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Stefan Meingast et al.: VISION - Vienna Survey in Orion

Fig. 2. A detailed view of some prominent objects in Orion A as seen with VISTA. All images are in a galactic projection (North is up, East is
left). The physical length given in the scale bars was calculated with the adopted distance of 414 pc.
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We cannot see cold H2

• Molecular clouds are made mostly of molecular 
hydrogen at ~10K

• Molecular hydrogen is (basically) invisible at these low 
temperatures (no dipole moment)

• We need to use tracers to map the cloud mass 
distribution:

1. Radio spectroscopy of  CO, CS, NH3…

2. Cold dust in extinction (NIR)

3. Cold dust in emission (FIR and sub-mm)

• Each tracer has its own benefits and limitations!



Extinction Primer



Extinction Primer



Extinction Primer

F?



Extinction Primer

F?

F?e
�⌧



Extinction Primer

F?

F?e
�⌧

⌧



Extinction Primer

F?

F?e
�⌧

⌧

m
obs

= �2.5 log
�
F?e

�⌧
�

= � 2.5 logF?| {z }
m?

+2.5 ⌧ log e| {z }
AV

Brightness



Extinction Primer

F?

F?e
�⌧

⌧

m
obs

= �2.5 log
�
F?e

�⌧
�

= � 2.5 logF?| {z }
m?

+2.5 ⌧ log e| {z }
AV

m
obs

�m? = A
V

= 1.086 ⌧

Brightness

Extinction



F?

F?e
�⌧

⌧

m
obs

�m? = A
V

= 1.086 ⌧

Extinction



F?

F?e
�⌧

⌧

m
obs

�m? = A
V

= 1.086 ⌧

Extinction

Color

�m = m�1 �m�2



F?

F?e
�⌧

⌧

m
obs

�m? = A
V

= 1.086 ⌧

Extinction

Color

�m = m�1 �m�2

Color Excess

E(�
1

� �
2

) = �m
obs

��m?

= A�1 �A�2 = R�1

1,2A�1



F?

F?e
�⌧

⌧

m
obs

�m? = A
V

= 1.086 ⌧

Extinction

Color

�m = m�1 �m�2

Color Excess

E(�
1

� �
2

) = �m
obs

��m?

= A�1 �A�2 = R�1

1,2A�1

       parametrizes our knowledge (or ignorance) on the 
dust properties at the two frequencies     and   
R1,2

�1 �2



Making extinction maps

Alves et al. (2014)



Making extinction maps

Alves et al. (2014)

• Take a cloud



Making extinction maps

Alves et al. (2014)

• Take a cloud

• Observe in the NIR



Making extinction maps

Alves et al. (2014)

• Take a cloud

• Observe in the NIR

• For each star, we have 
Σgas ~ Σdust ~ E(H − K)



Making extinction maps

Alves et al. (2014)

• Take a cloud

• Observe in the NIR

• For each star, we have 
Σgas ~ Σdust ~ E(H − K)

• Compute for each star 
E(H − K) = (H − K)obs −  
                 (H − K)intr 



Making extinction maps

Alves et al. (2014)

• Take a cloud

• Observe in the NIR

• For each star, we have 
Σgas ~ Σdust ~ E(H − K)

• Compute for each star 
E(H − K) = (H − K)obs −  
                 (H − K)intr 

• Estimate (H − K)intr from a 
control field as ⟨H − K⟩



Making extinction maps

Alves et al. (2014)

• Take a cloud

• Observe in the NIR

• For each star, we have 
Σgas ~ Σdust ~ E(H − K)

• Compute for each star 
E(H − K) = (H − K)obs −  
                 (H − K)intr 

• Estimate (H − K)intr from a 
control field as ⟨H − K⟩

• Make a smooth map
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Alves et al. (2014)

• Take a cloud

• Observe in the NIR

• For each star, we have 
Σgas ~ Σdust ~ E(H − K)

• Compute for each star 
E(H − K) = (H − K)obs −  
                 (H − K)intr 

• Estimate (H − K)intr from a 
control field as ⟨H − K⟩

• Make a smooth map

• Convert extinction into gas 
column density
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Figure 5. Chart 20 from the Barnard photographic atlas (Barnard 1919) with over-
lay marking Barnard’s vacancies (Equatorial coordinates, equinox 1875). The Pipe
lies towards the bottom of the picture. The full Barnard atlas is available online at
http://www.library.gatech.edu/barnard

density distribution inside a molecular cloud when column density ranges from 1021

(3σ level) up to a few 1023 cm−2, being limited at the high density regions where no
background star light can be detected through the cloud. Nevertheless, this limitation
applies to only a very small area (typically much less than 1%) of the total area of a
molecular cloud. An example of a globule in the Pipe complex is seen in Figure 9,
which shows a 2MASS composite JHK image of the globule FeSt 1-457.

Lombardi et al. (2006) presented a 8◦×6◦ extinction map of the Pipe Nebula, at
relatively high resolution (1′, or ∼7500 AU), using about 4.5 million stars from the
Two Micron All Sky Survey (2MASS), see Figure 10. The map was computed with
the maximum likelihood technique NICER (Lombardi & Alves 2001), a technique that
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Fig. 21. Left: The NANTEN integrated 12
CO column density map (kindly provided by Onishi et al. 1999); the white regions

have not been observed and no data are thus available there; the shaded region is located at b <
3 ◦

and has been excluded

from
the analysis to avoid contamination from

low-galactic latitude clouds. Right: The Nicer extinction map downgraded to

the resolution of the NANTEN map; shaded regions are excluded from
the analysis.

obtained are shown as filled squares in Fig. 22. This sim-

ple plot confirmed the qualitative remarks discussed above

and suggested that we could approximate the A
V - 12CO

relationship with a function of the form

I12CO = A
[

1
1 + exp [

−(A
K −A midK )k ] − b

]

,

(14)

We fitted this equation to the data by minimizing the

scatters between the predicted CO
integrated intensity

and the observed one; the best fit parameters obtained

were A
=

32.3 K km s −1
, A midK

=
0.51 mag, k

=

6.20 K km s −1
mag−1, and b =

0.036. The residuals of

this fit with the data are shown in details in Fig. 23;

the increase of the dispersion in the relation (14) at

A
K ≃

0.2 mag is evident from
this plot. Since the ex-

pected error in the
Nicer map of Fig. 21 is as low as

∼
0.01 mag, and since the expected error in the 12

CO

integrated velocities is also relatively small (this can be

estimated from
the residuals at A

K ≃ 0 mag of Fig. 23,

and is of order of 1.5 K km s −1
), we can deduce that the

scatter shown in Fig. 23 for A
K > 0.2 mag is physical: the

ratio of dust and 12CO
in the Pipe (and likely in other

molecular clouds) is far from being constant.

So far we investigated the A
K - 12CO relationship using

the value of A
K as independent quantity: in other words,

we studied the expected CO measurement for each given

A
K column density. We now

swap the role of A
K and

CO, and consider the average A
K value corresponding to

a given 12CO measurement. To this purpose, we averaged

the values of the Nicer extinction in bins of 5 K km s −1
.

The result, shown in Fig. 24, suggests that we can well

approximate the average with a linear relationship of the

form

A
K = A (0)

K + rI12CO .

(15)

-0.5

0.0

0.5

1.0

1.5

A
K  (mag)

-10

0

10

20

30

40

I12
C

O
 (K

 k
m

 s
�1 )

Fig. 24. The 12
CO-A

K relation, with datapoints binned along

the CO axis every 5 K km s −1
(filled squares). The solid line

represents the best fit (on the whole field) from
Eq. (15).

Note that we need to include explicitly a non-vanishing

“zero point”, A (0)
K , for the A

K measurement. This is due

the dissociation of the CO molecule by the interstellar UV

radiation field. Our results indicate that CO molecules in

the Pipe become (self-) shielded from
the interstellar ra-

diation field at about 1 magnitude of visual extinction

(2 magnitudes along the entire line of sight through the

cloud), consistent with standard theoretical predictions

and prior observations (e.g., van Dishoeck & Black 1988,

Alves et al. 1999, Bergin et al. 2002). This CO threshold

should in principle be a function of the intensity of the lo-

cal interstellar radiation field and could in principle vary

from
cloud to cloud. We stress that it is highly unlikely

that the Nicer technique overestimates the extinction at

low A
K , i.e. that the “zero point” observed in the rela-

tion (15) is an artifact; rather, if there is a bias in
Nicer,
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Fig. 21. Left: The NANTEN integrated 12CO column density map (kindly provided by Onishi et al. 1999); the white regions
have not been observed and no data are thus available there; the shaded region is located at b < 3◦ and has been excluded
from the analysis to avoid contamination from low-galactic latitude clouds. Right: The Nicer extinction map downgraded to
the resolution of the NANTEN map; shaded regions are excluded from the analysis.

obtained are shown as filled squares in Fig. 22. This sim-
ple plot confirmed the qualitative remarks discussed above
and suggested that we could approximate the AV -12CO
relationship with a function of the form

I12CO = A

[

1

1 + exp
[

−(AK − Amid
K

)k
] − b

]

, (14)

We fitted this equation to the data by minimizing the
scatters between the predicted CO integrated intensity
and the observed one; the best fit parameters obtained
were A = 32.3 K km s−1, Amid

K = 0.51 mag, k =
6.20 K km s−1 mag−1, and b = 0.036. The residuals of
this fit with the data are shown in details in Fig. 23;
the increase of the dispersion in the relation (14) at
AK ≃ 0.2 mag is evident from this plot. Since the ex-
pected error in the Nicer map of Fig. 21 is as low as
∼ 0.01 mag, and since the expected error in the 12CO
integrated velocities is also relatively small (this can be
estimated from the residuals at AK ≃ 0 mag of Fig. 23,
and is of order of 1.5 K km s−1), we can deduce that the
scatter shown in Fig. 23 for AK > 0.2 mag is physical: the
ratio of dust and 12CO in the Pipe (and likely in other
molecular clouds) is far from being constant.

So far we investigated the AK-12CO relationship using
the value of AK as independent quantity: in other words,
we studied the expected CO measurement for each given
AK column density. We now swap the role of AK and
CO, and consider the average AK value corresponding to
a given 12CO measurement. To this purpose, we averaged
the values of the Nicer extinction in bins of 5 K km s−1.
The result, shown in Fig. 24, suggests that we can well
approximate the average with a linear relationship of the
form

AK = A(0)
K

+ rI12CO . (15)
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Fig. 24. The 12CO-AK relation, with datapoints binned along
the CO axis every 5 K km s−1 (filled squares). The solid line
represents the best fit (on the whole field) from Eq. (15).

