

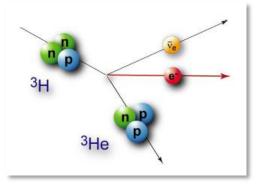
Wavelet analysis as a tool to detect the kink-signature of keV-neutrinos in the tritium β – decay spectrum

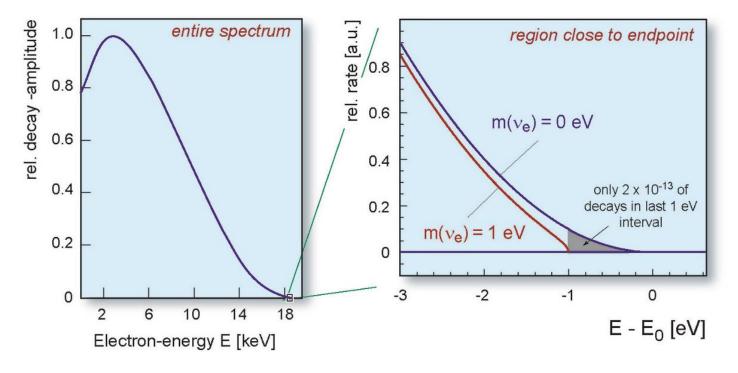
- ν -measurements with the KATRIN experiment
- Sterile keV-neutrinos in tritium β decay
- Introduction to wavelet transform
- Wavelet transform of the tritium β decay spectrum

Talk by Marc Korzeczek (Friday 14.30): Statistical wavelet analysis & results

• ν -measurements with the KATRIN experiment

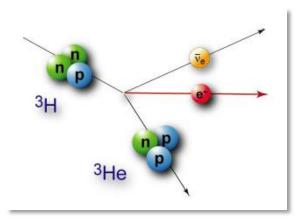
Sterile keV-neutrinos in tritium β – decay


Introduction to wavelet transform


• Wavelet transform of the tritium β – decay spectrum

KArlsruhe TRItium Neutrino experiment

Tritium β – decay experiment for direct measurement of $m(\bar{v}_e)$


KArlsruhe TRItium Neutrino experiment

Predecessor experiments:

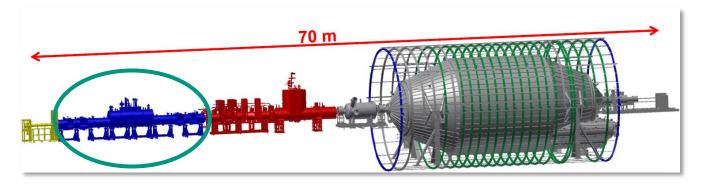
Mainz: $m(\bar{\nu}_{e}) < 2.3 \text{ eV}$ C.Kraus et al., Eur. Phys. J. C 40 (2005) 447

Troitsk: $m(\bar{\nu}_{e}) < 2.05 \text{ eV}$ V.N. Aseev et al., Phys. Rev. D 84 (2011) 112003

KATRIN:

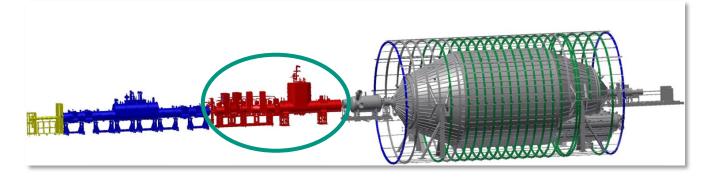
upper limit:	$m(\overline{ u}_{ m e}) <$ 200 meV (90% CL)
discovery:	$m(\overline{\nu}_{e}) > 350 \text{ meV} (\geq 5\sigma)$

→ model-independent measurement of $m(\overline{v_e})$, based only on kinematic relations and energy-momentum conservation


KATRIN: Experimental setup

KATRIN: Tritium source

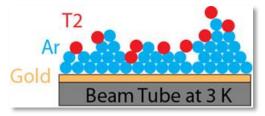
High luminosity (10^{11}) and stability (10^{-3})


WGTS = <u>W</u>indowless <u>G</u>aseous <u>T</u>ritium <u>S</u>ource

Advantages of tritium:

