

Statistical wavelet analysis to detect keV-neutrinos with a KATRIN-like experiment

Marc Korzeczek at Karlsruhe Institute for Technology KIT, IKP

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

Introduction

- Why keV-sterile neutrinos?
- How is KATRIN suited to measure keV-sterile neutrinos?
- Can we probe the cosmological favored region?
- Wavelet analysis of the Tritium β decay spectrum

Results

Outline

Introduction

- Why keV-sterile neutrinos?
- How is KATRIN suited to measure keV-sterile neutrinos?
- Can we probe the cosmological favored region?

• Wavelet analysis of the Tritium β – decay spectrum

Results

Why keV-sterile neutrinos?

WDM

- WDM mitigates problems of structure formation (number of dwarf galaxies)
- Candidate for WDM: sterile neutrinos with masses of a few keV
 Talk: Vega/Sa

Talk: Vega/Sanchez

Why keV-sterile neutrinos?

Analysis of XMM Newton telescope data points at

 $m_{\rm S} = 7.1 \ {\rm keV}$

 $\sin^2\theta = 1.75 \times 10^{-11}$

[Bulbul et al, arxiv:1402.2301v1 [asatro-ph.CO], 2014, 10th February]

Talk: Bulbul

\rightarrow To probe the favored region $\sin^2 \theta < 3 \cdot 10^{-8}$ needed.

04.06.2014 - 06.06.2014

6

How is KATRIN suited to measure keV-sterile neutrinos?

region close to ß end point 3H 0.8 rel. rate [a.u.] ³He 1.0 entire 0.6 $m(v_e) = 0 eV$ spectrum 0.8 0.4 0.6 0.2 0.4 $m(v_e) = 1 eV$ 0 0.2

The <u>KA</u>rlsruhe <u>TR</u>itium <u>Neutrino</u> experiment (KATRIN)

 \rightarrow Measure the effective mass of the electron antineutrino

7

1. Counting detector

→ Integral measurement

- 1. Counting detector
 - \rightarrow Integral measurement
- 2. Energy resolving detector
 - → Differential measurement

Can we probe the cosmological favored region?

Outline

Introduction

- Why keV-sterile neutrinos?
- How is KATRIN suited to measure keV-sterile neutrinos?
- Can we probe the cosmological favored region?

• Wavelet analysis of the Tritium β – decay spectrum

Results

Remember:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E_{\mathrm{e}}} = \sin^2\theta \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}E_{\mathrm{e}}}\right)_{m_{\mathrm{s}}} + \cos^2\theta \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}E_{\mathrm{e}}}\right)_{m_{\mathrm{v}}}$$

Analysis of the Tritium β - decay spectrum

\rightarrow Right sided hypothesis testing to the value P_{crit} !

Outline

Introduction

- Why keV-sterile neutrinos?
- How is KATRIN suited to measure keV-sterile neutrinos?
- Can we probe the cosmological favored region?

• Wavelet analysis of the Tritium β – decay spectrum

Results

How is the sensitivity effected by:

The detector type

The time of measurement

Results – Statistical sensitivity

Differential detector

Integral detector

0 electron energy E_e [keV] electron energy E [keV] $\sin^2 \theta = 0.5$ $\sin^2 \theta = 0.5$

electrons

×10⁹

electrons

—sin²θ=0.5

 $-\sin^2\theta=0$

Integral detector

Results – Statistical sensitivity

Differential detector

<u>×</u>10⁹

electrons

×10

electrons

 $-\sin^2\theta=0$

 $-\sin^2\theta=0.5$

Results – Statistical sensitivity

 \rightarrow Focus on differential measurement for following analysis

Detector resolution:

Simulate the detector resolution by convoluting the electron spectrum with a Gaussian curve ($\bar{x} = E, \sigma = FWHM$).

Detector resolution:

Simulate the detector resolution by convoluting the electron spectrum with a Gaussian curve ($\bar{x} = E, \sigma = FWHM$).

 \rightarrow The resolution flattens the kink, thus making it harder to detect.

Polynomial correction

There are many corrections, that are to be applied to the electron spectrum.

Correction type	Magnitude
Electron screening	10^{-3}
Beta-eletron to orbital-electron exchange	10^{-3}
Radiative corrections	10^{-3}
nuclear recoil, weak magnetism	10^{-3}
e^- in moving field	10^{-4}
weak interaction finite size	10^{-4}
Extension of nucleus charge	10^{-5}
Final states	10^{-3}

Idea:

Consider a polynomial p(E) which exceeds all other corrections!

Polynomial correction

$$p(E) = 1 + a \cdot \frac{E - E_0}{E_0} + b \cdot \left(\frac{E - E_0}{E_0}\right)^2 + c \cdot \left(\frac{E - E_0}{E_0}\right)^3$$

E is the electron energy, E_0 the spectrum endpoint and a, b, c are picked from a Gaussian distribution around mean = 0 and $\sigma = 10^{-1}, 10^{-2}$.

Polynomial correction

Polynomial correction does not effect the sensitivity but changes the covered mass range.

Conclusion

- WDM is a viable scenario fitting all astro/cosmo data and keV neutrinos are suitable candidate for WDM
- Experiment with KATRIN source strength and a new detector system provides great statistical sensitivity of $\sin^2\theta > 10^{-8}$ (Spectral fit approach), probing the cosmological favored region
- Wavelet approach:
 - Basically independent of shape of the tritium spectrum
 - A statistical sensitivity of $sin^2\theta > 6 \cdot 10^{-7}$ is achievable
 - Good energy resolution (FWHM $\approx 100 \text{ eV}$) needed

Credits

Many thanks to Susanne Mertens, Guido Drexlin and Alan Poon!