Note that we need to include explicitly a non-vanishing

“zero point”, A(0)
K

, for the AK measurement. This is due
the dissociation of the CO molecule by the interstellar UV
radiation field. Our results indicate that CO molecules in
the Pipe become (self-) shielded from the interstellar ra-
diation field at about 1 magnitude of visual extinction
(2 magnitudes along the entire line of sight through the
cloud), consistent with standard theoretical predictions
and prior observations (e.g., van Dishoeck & Black 1988,
Alves et al. 1999, Bergin et al. 2002). This CO threshold
should in principle be a function of the intensity of the lo-
cal interstellar radiation field and could in principle vary
from cloud to cloud. We stress that it is highly unlikely
that the Nicer technique overestimates the extinction at
low AK , i.e. that the “zero point” observed in the rela-
tion (15) is an artifact; rather, if there is a bias in Nicer,
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AK ≃ 0.2 mag is evident from this plot. Since the ex-
pected error in the Nicer map of Fig. 21 is as low as
∼ 0.01 mag, and since the expected error in the 12CO
integrated velocities is also relatively small (this can be
estimated from the residuals at AK ≃ 0 mag of Fig. 23,
and is of order of 1.5 K km s−1), we can deduce that the
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the value of AK as independent quantity: in other words,
we studied the expected CO measurement for each given
AK column density. We now swap the role of AK and
CO, and consider the average AK value corresponding to
a given 12CO measurement. To this purpose, we averaged
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Fig. 24. The 12CO-AK relation, with datapoints binned along
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represents the best fit (on the whole field) from Eq. (15).
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the Pipe become (self-) shielded from the interstellar ra-
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low AK , i.e. that the “zero point” observed in the rela-
tion (15) is an artifact; rather, if there is a bias in Nicer,

Extinction map
16 Marco Lombardi, João Alves, and Charles J. Lada: 2MASS wide field extinction maps: I. The Pipe nebula

357°358°359°0°1°2°3°

       

3°

4°

5°

6°

7°

 

 

 

 

 

357°358°359°0°1°2°3°

3°

4°

5°

6°

7°

357°358°359°0°1°2°3°

       

2°

3°

4°

5°

6°

7°

 

 

 

 

 

 

357°358°359°0°1°2°3°
2°

3°

4°

5°

6°

7°

Fig. 21. Left: The NANTEN integrated 12CO column density map (kindly provided by Onishi et al. 1999); the white regions
have not been observed and no data are thus available there; the shaded region is located at b < 3◦ and has been excluded
from the analysis to avoid contamination from low-galactic latitude clouds. Right: The Nicer extinction map downgraded to
the resolution of the NANTEN map; shaded regions are excluded from the analysis.

obtained are shown as filled squares in Fig. 22. This sim-
ple plot confirmed the qualitative remarks discussed above
and suggested that we could approximate the AV -12CO
relationship with a function of the form

I12CO = A

[

1

1 + exp
[

−(AK − Amid
K

)k
] − b

]

, (14)

We fitted this equation to the data by minimizing the
scatters between the predicted CO integrated intensity
and the observed one; the best fit parameters obtained
were A = 32.3 K km s−1, Amid

K = 0.51 mag, k =
6.20 K km s−1 mag−1, and b = 0.036. The residuals of
this fit with the data are shown in details in Fig. 23;
the increase of the dispersion in the relation (14) at
AK ≃ 0.2 mag is evident from this plot. Since the ex-
pected error in the Nicer map of Fig. 21 is as low as
∼ 0.01 mag, and since the expected error in the 12CO
integrated velocities is also relatively small (this can be
estimated from the residuals at AK ≃ 0 mag of Fig. 23,
and is of order of 1.5 K km s−1), we can deduce that the
scatter shown in Fig. 23 for AK > 0.2 mag is physical: the
ratio of dust and 12CO in the Pipe (and likely in other
molecular clouds) is far from being constant.

So far we investigated the AK-12CO relationship using
the value of AK as independent quantity: in other words,
we studied the expected CO measurement for each given
AK column density. We now swap the role of AK and
CO, and consider the average AK value corresponding to
a given 12CO measurement. To this purpose, we averaged
the values of the Nicer extinction in bins of 5 K km s−1.
The result, shown in Fig. 24, suggests that we can well
approximate the average with a linear relationship of the
form

AK = A(0)
K

+ rI12CO . (15)

-0.5 0.0 0.5 1.0 1.5
AK (mag)

-10

0

10

20

30

40

I12
C

O
 (K

 k
m

 s
�1

)

Fig. 24. The 12CO-AK relation, with datapoints binned along
the CO axis every 5 K km s−1 (filled squares). The solid line
represents the best fit (on the whole field) from Eq. (15).

Note that we need to include explicitly a non-vanishing

“zero point”, A(0)
K
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the dissociation of the CO molecule by the interstellar UV
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two samples in the color-color diagram defined as

A ≡ {1.4(H − K) + 0.5 mag < (J − H)

and H − K > 1 mag} , (2)

B ≡ {1.4(H − K) + 0.5 mag > (J − H)

and H − K > 1 mag} . (3)

An analysis of the spatial distribution of these two sam-
ples (Fig. 2) reveals that, as expected, sample A is associ-
ated with the densest regions of the molecular cloud, while
sample B is distributed on the whole field with a strong
preference for low galactic latitude regions.

The nature of the two stellar populations in samples
A and B is further clarified by the histogram of their K
band magnitudes, shown in Fig. 3. As expected, sample A
shows a broad distribution, which can be essentially de-
scribed as a simple power-law luminosity function up to
K ≃ 12 mag; note that the completeness limit of our sam-
ple is significantly smaller than the typical 2MASS com-
pleteness in the K band (14.3 mag at 99% completeness)
because of the stricter selection operated here (small pho-
tometric errors in all bands) and because most sample A

stars come from low galactic latitude regions (where the
increased density of stars significantly reduces the com-
pleteness of the 2MASS). In contrast to sample A stars,
sample B stars show a well defined distribution, with a
pronounced and relatively narrow peak at K ≃ 7 mag.
This strongly suggests that we are looking at a homoge-
neous population of sources located at essentially the same
distance.

The lack of correlation between the dust reddening and
the stars of sample B can be also investigated by consid-
ering the extinction-corrected color-color diagram shown
in Fig. 4. This plot was obtained by estimating, for each
star, its “intrinsic” colors, i.e. the extinction corrected col-
ors from the extinction at the star’s location as provided
by the Nicer map. In other words, we computed

Jintr ≡ J − (AJ/AK)ÂK , (4)

Hintr ≡ H − (AH/AK)ÂK , (5)

Kintr ≡ K − ÂK , (6)

where ÂK is the Nicer estimated extinction in the direc-
tion of the star from the angularly close objects. By com-

Lombardi et al. (2009)
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Fig. 1. Dust extinction map of the Pipe nebula molecular complex from Lombardi et al. (2006). This map was constructed from near-infrared
observations of about 4 million stars in the background of the complex. Approximately 160 individual cores are identified within the cloud and
are marked by an open circle proportional to the core radius. Most of these cores appear as distinct, well separated entities.

mass spectrum. This latter difference implies a significant phys-
ical difference in the two distributions. For the stellar IMF, the
bulk of the (stellar) mass is tied up in low mass objects while for
clouds the bulk of the mass is tied up in the most massive objects.
A consequence of this difference is that in order to produce the
stellar IMF from the cloud mass spectrum, a transformation must
take place during the process of star formation. It has been sug-
gested that outflows generated during the protostellar stages of
star formation provide a natural feedback to collapse/infall lim-
iting the final mass of a protostellar object (Shu et al. 1987) and
perhaps providing the mechanism for transforming the form of
the cloud mass spectrum into the form of the stellar mass spec-
trum (Lada & Lada 2003). However, it is not clear how such a
process could produce a peak, or a characteristic scale for stellar
masses. Moreover, the comparison of the CO core mass function
and the IMF may not be relevant since CO does not trace the
dense component of the molecular gas within which stars actu-
ally form (Lada 1992).

Indeed, a different picture appears to emerge when observa-
tions of dense gas are considered. Typically only about 10% or
less of the mass of a star-forming molecular cloud is in the form
of dense (i.e., n(H2) ∼ 104 cm−3) gas and this gas appears to be
organized into discrete cores within which stars form. Tachihara
et al. (2002) and Onishi et al. (2002), using C18O and H13CO+
as tracers of dense gas, suggest that the stellar and core mass
distributions are similar. Recent observations of dust continuum
emission originating from such dense cores has enabled the con-
struction of the dense core mass function (DCMF) in a number
of nearby molecular cloud complexes. For cores with masses in
excess of ∼0.5 M⊙ the derived mass spectra appear to be de-
scribed by a single power-law, similar to the CO cores but with

a relatively steep slope (−1.1 to −1.6, in log mass units) similar
to the that of the stellar IMF (Motte et al. 1998; Testi & Sargent
1998; Johnstone et al. 2000, 2001; Motte et al. 2001; Beuther
& Schilke 2004; Stanke et al. 2006). Moreover, in one example,
the ρ Ophiuchi cloud, the core mass spectrum exhibited possible
evidence of a flattening or break near a mass of about 0.5 M⊙,
also similar to the stellar IMF (Motte et al. 1998). In another
cloud, NGC 1333, measurements of dust emission produced a
core mass spectrum between 0.1 and 0.5 M⊙ with a slope of ap-
proximately −0.4 (Sandell & Knee 2001), similar to that univer-
sally derived for less-dense gas traced by CO emission in other
clouds but also consistent with the apparent break and assumed
flattening below 0.5 M⊙ of the DCMF of the Ophiuchi dark
cloud mentioned above. The observed similarity between the
slopes of the DCMF derived from millimeter-wave dust emis-
sion studies and the slope of the IMF above 0.5 M⊙ has been
taken as evidence that the individual dense cores are the di-
rect precursors of new stars and moreover that the stellar IMF
is completely specified by the fragmentation process in molecu-
lar clouds. In addition, the possible flattening of the DCMF near
0.5 M⊙ implies a high star formation efficiency (SFE) for dense
gas (about 100%). In this case there is no need for a mass trans-
formation from the DCMF to the IMF. The characteristic scale
of stellar mass demanded by the stellar IMF is set by the funda-
mental physics of cloud fragmentation (Shu et al. 2004; Larson
2005). Which picture is correct?

In order to bring new insight to this issue we used an in-
dependent method of identifying and measuring the masses of
dense cores. This method uses precise infrared measurements
of dust extinction toward stars background to a molecular cloud
(the NICE(R) method, Lada et al. 1994; Alves et al. 1998, 2001;
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Lombardi & Alves 2001). Such measurements are free from
many of the complications and systematic uncertainties that
plague molecular-line or dust emission data and thus enable ro-
bust maps of cloud structure to be constructed. We used data
from the recent wide-field extinction map of the Pipe Nebula
constructed by Lombardi et al. (2006), hereafter LAL06, using
2MASS data. The Pipe nebula is a virtually unstudied nearby
molecular cloud complex (Onishi et al. 1999; LAL06), at a dis-
tance of about 130 pc and with a total mass of ∼104 M⊙.