- low endpoint energy ($E_0 = 18.6 \text{ keV}$)
- simple nuclear structure
- superallowed transition
- suitable life-time of 12.3 years
 - \rightarrow high luminosity

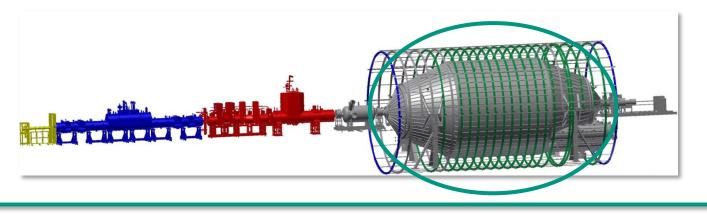
KATRIN: Transport section


Task: Adiabatically guiding of beta electrons from source to spectrometer and elimination of tritium flow towards spectrometer

Differential Pumping Section:

 \rightarrow Tritium and ion flow reduction with turbomolecular pumps

Cryogenic Pumping Section:

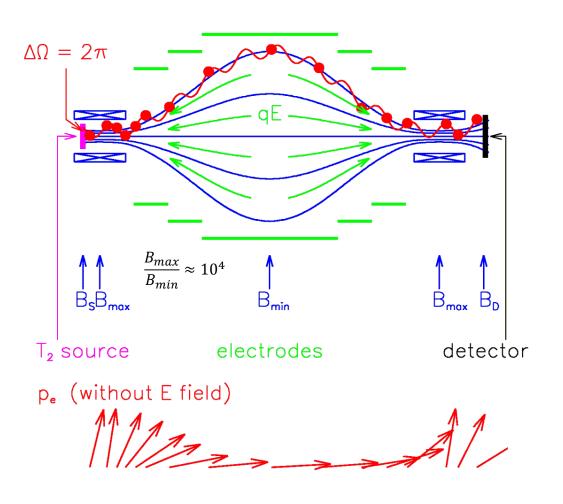

 \rightarrow Tritium trapping by cryo-sorption on Argon frost


Tritium flow suppression by nine orders of magnitude

KATRIN: Main Spectrometer

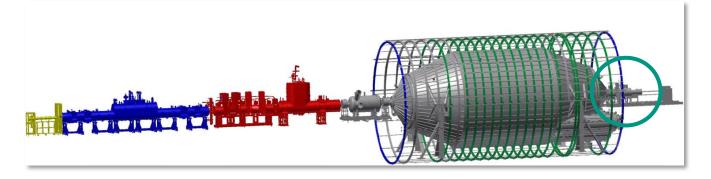
Task: High precision measurement of the kinetic energy of β electrons

Electrostatic spectrometer in MAC-E-Filter mode
(Magnetic Adiabatic Collimation)


(<u>Magnetic</u> <u>A</u>diabatic <u>C</u>ollimation combined with an <u>E</u>lectrostatic **Filter**)

KArlsruhe TRItium Neutrino experiment

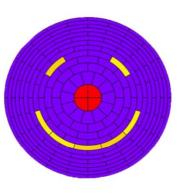
KATRIN Main Spectrometer – MAC-E-Filter


Magnetic moment: $\mu = E_{\perp}/B = const.$

- Adiabatic guiding of electrons along magnetic field lines
- Conversion of transversal to longitudinal energy
- Electron beam runs against electrostatic barrier
- Spectrometer acts as integrating highpass-filter

 $\Delta E = 0.93 \text{ eV}$

KATRIN: Focal Plane Detector



Task:Count electrons and
provide, spatial, temporal
and energy information

→ discriminate background

monolithic PIN diode array on 5" waver with 148 pixels

KATRIN Status quo

- Successful commissioning of spectrometer and detector section
 - Background measurements
 - Background reduction
 - Electron transmission function
- Next commissioning phase in summer/autumn 2014
- Start of tritium operation: 2016

IDEA: Use KATRIN (source) to detect keV-neutrinos as well!

v-measurements with the KATRIN experiment

Sterile keV-neutrinos in tritium β – decay

- Introduction to wavelet transform
- Wavelet transform of the tritium β decay spectrum

Isospin dubletts

 $\begin{pmatrix} e \\ v_e \end{pmatrix}_I$

Seesaw mechanism

High Majorana mass term naturally creates light neutrino mass eigenstates.

