around
δ ∼ 0. The solid and dotted lines are the exact results from
Eq.(96) for (n,m0) = (1, 0.1) and (0, 0.1). The closest dashed
line of the same color is the result from the approximation
(102), for the same value of (n,m0).

the minimum (115) also writes as

ϕ(y) = min
ζ

[

yζ +
τ(ζ)2

2

]

. (117)

This corresponds to the implicit equations (Legendre
transform)

y = −τ
dτ

dζ
and ϕ = yζ +

τ2

2
. (118)

Finally, this gives the probability distribution P(δx)
through Eq.(108). The probability distribution P(δx)
depends on the spherical-collapse dynamics and on the
shape of the initial power spectrum PL(Λ)(k), through
the ratio σx(Λ)/σq(Λ) in the second Eq.(116). This sec-
ond effect, sometimes called a “smoothing effect” [64], is
due to the collapse (or expansion) of the mass shell M
from the Lagrangian scale q to the Eulerian scale x. This
mixes scales and implies that the distribution P(δx) at
scale x is sensitive to the initial power over all scales. In
our modified-gravity case, a second dependence on the
shape of the linear power spectrum appears through the
mapping Fq itself, because of the ε-dependent terms in
Eqs.(96) and (102).
We show in Fig. 9 the probability distribution P(δx) at

redshift z = 0 and radius x = 5h−1Mpc. Here we use the
exact dynamics (96) but using the approximation (102)
gives very close results that would not be distinguished in
this figure. We recover the usual asymmetric shape due
to nonlinear gravitational clustering, which builds an ex-
tended high-density tail and shifts the peak of the distri-
bution towards low densities before a sharp low density

cutoff at δx → −1+ (on small scales, most of the mat-
ter lies in overdensities but most of the volume lies in
underdense regions).
Since it is difficult to distinguish different curves on this

figure we plot the relative deviation from GR in Fig. 10,
for the two models where it is the largest. (The two other
cases would fall below the range plotted in the figure for
the most part.) We plot our results using either the ex-
act equation (96) or the approximation (102). We can
see that both curves are very close. Indeed, as explained
in Sect. VC, for smaller density fluctuations the ansatz
(100) becomes more accurate as it is exact to linear order
and the profile has not had time to be strongly modified
by the dynamics (moreover, the collapse is not very sen-
sitive to the exact shape of the profile).
As we consider models with a positive value of ε, which

leads to an effective amplification of gravity, it is easier to
build large nonlinear density fluctuations. This was also
apparent in Fig. 8 for the specific case of δx = 200. For
Gaussian initial conditions the tails of the probability dis-

tribution P(δx) are of the form P(δx) ∼ e−δ2Lq(Λ)/(2σ
2
q(Λ)),

where δLq(Λ) = F−1
q (δx), and the lower value of |δLq(Λ)|

that is needed to reach a given |δx| yields a slower decay
of the rare-event tails. This is why we recover a positive
deviation from GR (i.e., a higher probability P) at both
very low and very high densities in Fig. 10. Of course,
since probability distributions are always normalized to
unity this implies that the relative deviation shows a
change of sign and that the probability distributionP(δx)
obtained in these models is smaller than the ΛCDM one
for moderate densities. This explains the behaviours seen
in Fig. 10.
These features are in qualitative agreement with the

results obtained in numerical simulations of various mod-
ified gravity models [65, 66], which also find that an effec-
tive amplification of gravity generically leads to more nu-
merous very low density and high density regions, while
shifting the peak of the probability distribution towards
lower densities.
The relative deviation from GR does not necessarily

grow to unity at high densities (and may even decline).
This is due to the fact that high densities at a given Eu-
lerian radius x correspond to large masses, hence to large
Lagrangian (i.e. initial) radius q. Then, because we re-
cover General Relativity on large scales the linear thresh-
old δLq(Λ) = F−1

q (δx) converges to the one obtained in
the ΛCDM cosmology, as in Fig. 8. Therefore, depend-
ing on the rate of convergence towards General Relativity
on large scales (as compared with the increasingly high
sensitivity of the rare tail) the large-density tail may or
may not converge back to the GR prediction. In mod-
ified gravity scenarios with a screening mechanism that
implies convergence to GR in high-density environments,
such as the chameleon mechanism, the high-density tail
is expected to show a faster convergence back to the GR
prediction.
These effects do not appear at very low densities, which

correspond to increasingly small massM and Lagrangian
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Conclusion

Theoretical approach that is complementary to numerical 
simulations and observations.

- explore regimes that are beyond the reach of numerical simulations

- understand the main properties of the dynamics

(e.g., very large scales)

(Burgers)

Prospects

- find out which resummation schemes are the most accurate/efficient ?

- improve the modeling of the transition scales

- further develop Lagrangian approaches (useful for redshift-space distortions)

- improve the generalization to warm dark matter ? more complex components
(clustering quintessence,...) 

- going beyond the fluid approximation: phase-space description ?