2. Observations

The details of the extinction study are described in LAL06.
Briefly, this molecular complex was selected because 1) this is
one of the closest to Earth complexes of this size and mass, 2)
it is particularly well positioned along a relatively clean line of
sight to the rich star field of the Galactic bulge, which given
the close distance of the Pipe nebula allowed us to achieve spa-
tial resolutions of ∼0.03 pc, or about 3 times smaller the typical
dense core size, and 3) it exhibits very low levels of star forma-
tion suggesting that its dense cores likely represent a fair sam-
ple of the initial conditions of star formation. LAL06 applied a
3-band (1.25 µm, 1.65 µm, 2.2 µm) optimized version of this ex-
tinction method, the NICER method (Lombardi & Alves 2001),
to about 4 million stars background to the Pipe nebula complex
to construct a 6◦ × 8◦ dust column density map of this complex,
presented in Fig. 1. Because of the high dynamic range in col-
umn density achieved by this map (3σ ∼ 0.5 < AV < 24 mag
or 1021 < NH < 5 × 1022 cm−2), cores are easily visually identi-
fied as high contrast peaks embedded on rather smooth but vari-
able background (see Fig. 1). Unfortunately, because of the high
dynamic range and variable background, traditional source ex-
traction algorithms based on thresholding fail to identify these
objects in a coherent way. An alternative approach is to extract
cores based on their sizes, using a multi-scale algorithm. For this
study we used a algorithm developed by Vandame (2006, private
comm.), which, in brief, uses the wavelet transform of the image
to first identify and then reconstruct the dense cores1. This step
defines the projected core boundaries.

Masses are derived by integrating the extinction map over
the area of each core and multiplying by the standard gas-to-dust
ratio. The final Pipe core sample has 159 objects with effective
diameters between 0.1 and 0.4 pc (median size is 0.18 pc) and
peak extinctions that range from 3.0 to 24.3 visual magnitudes
(mean extinction is 8.4 mag). The derived core masses range be-
tween 0.5 to 28 M⊙. The assessment of sample completeness
is non trivial because of the variable background. Nevertheless,
the completeness should not be dominated by confusion but
sensitivity, as the mean separation between cores, even in the
clustered regions, is well above the resolution of the map. We

1 Object identification in wavelet space: for a given scale i, structures
are isolated with classical thresholding at 3σi with σi being the noise
amplitude at scale i. A structure at scale i is connected with a structure
at scale i + 1 if its local maxima drops in the structure at scale i + 1.
The size scales considered were 2′, 4′, and 8′ (0.08 pc, 0.15 pc, and
0.30 pc). One then builds a 3D distribution of significant structures (x,
y, and i). The algorithm developed by Vandame (2006, private comm.)
offers rules that split the 3D distribution into independent trees corre-
sponding to one core and its corresponding hierarchical details. Object
reconstruction: This same algorithm performs a complex iterative re-
construction of the cores following the trees defined in the previous
step. The final “cores only” image is validated by subtracting it from
the extinction map, effectively creating a smooth image of the variable
background.

Mass (M      )sun

0.1 1.0 10.0
dN

 / 
dl

og
 M

as
s

1

10

100

IMF DCMF

Fig. 2. Mass function of dense molecular cores plotted as filled circles
with error bars. The grey line is the stellar IMF for the Trapezium cluster
(Muench et al. 2002). The dashed grey line represents the stellar IMF
in binned form matching the resolution of the data and shifted to higher
masses by about a factor of 4. The dense core mass function is similar
in shape to the stellar IMF function, apart from a uniform star formation
efficiency factor.

estimate, conservatively, that the sample is 90% complete at
about 1 M⊙. The mean diameter of a 1 M⊙ core is ∼0.2 pc, i.e.,
about six times the resolution of the map.

3. Results: The Dense Core Mass Function (DCMF)

The dense core mass function we derive from the above ob-
servations is presented in Fig. 22. For comparison we plot the
Trapezium cluster stellar IMF as a grey solid line (Muench
et al. 2002). This IMF consists of 3 power law segments with
breaks and 0.6 M⊙ and 0.12 M⊙. We find that the DCMF for the
Pipe Nebula is surprisingly similar in shape to the stellar IMF.
Specifically, both distributions are characterized by a Salpeter-
like power-law (Salpeter 1955) that rises with decreasing mass
until reaching a distinct break point, this is then followed by a
broad peak. Although similar in shape, the stellar and core mass
functions are characterized by decidedly different mass scales.
The grey dashed line in Fig. 2 is not a fit to the data but sim-
ply the stellar IMF in binned form matched to the resolution of
the data, and shifted by a factor of 4 to the higher masses. The
break from the Salpeter-like slope seems to occur between 2 and
3 M⊙ for the cloud cores instead of the 0.6 M⊙ for the stellar case
(Muench et al. 2002).

The DCMF in Fig. 2 likely suffers from two sources of uncer-
tainty: 1) the individual core masses are likely upper limits to the
true values since we made no corrections for the local extended
background on which most cores are embedded, and 2) the par-
ticular binning we chose may not produce the most accurate
representation of the underlying mass distribution. To address
point 1) we estimated a lower limit to the true core masses (and
the DCMF) by subtracting from each core its local background.
We then constructed a background subtracted DCMF and found

2 The full dataset is available in electronic form at the CDS.
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Lombardi & Alves 2001). Such measurements are free from
many of the complications and systematic uncertainties that
plague molecular-line or dust emission data and thus enable ro-
bust maps of cloud structure to be constructed. We used data
from the recent wide-field extinction map of the Pipe Nebula
constructed by Lombardi et al. (2006), hereafter LAL06, using
2MASS data. The Pipe nebula is a virtually unstudied nearby
molecular cloud complex (Onishi et al. 1999; LAL06), at a dis-
tance of about 130 pc and with a total mass of ∼104 M⊙.

2. Observations

The details of the extinction study are described in LAL06.
Briefly, this molecular complex was selected because 1) this is
one of the closest to Earth complexes of this size and mass, 2)
it is particularly well positioned along a relatively clean line of
sight to the rich star field of the Galactic bulge, which given
the close distance of the Pipe nebula allowed us to achieve spa-
tial resolutions of ∼0.03 pc, or about 3 times smaller the typical
dense core size, and 3) it exhibits very low levels of star forma-
tion suggesting that its dense cores likely represent a fair sam-
ple of the initial conditions of star formation. LAL06 applied a
3-band (1.25 µm, 1.65 µm, 2.2 µm) optimized version of this ex-
tinction method, the NICER method (Lombardi & Alves 2001),
to about 4 million stars background to the Pipe nebula complex
to construct a 6◦ × 8◦ dust column density map of this complex,
presented in Fig. 1. Because of the high dynamic range in col-
umn density achieved by this map (3σ ∼ 0.5 < AV < 24 mag
or 1021 < NH < 5 × 1022 cm−2), cores are easily visually identi-
fied as high contrast peaks embedded on rather smooth but vari-
able background (see Fig. 1). Unfortunately, because of the high
dynamic range and variable background, traditional source ex-
traction algorithms based on thresholding fail to identify these
objects in a coherent way. An alternative approach is to extract
cores based on their sizes, using a multi-scale algorithm. For this
study we used a algorithm developed by Vandame (2006, private
comm.), which, in brief, uses the wavelet transform of the image
to first identify and then reconstruct the dense cores1. This step
defines the projected core boundaries.

Masses are derived by integrating the extinction map over
the area of each core and multiplying by the standard gas-to-dust
ratio. The final Pipe core sample has 159 objects with effective
diameters between 0.1 and 0.4 pc (median size is 0.18 pc) and
peak extinctions that range from 3.0 to 24.3 visual magnitudes
(mean extinction is 8.4 mag). The derived core masses range be-
tween 0.5 to 28 M⊙. The assessment of sample completeness
is non trivial because of the variable background. Nevertheless,
the completeness should not be dominated by confusion but
sensitivity, as the mean separation between cores, even in the
clustered regions, is well above the resolution of the map. We

1 Object identification in wavelet space: for a given scale i, structures
are isolated with classical thresholding at 3σi with σi being the noise
amplitude at scale i. A structure at scale i is connected with a structure
at scale i + 1 if its local maxima drops in the structure at scale i + 1.
The size scales considered were 2′, 4′, and 8′ (0.08 pc, 0.15 pc, and
0.30 pc). One then builds a 3D distribution of significant structures (x,
y, and i). The algorithm developed by Vandame (2006, private comm.)
offers rules that split the 3D distribution into independent trees corre-
sponding to one core and its corresponding hierarchical details. Object
reconstruction: This same algorithm performs a complex iterative re-
construction of the cores following the trees defined in the previous
step. The final “cores only” image is validated by subtracting it from
the extinction map, effectively creating a smooth image of the variable
background.
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Fig. 2. Mass function of dense molecular cores plotted as filled circles
with error bars. The grey line is the stellar IMF for the Trapezium cluster
(Muench et al. 2002). The dashed grey line represents the stellar IMF
in binned form matching the resolution of the data and shifted to higher
masses by about a factor of 4. The dense core mass function is similar
in shape to the stellar IMF function, apart from a uniform star formation
efficiency factor.

estimate, conservatively, that the sample is 90% complete at
about 1 M⊙. The mean diameter of a 1 M⊙ core is ∼0.2 pc, i.e.,
about six times the resolution of the map.

3. Results: The Dense Core Mass Function (DCMF)

The dense core mass function we derive from the above ob-
servations is presented in Fig. 22. For comparison we plot the
Trapezium cluster stellar IMF as a grey solid line (Muench
et al. 2002). This IMF consists of 3 power law segments with
breaks and 0.6 M⊙ and 0.12 M⊙. We find that the DCMF for the
Pipe Nebula is surprisingly similar in shape to the stellar IMF.
Specifically, both distributions are characterized by a Salpeter-
like power-law (Salpeter 1955) that rises with decreasing mass
until reaching a distinct break point, this is then followed by a
broad peak. Although similar in shape, the stellar and core mass
functions are characterized by decidedly different mass scales.
The grey dashed line in Fig. 2 is not a fit to the data but sim-
ply the stellar IMF in binned form matched to the resolution of
the data, and shifted by a factor of 4 to the higher masses. The
break from the Salpeter-like slope seems to occur between 2 and
3 M⊙ for the cloud cores instead of the 0.6 M⊙ for the stellar case
(Muench et al. 2002).

The DCMF in Fig. 2 likely suffers from two sources of uncer-
tainty: 1) the individual core masses are likely upper limits to the
true values since we made no corrections for the local extended
background on which most cores are embedded, and 2) the par-
ticular binning we chose may not produce the most accurate
representation of the underlying mass distribution. To address
point 1) we estimated a lower limit to the true core masses (and
the DCMF) by subtracting from each core its local background.
We then constructed a background subtracted DCMF and found

2 The full dataset is available in electronic form at the CDS.
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Lombardi & Alves 2001). Such measurements are free from
many of the complications and systematic uncertainties that
plague molecular-line or dust emission data and thus enable ro-
bust maps of cloud structure to be constructed. We used data
from the recent wide-field extinction map of the Pipe Nebula
constructed by Lombardi et al. (2006), hereafter LAL06, using
2MASS data. The Pipe nebula is a virtually unstudied nearby
molecular cloud complex (Onishi et al. 1999; LAL06), at a dis-
tance of about 130 pc and with a total mass of ∼104 M⊙.