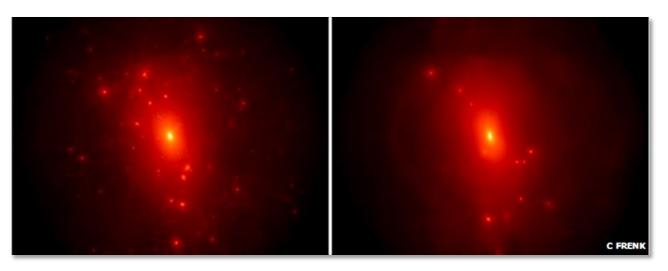
 e_R^-

 ν_R

Why sterile neutrinos?

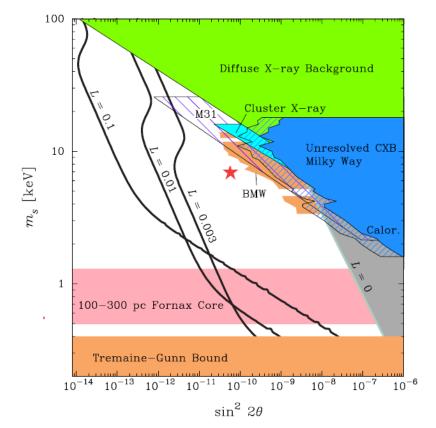
Mass of active neutrinos can be explained by introducing righthanded sterile neutrinos

 \rightarrow No gauge interactions!


Isospin singuletts

Sterile keV-neutrinos in cosmology

WDM

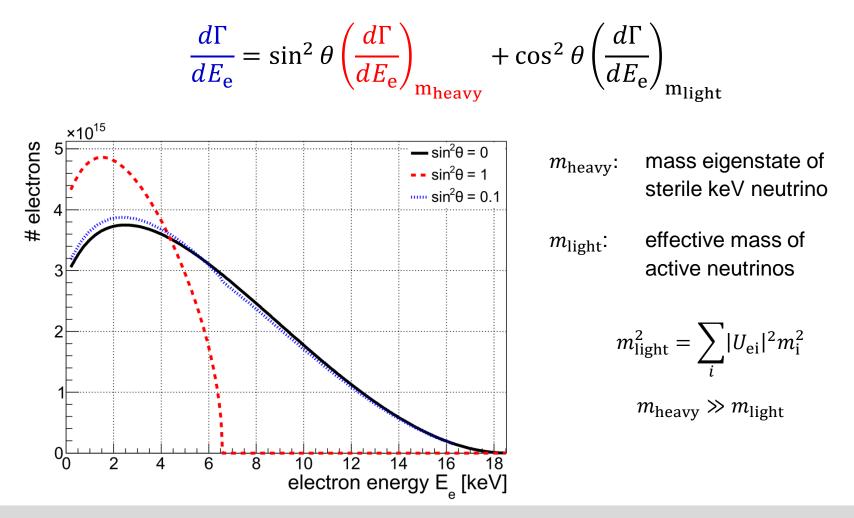


- WDM mitigates problems of structure formation (number of dwarf galaxies)
- Candidate for WDM: sterile neutrinos in mass range of a few keV

Talks: Norma Sanchez, ...