2. Observations

The details of the extinction study are described in LAL06.
Briefly, this molecular complex was selected because 1) this is
one of the closest to Earth complexes of this size and mass, 2)
it is particularly well positioned along a relatively clean line of
sight to the rich star field of the Galactic bulge, which given
the close distance of the Pipe nebula allowed us to achieve spa-
tial resolutions of ∼0.03 pc, or about 3 times smaller the typical
dense core size, and 3) it exhibits very low levels of star forma-
tion suggesting that its dense cores likely represent a fair sam-
ple of the initial conditions of star formation. LAL06 applied a
3-band (1.25 µm, 1.65 µm, 2.2 µm) optimized version of this ex-
tinction method, the NICER method (Lombardi & Alves 2001),
to about 4 million stars background to the Pipe nebula complex
to construct a 6◦ × 8◦ dust column density map of this complex,
presented in Fig. 1. Because of the high dynamic range in col-
umn density achieved by this map (3σ ∼ 0.5 < AV < 24 mag
or 1021 < NH < 5 × 1022 cm−2), cores are easily visually identi-
fied as high contrast peaks embedded on rather smooth but vari-
able background (see Fig. 1). Unfortunately, because of the high
dynamic range and variable background, traditional source ex-
traction algorithms based on thresholding fail to identify these
objects in a coherent way. An alternative approach is to extract
cores based on their sizes, using a multi-scale algorithm. For this
study we used a algorithm developed by Vandame (2006, private
comm.), which, in brief, uses the wavelet transform of the image
to first identify and then reconstruct the dense cores1. This step
defines the projected core boundaries.

Masses are derived by integrating the extinction map over
the area of each core and multiplying by the standard gas-to-dust
ratio. The final Pipe core sample has 159 objects with effective
diameters between 0.1 and 0.4 pc (median size is 0.18 pc) and
peak extinctions that range from 3.0 to 24.3 visual magnitudes
(mean extinction is 8.4 mag). The derived core masses range be-
tween 0.5 to 28 M⊙. The assessment of sample completeness
is non trivial because of the variable background. Nevertheless,
the completeness should not be dominated by confusion but
sensitivity, as the mean separation between cores, even in the
clustered regions, is well above the resolution of the map. We

1 Object identification in wavelet space: for a given scale i, structures
are isolated with classical thresholding at 3σi with σi being the noise
amplitude at scale i. A structure at scale i is connected with a structure
at scale i + 1 if its local maxima drops in the structure at scale i + 1.
The size scales considered were 2′, 4′, and 8′ (0.08 pc, 0.15 pc, and
0.30 pc). One then builds a 3D distribution of significant structures (x,
y, and i). The algorithm developed by Vandame (2006, private comm.)
offers rules that split the 3D distribution into independent trees corre-
sponding to one core and its corresponding hierarchical details. Object
reconstruction: This same algorithm performs a complex iterative re-
construction of the cores following the trees defined in the previous
step. The final “cores only” image is validated by subtracting it from
the extinction map, effectively creating a smooth image of the variable
background.
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Fig. 2. Mass function of dense molecular cores plotted as filled circles
with error bars. The grey line is the stellar IMF for the Trapezium cluster
(Muench et al. 2002). The dashed grey line represents the stellar IMF
in binned form matching the resolution of the data and shifted to higher
masses by about a factor of 4. The dense core mass function is similar
in shape to the stellar IMF function, apart from a uniform star formation
efficiency factor.

estimate, conservatively, that the sample is 90% complete at
about 1 M⊙. The mean diameter of a 1 M⊙ core is ∼0.2 pc, i.e.,
about six times the resolution of the map.

3. Results: The Dense Core Mass Function (DCMF)

The dense core mass function we derive from the above ob-
servations is presented in Fig. 22. For comparison we plot the
Trapezium cluster stellar IMF as a grey solid line (Muench
et al. 2002). This IMF consists of 3 power law segments with
breaks and 0.6 M⊙ and 0.12 M⊙. We find that the DCMF for the
Pipe Nebula is surprisingly similar in shape to the stellar IMF.
Specifically, both distributions are characterized by a Salpeter-
like power-law (Salpeter 1955) that rises with decreasing mass
until reaching a distinct break point, this is then followed by a
broad peak. Although similar in shape, the stellar and core mass
functions are characterized by decidedly different mass scales.
The grey dashed line in Fig. 2 is not a fit to the data but sim-
ply the stellar IMF in binned form matched to the resolution of
the data, and shifted by a factor of 4 to the higher masses. The
break from the Salpeter-like slope seems to occur between 2 and
3 M⊙ for the cloud cores instead of the 0.6 M⊙ for the stellar case
(Muench et al. 2002).

The DCMF in Fig. 2 likely suffers from two sources of uncer-
tainty: 1) the individual core masses are likely upper limits to the
true values since we made no corrections for the local extended
background on which most cores are embedded, and 2) the par-
ticular binning we chose may not produce the most accurate
representation of the underlying mass distribution. To address
point 1) we estimated a lower limit to the true core masses (and
the DCMF) by subtracting from each core its local background.
We then constructed a background subtracted DCMF and found

2 The full dataset is available in electronic form at the CDS.
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Lombardi & Alves 2001). Such measurements are free from
many of the complications and systematic uncertainties that
plague molecular-line or dust emission data and thus enable ro-
bust maps of cloud structure to be constructed. We used data
from the recent wide-field extinction map of the Pipe Nebula
constructed by Lombardi et al. (2006), hereafter LAL06, using
2MASS data. The Pipe nebula is a virtually unstudied nearby
molecular cloud complex (Onishi et al. 1999; LAL06), at a dis-
tance of about 130 pc and with a total mass of ∼104 M⊙.

2. Observations

The details of the extinction study are described in LAL06.
Briefly, this molecular complex was selected because 1) this is
one of the closest to Earth complexes of this size and mass, 2)
it is particularly well positioned along a relatively clean line of
sight to the rich star field of the Galactic bulge, which given
the close distance of the Pipe nebula allowed us to achieve spa-
tial resolutions of ∼0.03 pc, or about 3 times smaller the typical
dense core size, and 3) it exhibits very low levels of star forma-
tion suggesting that its dense cores likely represent a fair sam-
ple of the initial conditions of star formation. LAL06 applied a
3-band (1.25 µm, 1.65 µm, 2.2 µm) optimized version of this ex-
tinction method, the NICER method (Lombardi & Alves 2001),
to about 4 million stars background to the Pipe nebula complex
to construct a 6◦ × 8◦ dust column density map of this complex,
presented in Fig. 1. Because of the high dynamic range in col-
umn density achieved by this map (3σ ∼ 0.5 < AV < 24 mag
or 1021 < NH < 5 × 1022 cm−2), cores are easily visually identi-
fied as high contrast peaks embedded on rather smooth but vari-
able background (see Fig. 1). Unfortunately, because of the high
dynamic range and variable background, traditional source ex-
traction algorithms based on thresholding fail to identify these
objects in a coherent way. An alternative approach is to extract
cores based on their sizes, using a multi-scale algorithm. For this
study we used a algorithm developed by Vandame (2006, private
comm.), which, in brief, uses the wavelet transform of the image
to first identify and then reconstruct the dense cores1. This step
defines the projected core boundaries.

Masses are derived by integrating the extinction map over
the area of each core and multiplying by the standard gas-to-dust
ratio. The final Pipe core sample has 159 objects with effective
diameters between 0.1 and 0.4 pc (median size is 0.18 pc) and
peak extinctions that range from 3.0 to 24.3 visual magnitudes
(mean extinction is 8.4 mag). The derived core masses range be-
tween 0.5 to 28 M⊙. The assessment of sample completeness
is non trivial because of the variable background. Nevertheless,
the completeness should not be dominated by confusion but
sensitivity, as the mean separation between cores, even in the
clustered regions, is well above the resolution of the map. We

1 Object identification in wavelet space: for a given scale i, structures
are isolated with classical thresholding at 3σi with σi being the noise
amplitude at scale i. A structure at scale i is connected with a structure
at scale i + 1 if its local maxima drops in the structure at scale i + 1.
The size scales considered were 2′, 4′, and 8′ (0.08 pc, 0.15 pc, and
0.30 pc). One then builds a 3D distribution of significant structures (x,
y, and i). The algorithm developed by Vandame (2006, private comm.)
offers rules that split the 3D distribution into independent trees corre-
sponding to one core and its corresponding hierarchical details. Object
reconstruction: This same algorithm performs a complex iterative re-
construction of the cores following the trees defined in the previous
step. The final “cores only” image is validated by subtracting it from
the extinction map, effectively creating a smooth image of the variable
background.
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Fig. 2. Mass function of dense molecular cores plotted as filled circles
with error bars. The grey line is the stellar IMF for the Trapezium cluster
(Muench et al. 2002). The dashed grey line represents the stellar IMF
in binned form matching the resolution of the data and shifted to higher
masses by about a factor of 4. The dense core mass function is similar
in shape to the stellar IMF function, apart from a uniform star formation
efficiency factor.

estimate, conservatively, that the sample is 90% complete at
about 1 M⊙. The mean diameter of a 1 M⊙ core is ∼0.2 pc, i.e.,
about six times the resolution of the map.

3. Results: The Dense Core Mass Function (DCMF)

The dense core mass function we derive from the above ob-
servations is presented in Fig. 22. For comparison we plot the
Trapezium cluster stellar IMF as a grey solid line (Muench
et al. 2002). This IMF consists of 3 power law segments with
breaks and 0.6 M⊙ and 0.12 M⊙. We find that the DCMF for the
Pipe Nebula is surprisingly similar in shape to the stellar IMF.
Specifically, both distributions are characterized by a Salpeter-
like power-law (Salpeter 1955) that rises with decreasing mass
until reaching a distinct break point, this is then followed by a
broad peak. Although similar in shape, the stellar and core mass
functions are characterized by decidedly different mass scales.
The grey dashed line in Fig. 2 is not a fit to the data but sim-
ply the stellar IMF in binned form matched to the resolution of
the data, and shifted by a factor of 4 to the higher masses. The
break from the Salpeter-like slope seems to occur between 2 and
3 M⊙ for the cloud cores instead of the 0.6 M⊙ for the stellar case
(Muench et al. 2002).

The DCMF in Fig. 2 likely suffers from two sources of uncer-
tainty: 1) the individual core masses are likely upper limits to the
true values since we made no corrections for the local extended
background on which most cores are embedded, and 2) the par-
ticular binning we chose may not produce the most accurate
representation of the underlying mass distribution. To address
point 1) we estimated a lower limit to the true core masses (and
the DCMF) by subtracting from each core its local background.
We then constructed a background subtracted DCMF and found

2 The full dataset is available in electronic form at the CDS.
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Fig. 3. Probability density function of core masses (black) for the back-
ground subtracted sample. The grey region indicates sample incom-
pleteness while the two thin dashed line indicates the 90% confidence
limits. The core mass distribution seems to be characterized by two
power-laws and a well defined break point at around 2 M⊙. Also plot-
ted are the field star IMFs of Kroupa (2001) (solid grey) and Chabrier
(2003) (dotted grey), and the Muench et al. (2002) (dashed grey) IMF
all scaled up by a factor of ∼3 in mass.

that the form of the mass distribution was maintained although
the new distribution was shifted towards the low masses. To ad-
dress point 2) we compute a better functional representation for
the DCMF using a probability density estimator that does not
require data binning. We used a gaussian kernel estimator with a
window width of 0.15 in units of log mass (Silverman 1986).

We present in Fig. 3 the probability density function for the
core masses (background subtracted). As already suggested in
Fig. 2, the core mass distribution seems to be characterized by
two power-laws and a well defined break point at ∼2 M⊙. For
comparison we also present the field star IMF determined by
Kroupa (2001) (solid grey) and Chabrier (2003) IMF (dotted
grey), and the IMF for the young Trapezium cluster (dashed
grey) (Muench et al. 2002) already present in Fig. 2. All these
stellar IMFs were shifted to higher masses by an average scale
factor of about 3. The point of this comparison is to simply illus-
trate the overall similarity between different stellar IMFs from
different environments and constructed in different ways, and
the DCMF of the Pipe Nebula. Considering the overall uncer-
tainties, apparent differences between the different distributions
are likely not significant. While Fig. 3 presents the background
subtracted core sample, the non background subtracted sample
is virtually identical in shape, although shifted towards higher
masses.

4. Discussion and conclusions

The close similarity in shape between the DCMF and the IMF
supports a general concept of a 1-to-1 correspondence between
the individual dense cores and soon to be formed stars. In this re-
spect our observations are consistent with and appear to confirm
the results of dust continuum surveys in other clouds. However,
our study provides the first robust evidence for a departure from

a single power law in the core mass function. We find that the
location of the break indicates that there is a factor of about 3
difference in mass scale between the two distributions, which
implies that a uniform SFE, that we estimate to be 30%± 10%,
will likely characterize the star formation in these dense cores,
across the entire span of (stellar) mass. This efficiency is very
similar to the maximum estimated for young embedded clusters
(Lada & Lada 2003).

It is well known that the generation of a powerful outflow is
a natural consequence of the formation of a protostar in a dense
core (Lada 1985). It has been long suspected that such outflows
could be very disruptive to surrounding material and could play
an important role in limiting the mass which can accrete onto
a protostar (Shu et al. 1987, 1991). Matzner & McKee (2000)
have theoretically investigated the disruption of dense cores by
protostellar outflows and have concluded that outflow disruption
of individual cores can produce SFEs in the range of 25–75%.
Moreover they found that SFE is independent of stellar mass,
therefore the stellar and core mass functions should be of simi-
lar overall functional form. Recently, Shu et al. (2004) have de-
veloped a self-consistent analytical theory for the origin of the
stellar IMF incorporating the feedback from outflows. In their
picture, cores are formed from magnetized turbulent gas and
are disrupted by outflows with a resulting SFE predicted to be
≈30%. The close correspondence of this prediction with our es-
timated SFE for the Pipe cores may implicate outflows as the key
mechanism for core disruption and for setting the final masses of
the protostellar objects. Shu et al. (2004) also predicted both a
slope for the power-law portion of the core mass function and
a location of the break from the power-law form that are very
similar to those we measure in the Pipe Nebula.

A number of other theoretical calculations have also pro-
duced DCMFs similar in shape to that found here (Padoan &
Nordlund 2002; Bonnell et al. 2006; Elmegreen 2006). In par-
ticular, numerical simulations of turbulent clouds predict DCMF
shapes similar to the stellar IMF. However it is difficult to com-
pare these calculations in more detail to the derived Pipe DCMF
because, unlike the Shu et al. (2004) model, the mass scales for
these DCMFs are presently unconstrained and appear to be de-
pendent on model parameters, such as the numerical resolution
of the simulations as well as the Mach number of turbulence
which are difficult to quantify observationally (e.g., Klessen
2001; Ballesteros-Paredes & Mac Low 2002; Gammie et al.
2003). Nonetheless we expect that with appropriate modification
of model parameters such models could also be made consistent
with the observations.

These considerations suggest that apart from a uniform effi-
ciency factor, which is likely fixed by the generation of an out-
flow, the birth mass of a star could to be completely predeter-
mined by the mass of the dense core in which it is born.

The existence of a characteristic mass in the stellar IMF does
suggests a characteristic mass scale is produced by the physi-
cal process of star formation. The physical origin of this mass
scale has not been clear although it has been long known that
thermal (Jeans) fragmentation can produce a mass scale for star
formation (Larson 1985, 1986). For a pressure bounded core the
appropriate mass scale is the critical Bonnor-Ebert mass,

MBE ≈ 1.15 × (n/104)−1/2 × (T/10)3/2 (1)

where T is the gas temperature and n its volume density. The
characteristic mass scale suggested by the stellar IMF is about
0.3 M⊙. For a typical dark cloud of temperature of 10 K, the cor-
responding density scale would need to be about 1.5×105 cm−3.
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Lombardi & Alves 2001). Such measurements are free from
many of the complications and systematic uncertainties that
plague molecular-line or dust emission data and thus enable ro-
bust maps of cloud structure to be constructed. We used data
from the recent wide-field extinction map of the Pipe Nebula
constructed by Lombardi et al. (2006), hereafter LAL06, using
2MASS data. The Pipe nebula is a virtually unstudied nearby
molecular cloud complex (Onishi et al. 1999; LAL06), at a dis-
tance of about 130 pc and with a total mass of ∼104 M⊙.

2. Observations

The details of the extinction study are described in LAL06.
Briefly, this molecular complex was selected because 1) this is
one of the closest to Earth complexes of this size and mass, 2)
it is particularly well positioned along a relatively clean line of
sight to the rich star field of the Galactic bulge, which given
the close distance of the Pipe nebula allowed us to achieve spa-
tial resolutions of ∼0.03 pc, or about 3 times smaller the typical
dense core size, and 3) it exhibits very low levels of star forma-
tion suggesting that its dense cores likely represent a fair sam-
ple of the initial conditions of star formation. LAL06 applied a
3-band (1.25 µm, 1.65 µm, 2.2 µm) optimized version of this ex-
tinction method, the NICER method (Lombardi & Alves 2001),
to about 4 million stars background to the Pipe nebula complex
to construct a 6◦ × 8◦ dust column density map of this complex,
presented in Fig. 1. Because of the high dynamic range in col-
umn density achieved by this map (3σ ∼ 0.5 < AV < 24 mag
or 1021 < NH < 5 × 1022 cm−2), cores are easily visually identi-
fied as high contrast peaks embedded on rather smooth but vari-
able background (see Fig. 1). Unfortunately, because of the high
dynamic range and variable background, traditional source ex-
traction algorithms based on thresholding fail to identify these
objects in a coherent way. An alternative approach is to extract
cores based on their sizes, using a multi-scale algorithm. For this
study we used a algorithm developed by Vandame (2006, private
comm.), which, in brief, uses the wavelet transform of the image
to first identify and then reconstruct the dense cores1. This step
defines the projected core boundaries.

Masses are derived by integrating the extinction map over
the area of each core and multiplying by the standard gas-to-dust
ratio. The final Pipe core sample has 159 objects with effective
diameters between 0.1 and 0.4 pc (median size is 0.18 pc) and
peak extinctions that range from 3.0 to 24.3 visual magnitudes
(mean extinction is 8.4 mag). The derived core masses range be-
tween 0.5 to 28 M⊙. The assessment of sample completeness
is non trivial because of the variable background. Nevertheless,
the completeness should not be dominated by confusion but
sensitivity, as the mean separation between cores, even in the
clustered regions, is well above the resolution of the map. We

1 Object identification in wavelet space: for a given scale i, structures
are isolated with classical thresholding at 3σi with σi being the noise
amplitude at scale i. A structure at scale i is connected with a structure
at scale i + 1 if its local maxima drops in the structure at scale i + 1.
The size scales considered were 2′, 4′, and 8′ (0.08 pc, 0.15 pc, and
0.30 pc). One then builds a 3D distribution of significant structures (x,
y, and i). The algorithm developed by Vandame (2006, private comm.)
offers rules that split the 3D distribution into independent trees corre-
sponding to one core and its corresponding hierarchical details. Object
reconstruction: This same algorithm performs a complex iterative re-
construction of the cores following the trees defined in the previous
step. The final “cores only” image is validated by subtracting it from
the extinction map, effectively creating a smooth image of the variable
background.
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Fig. 2. Mass function of dense molecular cores plotted as filled circles
with error bars. The grey line is the stellar IMF for the Trapezium cluster
(Muench et al. 2002). The dashed grey line represents the stellar IMF
in binned form matching the resolution of the data and shifted to higher
masses by about a factor of 4. The dense core mass function is similar
in shape to the stellar IMF function, apart from a uniform star formation
efficiency factor.

estimate, conservatively, that the sample is 90% complete at
about 1 M⊙. The mean diameter of a 1 M⊙ core is ∼0.2 pc, i.e.,
about six times the resolution of the map.

3. Results: The Dense Core Mass Function (DCMF)

The dense core mass function we derive from the above ob-
servations is presented in Fig. 22. For comparison we plot the
Trapezium cluster stellar IMF as a grey solid line (Muench
et al. 2002). This IMF consists of 3 power law segments with
breaks and 0.6 M⊙ and 0.12 M⊙. We find that the DCMF for the
Pipe Nebula is surprisingly similar in shape to the stellar IMF.
Specifically, both distributions are characterized by a Salpeter-
like power-law (Salpeter 1955) that rises with decreasing mass
until reaching a distinct break point, this is then followed by a
broad peak. Although similar in shape, the stellar and core mass
functions are characterized by decidedly different mass scales.
The grey dashed line in Fig. 2 is not a fit to the data but sim-
ply the stellar IMF in binned form matched to the resolution of
the data, and shifted by a factor of 4 to the higher masses. The
break from the Salpeter-like slope seems to occur between 2 and
3 M⊙ for the cloud cores instead of the 0.6 M⊙ for the stellar case
(Muench et al. 2002).

The DCMF in Fig. 2 likely suffers from two sources of uncer-
tainty: 1) the individual core masses are likely upper limits to the
true values since we made no corrections for the local extended
background on which most cores are embedded, and 2) the par-
ticular binning we chose may not produce the most accurate
representation of the underlying mass distribution. To address
point 1) we estimated a lower limit to the true core masses (and
the DCMF) by subtracting from each core its local background.
We then constructed a background subtracted DCMF and found

2 The full dataset is available in electronic form at the CDS.
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Fig. 3. Probability density function of core masses (black) for the back-
ground subtracted sample. The grey region indicates sample incom-
pleteness while the two thin dashed line indicates the 90% confidence
limits. The core mass distribution seems to be characterized by two
power-laws and a well defined break point at around 2 M⊙. Also plot-
ted are the field star IMFs of Kroupa (2001) (solid grey) and Chabrier
(2003) (dotted grey), and the Muench et al. (2002) (dashed grey) IMF
all scaled up by a factor of ∼3 in mass.

that the form of the mass distribution was maintained although
the new distribution was shifted towards the low masses. To ad-
dress point 2) we compute a better functional representation for
the DCMF using a probability density estimator that does not
require data binning. We used a gaussian kernel estimator with a
window width of 0.15 in units of log mass (Silverman 1986).