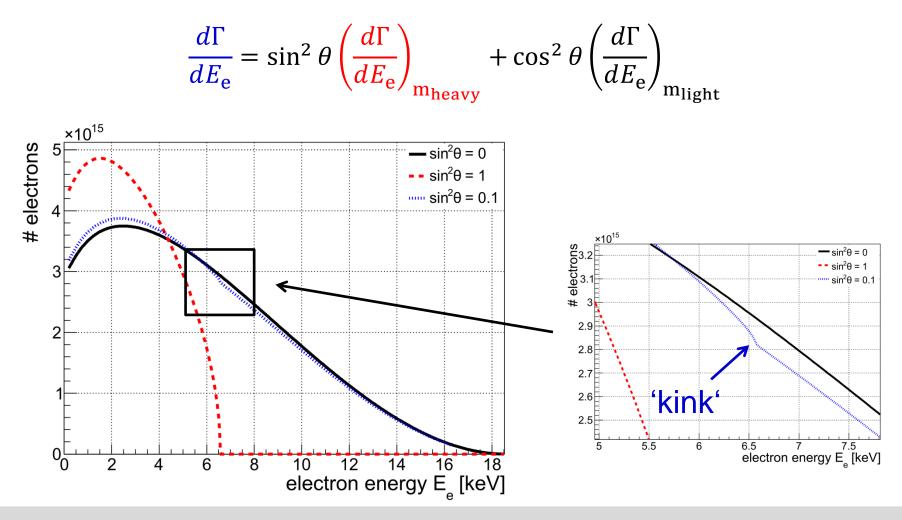
Sterile keV-neutrinos in cosmology

Talk: Esra Bulbul

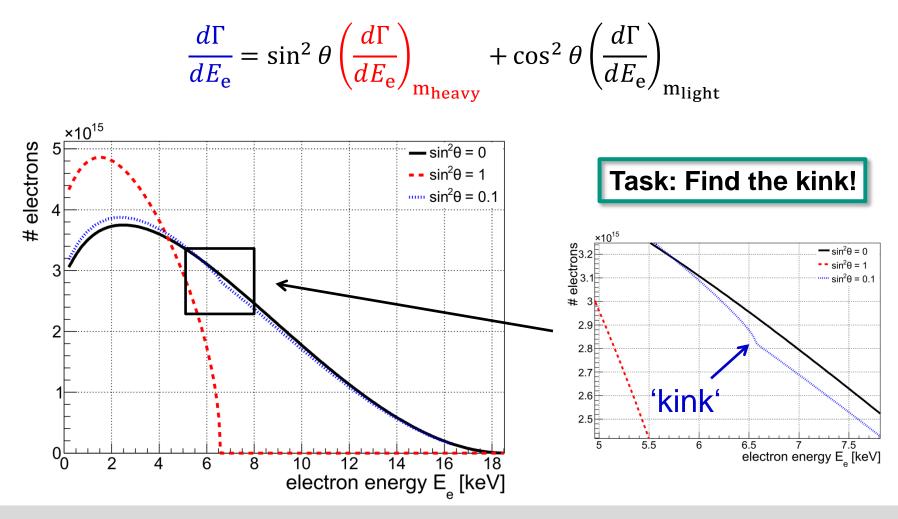

Analysis of XMM Newton telescope data points at $m_{ m s}=7.1~{ m keV},~{ m sin}^2 heta=1.75\cdot10^{-11}$

[Bulbul et al, arXiv:1402.2301v1 [astro-ph.CO], 2014,10th February]

keV-neutrinos in tritium β – decay


Mixing of keV-neutrinos and light neutrinos with mixing angle θ :

keV-neutrinos in tritium β – decay


Mixing of keV-neutrinos and light neutrinos with mixing angle θ :

keV-neutrinos in tritium β – decay

Mixing of keV-neutrinos and light neutrinos with mixing angle θ :

v-measurements with the KATRIN experiment

Sterile keV-neutrinos in tritium β – decay

Introduction to wavelet transform

• Wavelet transform of the tritium β – decay spectrum

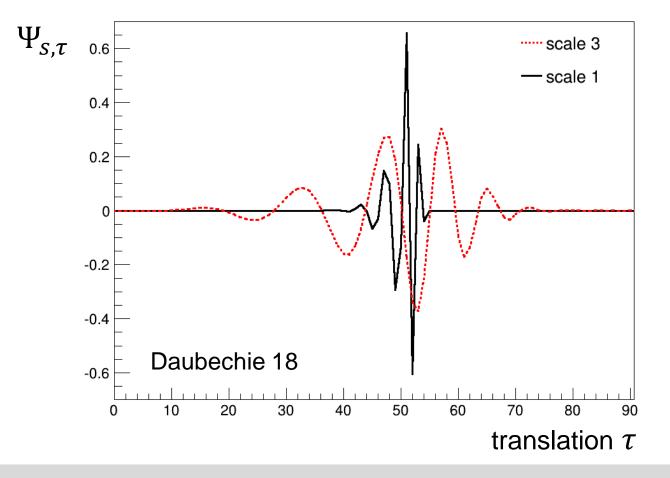
Fourier Transform vs. Wavelet Transform

Fourier Transform (FT):