We present in Fig. 3 the probability density function for the
core masses (background subtracted). As already suggested in
Fig. 2, the core mass distribution seems to be characterized by
two power-laws and a well defined break point at ∼2 M⊙. For
comparison we also present the field star IMF determined by
Kroupa (2001) (solid grey) and Chabrier (2003) IMF (dotted
grey), and the IMF for the young Trapezium cluster (dashed
grey) (Muench et al. 2002) already present in Fig. 2. All these
stellar IMFs were shifted to higher masses by an average scale
factor of about 3. The point of this comparison is to simply illus-
trate the overall similarity between different stellar IMFs from
different environments and constructed in different ways, and
the DCMF of the Pipe Nebula. Considering the overall uncer-
tainties, apparent differences between the different distributions
are likely not significant. While Fig. 3 presents the background
subtracted core sample, the non background subtracted sample
is virtually identical in shape, although shifted towards higher
masses.

4. Discussion and conclusions

The close similarity in shape between the DCMF and the IMF
supports a general concept of a 1-to-1 correspondence between
the individual dense cores and soon to be formed stars. In this re-
spect our observations are consistent with and appear to confirm
the results of dust continuum surveys in other clouds. However,
our study provides the first robust evidence for a departure from

a single power law in the core mass function. We find that the
location of the break indicates that there is a factor of about 3
difference in mass scale between the two distributions, which
implies that a uniform SFE, that we estimate to be 30%± 10%,
will likely characterize the star formation in these dense cores,
across the entire span of (stellar) mass. This efficiency is very
similar to the maximum estimated for young embedded clusters
(Lada & Lada 2003).

It is well known that the generation of a powerful outflow is
a natural consequence of the formation of a protostar in a dense
core (Lada 1985). It has been long suspected that such outflows
could be very disruptive to surrounding material and could play
an important role in limiting the mass which can accrete onto
a protostar (Shu et al. 1987, 1991). Matzner & McKee (2000)
have theoretically investigated the disruption of dense cores by
protostellar outflows and have concluded that outflow disruption
of individual cores can produce SFEs in the range of 25–75%.
Moreover they found that SFE is independent of stellar mass,
therefore the stellar and core mass functions should be of simi-
lar overall functional form. Recently, Shu et al. (2004) have de-
veloped a self-consistent analytical theory for the origin of the
stellar IMF incorporating the feedback from outflows. In their
picture, cores are formed from magnetized turbulent gas and
are disrupted by outflows with a resulting SFE predicted to be
≈30%. The close correspondence of this prediction with our es-
timated SFE for the Pipe cores may implicate outflows as the key
mechanism for core disruption and for setting the final masses of
the protostellar objects. Shu et al. (2004) also predicted both a
slope for the power-law portion of the core mass function and
a location of the break from the power-law form that are very
similar to those we measure in the Pipe Nebula.

A number of other theoretical calculations have also pro-
duced DCMFs similar in shape to that found here (Padoan &
Nordlund 2002; Bonnell et al. 2006; Elmegreen 2006). In par-
ticular, numerical simulations of turbulent clouds predict DCMF
shapes similar to the stellar IMF. However it is difficult to com-
pare these calculations in more detail to the derived Pipe DCMF
because, unlike the Shu et al. (2004) model, the mass scales for
these DCMFs are presently unconstrained and appear to be de-
pendent on model parameters, such as the numerical resolution
of the simulations as well as the Mach number of turbulence
which are difficult to quantify observationally (e.g., Klessen
2001; Ballesteros-Paredes & Mac Low 2002; Gammie et al.
2003). Nonetheless we expect that with appropriate modification
of model parameters such models could also be made consistent
with the observations.

These considerations suggest that apart from a uniform effi-
ciency factor, which is likely fixed by the generation of an out-
flow, the birth mass of a star could to be completely predeter-
mined by the mass of the dense core in which it is born.

The existence of a characteristic mass in the stellar IMF does
suggests a characteristic mass scale is produced by the physi-
cal process of star formation. The physical origin of this mass
scale has not been clear although it has been long known that
thermal (Jeans) fragmentation can produce a mass scale for star
formation (Larson 1985, 1986). For a pressure bounded core the
appropriate mass scale is the critical Bonnor-Ebert mass,

MBE ≈ 1.15 × (n/104)−1/2 × (T/10)3/2 (1)

where T is the gas temperature and n its volume density. The
characteristic mass scale suggested by the stellar IMF is about
0.3 M⊙. For a typical dark cloud of temperature of 10 K, the cor-
responding density scale would need to be about 1.5×105 cm−3.
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small scatter on a set of nearby clouds investigated using NICER
(Lombardi & Alves 2001) and NICEST (Lombardi 2009); sec-
ond, we show that the same law, applied within a single cloud
(using different extinction thresholds) as M ∝ L2 does not hold.
Additionally, we argue that the first version of Larson’s third
law implies a universal physical structure for molecular clouds,
which we identify in their log-normal distributions for the pro-
jected gas density.

Larson’s third law, in its original formulation, links the av-
erage density

〈
n(H2)

〉
of clouds with their size L:

〈
n(H2)

〉
=

3400 cm−3(L/1 pc)α, with α = −1.10. Here L is defined as
the maximum observed linear extent of the cloud, and

〈
n(H2)

〉

is the average density of a sphere of diameter L and total mass
M identical to the cloud (typically estimated from 13CO data).
Larson’s data were more heterogeneous and included different
clouds studied at different contours of integrated intensity, which
resulted in a scatter of approximately one order of magnitude
about the assumed relation; as we will see, our data suggest in-
stead that Larson’s law holds with a scatter below 15%. The
fact that α ≃ −1 implies that the cloud projected column den-
sity,
〈
n(H2)

〉
L ∝ L−0.1, is approximately constant. Larson dis-

cussed a few possible explanations for this: one-dimensional
shock compressions, optical depth natural selection effects, and
observational biases owing to the limited dynamic range of the
13CO data.

2. An extinction measurement of Larson’s law

2.1. Definitions

We consider first (Sect. 2.3) the following version of Larson’s
third law. Since we have at our disposal complete extinction
maps, we can consider the area S of a cloud above a given extinc-
tion threshold A0 (throughout this letter, unless otherwise noted,
we will refer to extinction measurements in the K band, AK , and
drop everywhere the index K). We then define the cloud size
implicitly from S = π(L/2)2 (or the cloud radius as R = L/2).
Similarly, we can consider the cloud mass M above the same
extinction threshold.

We will also briefly investigate the mass vs. radius relation-
ship for each individual cloud, and verify whether we recover
Larson’s prediction M(R) ∝ R2 (Sect. 2.4). Note that the two
versions of Larson’s third law (different clouds above a fixed
extinction threshold, or same cloud at various extinction thresh-
olds) are clearly linked, but are not equivalent, in the sense that
only one of the two might hold. Note also Larson (1981) de-
facto studied different clouds at different thresholds, and there-
fore used a mixture of both versions considered separately here.

Throughout this letter we will treat molecular complexes as
single objects, and we will not split unconnected regions be-
longing to the same complex. Since typically a cloud will have
many clumps with relatively high column densities, this proce-
dure avoids the “creation” of new clouds when the extinction
threshold A0 is increased. This procedure is justified because our
objects are mainly well defined regions, relatively far from the
galactic plane, and with no or little contamination from other
clouds.

2.2. Data analysis

The data used here are extinction maps obtained from the point
source catalog of the Two Micron All Sky Survey (2MASS;
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Fig. 1. Cloud masses above extinction thresholds of A0 = 0.1 mag
(filled symbols) and A0 = 0.5 mag (open symbols) as a function of their
size. The two line shows the best constant surface density fits, which
correspond to Σ = 41 M⊙ pc−2 and Σ = 149 M⊙ pc−2 respectively.

Table 1. Best power-law fits M = aπRγ for various extinction thresh-
olds.

Threshold A0 a γ Scatter c
(mag) (M⊙ pc−γ) (percent)

0.1 41.2 1.99 11% 2.25
0.2 73.1 1.96 12% 2.00
0.5 149.0 2.01 14% 1.63
1.0 264.2 2.06 12% 1.44
1.5 379.8 2.07 14% 1.38

Notes. Note that because γ ≃ 2 in all cases, the quantity a can be inter-
preted as the average mass column density of the cloud above the corre-
sponding extinction threshold. The last two columns show the standard
deviation of the cloud column densities divided by their average (rela-
tive scatter) and the ratio between the average column densities and the
minimum column density set by the extinction threshold (c).

Kleinmann et al. 1994). Data for the various complexes
have been reduced using NICER (Lombardi & Alves 2001)
and NICEST (Lombardi 2009) and following the prescriptions
adopted in previous works (see Lombardi et al. 2006, 2008,
2010). The complexes considered are nearby molecular clouds,
and therefore we are able to well resolve most cores with the
2MASS data; the same clouds have been used in Lada et al.
(2010). Extinction measurements are converted into surface
mass densities using

Σ = µmpβK AK , (1)

where µ is the mean molecular weight, βK ≡ [N(Hi) +
2N(H2)]/AK ≃ 1.67 × 1022 cm−2 mag−1 is the gas-to-dust ratio
(Savage & Mathis 1979; Lilley 1955; Bohlin et al. 1978), and
mp is the proton mass. With a standard gas composition (63%
hydrogen, 36% helium, and 1% dust) we have µ ≃ 1.37 and
therefore Σ/AK ≃ 183 M⊙ pc−2 mag−1.

2.3. Larson’s third law for a constant extinction threshold

Figure 1 shows the amount of mass different clouds have above
extinction thresholds of AK = 0.1 mag and AK = 0.5 mag as a
function of the cloud “radii” (defined according to Sect. 2.1), to-
gether with the best power-law fit. As apparent from this plot, all
clouds follow exquisitely well a Larson-type relationship, with
M ∝ R2, and have therefore very similar projected mass densi-
ties at each extinction threshold. This result is also quantitatively
shown in Table 1, where we report the best-fit power-laws for the
mass vs. radius relation at different extinction thresholds. The
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Fig. 2. Mass vs. radius relationship; both quantities are defined as indi-
cated in Sect. 2.1.

exceptionally small scatter observed in Fig. 1 is also confirmed
by the results shown in Table 1: at all extinctions considered,
data follow the best-fit power-laws with relative standard devia-
tions always below 15%.

Table 1 also show the dimensionless factor c obtained from
the best quadratic fit M = cµmpβK A0πR2 in terms of the con-
stants appearing in Eq. (1). Hence, c = ⟨AK⟩/A0 ≥ 1, and the
fact that c ∼ 2 with a very small relative scatter among different
clouds indicates that all these objects have a very similar physi-
cal structure.

2.4. Larson’s third law for single clouds

Figure 2 shows the second version of Larson’s third law con-
sidered here, i.e. the mass vs. radius relationship. As apparent
from this figure, the tracks for the various clouds have similar
trends, but span a relatively large range of masses. In the range
R ∈ [0.1, 1] pc we can fit a power-law of the form M(R) =
380 M⊙ (R/pc)1.6, a result that compares well with the one ob-
tained by Kauffmann et al. (2010), M(R) = 400 M⊙ (R/pc)1.7.
Different clouds have quite similar exponents (the standard de-
viation of the power-law index is ∼0.18), but rather different
masses (the best-fit scale parameter for the mass ranges from 150
to 710 M⊙). Note, however, that since the power-law index is sig-
nificantly different from two, errors on the assumed distances of
the clouds would affect the scale parameter for the mass.

From this analysis we conclude that Larson’s third law is
not an accurate description of the mass vs. radius relationship
for single clouds. Specifically, at larger scales all clouds show a
flattening of the curves and deviates significantly from a power-
law, while at smaller scales clouds follow power-laws, but with
an exponent significantly different than two.

2.5. Cloud physical structure

As mentioned earlier, that an ensemble of clouds satisfies
Larson’s third law at different extinction thresholds suggests that
clouds have a universal physical structure.

In order to investigate this point better, we consider in Fig. 3
the average column density of cloud material above a given
extinction threshold, as a function of the extinction threshold.
Figure 3 indicates a remarkable uniformity among the various
clouds: they all show a relatively flat plateau up to ∼0.1 mag,
and then a constant rise up to 2–5 mag. In the range A0 ∈
[0.1, 1] mag, the curves for all clouds are confined within a
relatively narrow region. In this extinction range we can fit a
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Fig. 3. Cloud mass surface density above an extinction threshold as a
function of the threshold, in logarithmic scale. The dotted line shows
the relationship between the cloud column density in M⊙ pc−2 and the
extinction in the K band.

simple power-law to the data plotted in Fig. 3, obtaining Σ =
265 M⊙ pc−2 (A0/mag)0.8. Note that an error analysis of the data
points in Fig. 3 at A0 < 0.05 mag shows that they are signif-
icant, because the large number of independent measurements
contributing to these data make the statistical errors negligible,
and because the flatness of the plateau at low extinction values
makes them robust with respect to systematic errors (such as off-
sets in the NICER maps due to extinction in the control field).

3. Theoretical interpretation

The results presented above indicates that clouds have simi-
lar structures. Observationally (see, e.g., Lombardi et al. 2008;
Kainulainen et al. 2009; Lombardi et al. 2010; Froebrich &
Rowles 2010), many clouds show a log-normal distribution at
low extinctions:

pA(A) =
1√

2πσA
exp
[
− (ln A − ln A1)2

2σ2

]
, (2)

where A1 and σ are two positive parameters. A tail at high
extinctions, present in many clouds, is generally associated
with the effects of gravitational instability. The log-normality of
pA(A) is often linked with supersonic turbulence, although recent
results show that this is also a common feature of very different
classes of cloud models (Tassis et al. 2010).

Interestingly, we can express the mass and the area of a cloud
above an extinction threshold as simple integrals of pA(A). Given
a cloud of total area S tot, the area and mass above a given extinc-
tion threshold A0 are

S (A0) = S tot

∫ ∞

A0

pA(A) dA, (3)

M(A0) = S totµmpβ

∫ ∞

A0

ApA(A) dA. (4)

In particular, if we consider the log-normal distribution of
Eq. (2), we obtain for the column density above A0

Σ(A0) ≡ M(A0)
S (A0)

= A1µmpβκ(A0/A1), (5)

where κ is a dimensionless quantity defined as

κ(a) = exp
(
σ2

2

) 1 − erf
[(

ln a − σ2
)
/
√

2σ
]

1 − erf
[
ln a/

√
2σ
] · (6)
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small scatter on a set of nearby clouds investigated using NICER
(Lombardi & Alves 2001) and NICEST (Lombardi 2009); sec-
ond, we show that the same law, applied within a single cloud
(using different extinction thresholds) as M ∝ L2 does not hold.
Additionally, we argue that the first version of Larson’s third
law implies a universal physical structure for molecular clouds,
which we identify in their log-normal distributions for the pro-
jected gas density.

Larson’s third law, in its original formulation, links the av-
erage density

〈
n(H2)

〉
of clouds with their size L:

〈
n(H2)

〉
=

3400 cm−3(L/1 pc)α, with α = −1.10. Here L is defined as
the maximum observed linear extent of the cloud, and

〈
n(H2)

〉

is the average density of a sphere of diameter L and total mass
M identical to the cloud (typically estimated from 13CO data).
Larson’s data were more heterogeneous and included different
clouds studied at different contours of integrated intensity, which
resulted in a scatter of approximately one order of magnitude
about the assumed relation; as we will see, our data suggest in-
stead that Larson’s law holds with a scatter below 15%. The
fact that α ≃ −1 implies that the cloud projected column den-
sity,
〈
n(H2)

〉
L ∝ L−0.1, is approximately constant. Larson dis-

cussed a few possible explanations for this: one-dimensional
shock compressions, optical depth natural selection effects, and
observational biases owing to the limited dynamic range of the
13CO data.

2. An extinction measurement of Larson’s law

2.1. Definitions

We consider first (Sect. 2.3) the following version of Larson’s
third law. Since we have at our disposal complete extinction
maps, we can consider the area S of a cloud above a given extinc-
tion threshold A0 (throughout this letter, unless otherwise noted,
we will refer to extinction measurements in the K band, AK , and
drop everywhere the index K). We then define the cloud size
implicitly from S = π(L/2)2 (or the cloud radius as R = L/2).
Similarly, we can consider the cloud mass M above the same
extinction threshold.

We will also briefly investigate the mass vs. radius relation-
ship for each individual cloud, and verify whether we recover
Larson’s prediction M(R) ∝ R2 (Sect. 2.4). Note that the two
versions of Larson’s third law (different clouds above a fixed
extinction threshold, or same cloud at various extinction thresh-
olds) are clearly linked, but are not equivalent, in the sense that
only one of the two might hold. Note also Larson (1981) de-
facto studied different clouds at different thresholds, and there-
fore used a mixture of both versions considered separately here.

Throughout this letter we will treat molecular complexes as
single objects, and we will not split unconnected regions be-
longing to the same complex. Since typically a cloud will have
many clumps with relatively high column densities, this proce-
dure avoids the “creation” of new clouds when the extinction
threshold A0 is increased. This procedure is justified because our
objects are mainly well defined regions, relatively far from the
galactic plane, and with no or little contamination from other
clouds.

2.2. Data analysis

The data used here are extinction maps obtained from the point
source catalog of the Two Micron All Sky Survey (2MASS;
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Fig. 1. Cloud masses above extinction thresholds of A0 = 0.1 mag
(filled symbols) and A0 = 0.5 mag (open symbols) as a function of their
size. The two line shows the best constant surface density fits, which
correspond to Σ = 41 M⊙ pc−2 and Σ = 149 M⊙ pc−2 respectively.

Table 1. Best power-law fits M = aπRγ for various extinction thresh-
olds.

Threshold A0 a γ Scatter c
(mag) (M⊙ pc−γ) (percent)

0.1 41.2 1.99 11% 2.25
0.2 73.1 1.96 12% 2.00
0.5 149.0 2.01 14% 1.63
1.0 264.2 2.06 12% 1.44
1.5 379.8 2.07 14% 1.38

Notes. Note that because γ ≃ 2 in all cases, the quantity a can be inter-
preted as the average mass column density of the cloud above the corre-
sponding extinction threshold. The last two columns show the standard
deviation of the cloud column densities divided by their average (rela-
tive scatter) and the ratio between the average column densities and the
minimum column density set by the extinction threshold (c).

Kleinmann et al. 1994). Data for the various complexes
have been reduced using NICER (Lombardi & Alves 2001)
and NICEST (Lombardi 2009) and following the prescriptions
adopted in previous works (see Lombardi et al. 2006, 2008,
2010). The complexes considered are nearby molecular clouds,
and therefore we are able to well resolve most cores with the
2MASS data; the same clouds have been used in Lada et al.
(2010). Extinction measurements are converted into surface
mass densities using

Σ = µmpβK AK , (1)

where µ is the mean molecular weight, βK ≡ [N(Hi) +
2N(H2)]/AK ≃ 1.67 × 1022 cm−2 mag−1 is the gas-to-dust ratio
(Savage & Mathis 1979; Lilley 1955; Bohlin et al. 1978), and
mp is the proton mass. With a standard gas composition (63%
hydrogen, 36% helium, and 1% dust) we have µ ≃ 1.37 and
therefore Σ/AK ≃ 183 M⊙ pc−2 mag−1.

2.3. Larson’s third law for a constant extinction threshold

Figure 1 shows the amount of mass different clouds have above
extinction thresholds of AK = 0.1 mag and AK = 0.5 mag as a
function of the cloud “radii” (defined according to Sect. 2.1), to-
gether with the best power-law fit. As apparent from this plot, all
clouds follow exquisitely well a Larson-type relationship, with
M ∝ R2, and have therefore very similar projected mass densi-
ties at each extinction threshold. This result is also quantitatively
shown in Table 1, where we report the best-fit power-laws for the
mass vs. radius relation at different extinction thresholds. The
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Fig. 2. Mass vs. radius relationship; both quantities are defined as indi-
cated in Sect. 2.1.

exceptionally small scatter observed in Fig. 1 is also confirmed
by the results shown in Table 1: at all extinctions considered,
data follow the best-fit power-laws with relative standard devia-
tions always below 15%.

Table 1 also show the dimensionless factor c obtained from
the best quadratic fit M = cµmpβK A0πR2 in terms of the con-
stants appearing in Eq. (1). Hence, c = ⟨AK⟩/A0 ≥ 1, and the
fact that c ∼ 2 with a very small relative scatter among different
clouds indicates that all these objects have a very similar physi-
cal structure.

2.4. Larson’s third law for single clouds

Figure 2 shows the second version of Larson’s third law con-
sidered here, i.e. the mass vs. radius relationship. As apparent
from this figure, the tracks for the various clouds have similar
trends, but span a relatively large range of masses. In the range
R ∈ [0.1, 1] pc we can fit a power-law of the form M(R) =
380 M⊙ (R/pc)1.6, a result that compares well with the one ob-
tained by Kauffmann et al. (2010), M(R) = 400 M⊙ (R/pc)1.7.
Different clouds have quite similar exponents (the standard de-
viation of the power-law index is ∼0.18), but rather different
masses (the best-fit scale parameter for the mass ranges from 150
to 710 M⊙). Note, however, that since the power-law index is sig-
nificantly different from two, errors on the assumed distances of
the clouds would affect the scale parameter for the mass.