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int f(t) e^{-i\omega t} dt$$

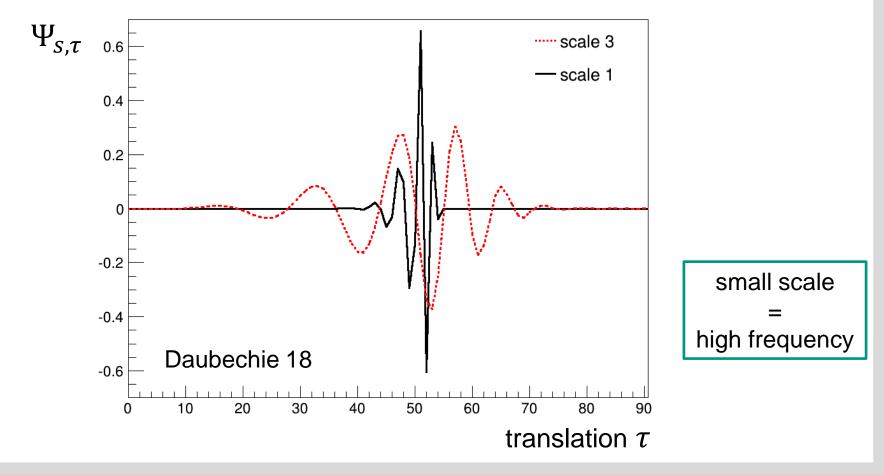
FT provides information about the frequencies ω , which are contained in the signal f(t), but there is no information about the point in time.

Continuous Wavelet Transform (CWT):

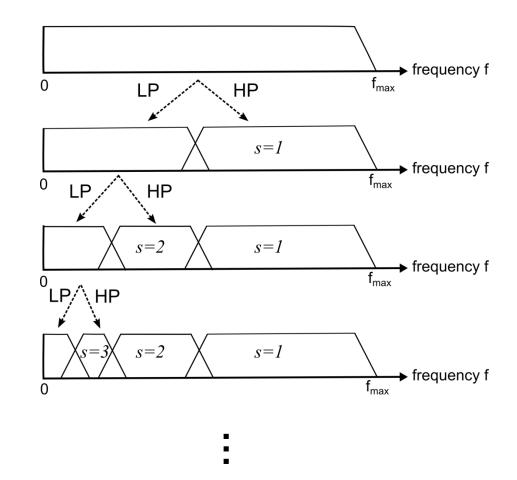

$$CWT(s,\tau) = \frac{1}{\sqrt{s}} \int f(t) \Psi_{s,\tau}^* \left(\frac{t-\tau}{s}\right) dt$$

CWT is a convolution of a signal f(t) with wavelets $\Psi_{s,\tau}$. It is a multiresolutional technique with time (translation τ) and frequency (scale *s*) resolution.

Discrete Wavelet Transform (DWT)


For a discrete signal the Discrete Wavelet Transform is used. There are different discrete wavelet families $\Psi_{s,\tau}$ (e.g. *Daubechie* wavelets).

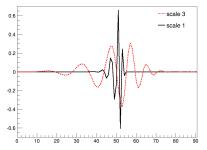
Discrete Wavelet Transform (DWT)


For a discrete signal the Discrete Wavelet Transform is used. There are different discrete wavelet families $\Psi_{s,\tau}$ (e.g. *Daubechie* wavelets).

Idea of DWT: sub-band coding

- Apply highpass (HP) and lowpass (LP) filters to signal
- Upper frequency range is transformed and provides power values (scale 1), the lower part represents a smoothed signal
- Apply another HP and LP filter to lower range →Get power values of scale 2

Technical realization of DWT



DWT is a linear operation and can be written as a transformation matrix T:

$$T = \begin{pmatrix} c_0 & \dots & \dots & c_{n-1} & 0 & 0 & \dots & \dots & 0 \\ c_{n-1} & -c_{n-2} & \dots & -c_0 & 0 & 0 & \dots & \dots & 0 \\ 0 & 0 & c_0 & \dots & \dots & c_{n-1} & 0 & \dots & 0 \\ 0 & 0 & c_{n-1} & -c_{n-2} & \dots & -c_0 & 0 & \dots & 0 \\ \vdots & \vdots \\ c_2 & \dots & c_{n-1} & 0 & \dots & \dots & 0 & c_0 & c_1 \\ c_{n-3} & \dots & c_0 & 0 & \dots & \dots & 0 & c_{n-1} & c_{n-2} \end{pmatrix}$$

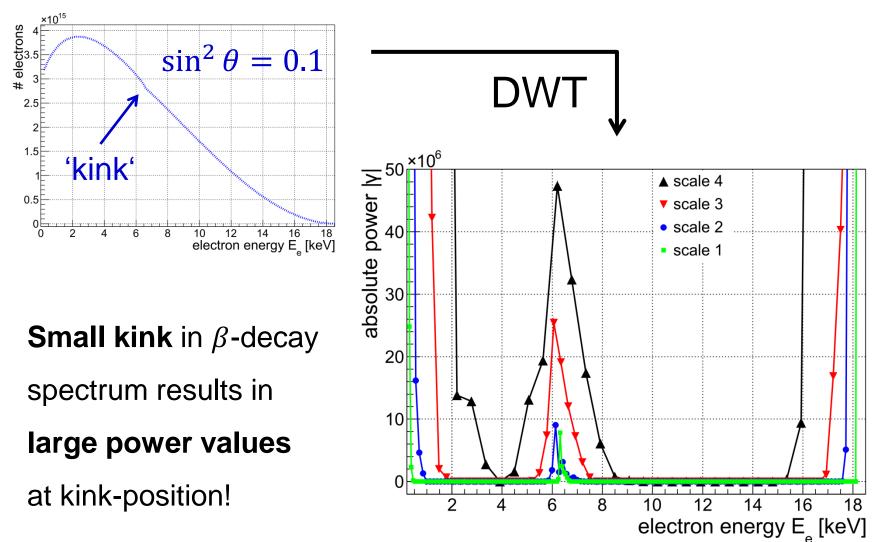
 $c_0, \dots c_{n-1}$: Daubechie coefficients, e.g. n=18 for Daubechie 18

Odd rows: Lowpass filter, provide smoothed signal Even rows: Highpass filter, provide detail power values

Why wavelet transform?

- DWT offers time (in our case: energy) and frequency resolution
- Wavelet is sensitive to kink-like features, which appear at a certain energy in the spectrum \rightarrow model independent
- High frequency components of kink-signature are picked out by the wavelets

IDEA: Transform tritium β – decay spectrum with DWT, use power spectrum to find a quantity in an appropriate scale, which can detect the kink.



- v-measurements with the KATRIN experiment
- Sterile keV-neutrinos in tritium β decay
- Introduction to wavelet transform
- Wavelet transform of the tritium β decay spectrum

DWT of tritium β – decay spectrum

Outlook: Explicit statistical wavelet analysis of tritium β – decay spectrum

Explicit analysis method of tritium β – decay spectrum as well as results will follow in:

"Statistical wavelet analysis to detect keV-neutrinos with a KATRIN-like experiment"

(by Marc Korzeczek)

Statistical sensitivity to active-sterile mixing with a KATRIN-like experiment down to $\sin^2 \theta = 6 \cdot 10^{-7}$

Summary

- KATRIN is under construction to measure $m(\bar{v}_e)$ with a sensitivity of 200 meV.
- Ultra-luminous KATRIN tritium source could be used to measure the entire tritium β decay spectrum to look for sterile keV neutrinos
- Sterile keV neutrinos are well motivated by cosmology
- Wavelet transform is a very promissing method to detect the kinksignature of keV-neutrinos in tritium β – decay. It is a multiresolutional technique and offers both time and frequency resolution.
- DWT is very sensitive to the high frequency components caused by a kink-signatur in the spectrum

Special thanks to

Susanne Mertens, Guido Drexlin, Alan Poon

Karlsruhe Institute of Technology