From this analysis we conclude that Larson’s third law is
not an accurate description of the mass vs. radius relationship
for single clouds. Specifically, at larger scales all clouds show a
flattening of the curves and deviates significantly from a power-
law, while at smaller scales clouds follow power-laws, but with
an exponent significantly different than two.

2.5. Cloud physical structure

As mentioned earlier, that an ensemble of clouds satisfies
Larson’s third law at different extinction thresholds suggests that
clouds have a universal physical structure.

In order to investigate this point better, we consider in Fig. 3
the average column density of cloud material above a given
extinction threshold, as a function of the extinction threshold.
Figure 3 indicates a remarkable uniformity among the various
clouds: they all show a relatively flat plateau up to ∼0.1 mag,
and then a constant rise up to 2–5 mag. In the range A0 ∈
[0.1, 1] mag, the curves for all clouds are confined within a
relatively narrow region. In this extinction range we can fit a
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Fig. 3. Cloud mass surface density above an extinction threshold as a
function of the threshold, in logarithmic scale. The dotted line shows
the relationship between the cloud column density in M⊙ pc−2 and the
extinction in the K band.

simple power-law to the data plotted in Fig. 3, obtaining Σ =
265 M⊙ pc−2 (A0/mag)0.8. Note that an error analysis of the data
points in Fig. 3 at A0 < 0.05 mag shows that they are signif-
icant, because the large number of independent measurements
contributing to these data make the statistical errors negligible,
and because the flatness of the plateau at low extinction values
makes them robust with respect to systematic errors (such as off-
sets in the NICER maps due to extinction in the control field).

3. Theoretical interpretation

The results presented above indicates that clouds have simi-
lar structures. Observationally (see, e.g., Lombardi et al. 2008;
Kainulainen et al. 2009; Lombardi et al. 2010; Froebrich &
Rowles 2010), many clouds show a log-normal distribution at
low extinctions:

pA(A) =
1√

2πσA
exp
[
− (ln A − ln A1)2

2σ2

]
, (2)

where A1 and σ are two positive parameters. A tail at high
extinctions, present in many clouds, is generally associated
with the effects of gravitational instability. The log-normality of
pA(A) is often linked with supersonic turbulence, although recent
results show that this is also a common feature of very different
classes of cloud models (Tassis et al. 2010).

Interestingly, we can express the mass and the area of a cloud
above an extinction threshold as simple integrals of pA(A). Given
a cloud of total area S tot, the area and mass above a given extinc-
tion threshold A0 are

S (A0) = S tot

∫ ∞

A0

pA(A) dA, (3)

M(A0) = S totµmpβ

∫ ∞

A0

ApA(A) dA. (4)

In particular, if we consider the log-normal distribution of
Eq. (2), we obtain for the column density above A0

Σ(A0) ≡ M(A0)
S (A0)

= A1µmpβκ(A0/A1), (5)

where κ is a dimensionless quantity defined as

κ(a) = exp
(
σ2

2

) 1 − erf
[(

ln a − σ2
)
/
√

2σ
]

1 − erf
[
ln a/

√
2σ
] · (6)
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small scatter on a set of nearby clouds investigated using NICER
(Lombardi & Alves 2001) and NICEST (Lombardi 2009); sec-
ond, we show that the same law, applied within a single cloud
(using different extinction thresholds) as M ∝ L2 does not hold.
Additionally, we argue that the first version of Larson’s third
law implies a universal physical structure for molecular clouds,
which we identify in their log-normal distributions for the pro-
jected gas density.

Larson’s third law, in its original formulation, links the av-
erage density

〈
n(H2)

〉
of clouds with their size L:

〈
n(H2)

〉
=

3400 cm−3(L/1 pc)α, with α = −1.10. Here L is defined as
the maximum observed linear extent of the cloud, and

〈
n(H2)

〉

is the average density of a sphere of diameter L and total mass
M identical to the cloud (typically estimated from 13CO data).
Larson’s data were more heterogeneous and included different
clouds studied at different contours of integrated intensity, which
resulted in a scatter of approximately one order of magnitude
about the assumed relation; as we will see, our data suggest in-
stead that Larson’s law holds with a scatter below 15%. The
fact that α ≃ −1 implies that the cloud projected column den-
sity,
〈
n(H2)

〉
L ∝ L−0.1, is approximately constant. Larson dis-

cussed a few possible explanations for this: one-dimensional
shock compressions, optical depth natural selection effects, and
observational biases owing to the limited dynamic range of the
13CO data.

2. An extinction measurement of Larson’s law

2.1. Definitions

We consider first (Sect. 2.3) the following version of Larson’s
third law. Since we have at our disposal complete extinction
maps, we can consider the area S of a cloud above a given extinc-
tion threshold A0 (throughout this letter, unless otherwise noted,
we will refer to extinction measurements in the K band, AK , and
drop everywhere the index K). We then define the cloud size
implicitly from S = π(L/2)2 (or the cloud radius as R = L/2).
Similarly, we can consider the cloud mass M above the same
extinction threshold.

We will also briefly investigate the mass vs. radius relation-
ship for each individual cloud, and verify whether we recover
Larson’s prediction M(R) ∝ R2 (Sect. 2.4). Note that the two
versions of Larson’s third law (different clouds above a fixed
extinction threshold, or same cloud at various extinction thresh-
olds) are clearly linked, but are not equivalent, in the sense that
only one of the two might hold. Note also Larson (1981) de-
facto studied different clouds at different thresholds, and there-
fore used a mixture of both versions considered separately here.

Throughout this letter we will treat molecular complexes as
single objects, and we will not split unconnected regions be-
longing to the same complex. Since typically a cloud will have
many clumps with relatively high column densities, this proce-
dure avoids the “creation” of new clouds when the extinction
threshold A0 is increased. This procedure is justified because our
objects are mainly well defined regions, relatively far from the
galactic plane, and with no or little contamination from other
clouds.

2.2. Data analysis

The data used here are extinction maps obtained from the point
source catalog of the Two Micron All Sky Survey (2MASS;
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Fig. 1. Cloud masses above extinction thresholds of A0 = 0.1 mag
(filled symbols) and A0 = 0.5 mag (open symbols) as a function of their
size. The two line shows the best constant surface density fits, which
correspond to Σ = 41 M⊙ pc−2 and Σ = 149 M⊙ pc−2 respectively.

Table 1. Best power-law fits M = aπRγ for various extinction thresh-
olds.

Threshold A0 a γ Scatter c
(mag) (M⊙ pc−γ) (percent)

0.1 41.2 1.99 11% 2.25
0.2 73.1 1.96 12% 2.00
0.5 149.0 2.01 14% 1.63
1.0 264.2 2.06 12% 1.44
1.5 379.8 2.07 14% 1.38

Notes. Note that because γ ≃ 2 in all cases, the quantity a can be inter-
preted as the average mass column density of the cloud above the corre-
sponding extinction threshold. The last two columns show the standard
deviation of the cloud column densities divided by their average (rela-
tive scatter) and the ratio between the average column densities and the
minimum column density set by the extinction threshold (c).

Kleinmann et al. 1994). Data for the various complexes
have been reduced using NICER (Lombardi & Alves 2001)
and NICEST (Lombardi 2009) and following the prescriptions
adopted in previous works (see Lombardi et al. 2006, 2008,
2010). The complexes considered are nearby molecular clouds,
and therefore we are able to well resolve most cores with the
2MASS data; the same clouds have been used in Lada et al.
(2010). Extinction measurements are converted into surface
mass densities using

Σ = µmpβK AK , (1)

where µ is the mean molecular weight, βK ≡ [N(Hi) +
2N(H2)]/AK ≃ 1.67 × 1022 cm−2 mag−1 is the gas-to-dust ratio
(Savage & Mathis 1979; Lilley 1955; Bohlin et al. 1978), and
mp is the proton mass. With a standard gas composition (63%
hydrogen, 36% helium, and 1% dust) we have µ ≃ 1.37 and
therefore Σ/AK ≃ 183 M⊙ pc−2 mag−1.

2.3. Larson’s third law for a constant extinction threshold

Figure 1 shows the amount of mass different clouds have above
extinction thresholds of AK = 0.1 mag and AK = 0.5 mag as a
function of the cloud “radii” (defined according to Sect. 2.1), to-
gether with the best power-law fit. As apparent from this plot, all
clouds follow exquisitely well a Larson-type relationship, with
M ∝ R2, and have therefore very similar projected mass densi-
ties at each extinction threshold. This result is also quantitatively
shown in Table 1, where we report the best-fit power-laws for the
mass vs. radius relation at different extinction thresholds. The
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Fig. 2. Mass vs. radius relationship; both quantities are defined as indi-
cated in Sect. 2.1.

exceptionally small scatter observed in Fig. 1 is also confirmed
by the results shown in Table 1: at all extinctions considered,
data follow the best-fit power-laws with relative standard devia-
tions always below 15%.

Table 1 also show the dimensionless factor c obtained from
the best quadratic fit M = cµmpβK A0πR2 in terms of the con-
stants appearing in Eq. (1). Hence, c = ⟨AK⟩/A0 ≥ 1, and the
fact that c ∼ 2 with a very small relative scatter among different
clouds indicates that all these objects have a very similar physi-
cal structure.

2.4. Larson’s third law for single clouds

Figure 2 shows the second version of Larson’s third law con-
sidered here, i.e. the mass vs. radius relationship. As apparent
from this figure, the tracks for the various clouds have similar
trends, but span a relatively large range of masses. In the range
R ∈ [0.1, 1] pc we can fit a power-law of the form M(R) =
380 M⊙ (R/pc)1.6, a result that compares well with the one ob-
tained by Kauffmann et al. (2010), M(R) = 400 M⊙ (R/pc)1.7.
Different clouds have quite similar exponents (the standard de-
viation of the power-law index is ∼0.18), but rather different
masses (the best-fit scale parameter for the mass ranges from 150
to 710 M⊙). Note, however, that since the power-law index is sig-
nificantly different from two, errors on the assumed distances of
the clouds would affect the scale parameter for the mass.

From this analysis we conclude that Larson’s third law is
not an accurate description of the mass vs. radius relationship
for single clouds. Specifically, at larger scales all clouds show a
flattening of the curves and deviates significantly from a power-
law, while at smaller scales clouds follow power-laws, but with
an exponent significantly different than two.

2.5. Cloud physical structure

As mentioned earlier, that an ensemble of clouds satisfies
Larson’s third law at different extinction thresholds suggests that
clouds have a universal physical structure.

In order to investigate this point better, we consider in Fig. 3
the average column density of cloud material above a given
extinction threshold, as a function of the extinction threshold.
Figure 3 indicates a remarkable uniformity among the various
clouds: they all show a relatively flat plateau up to ∼0.1 mag,
and then a constant rise up to 2–5 mag. In the range A0 ∈
[0.1, 1] mag, the curves for all clouds are confined within a
relatively narrow region. In this extinction range we can fit a
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Fig. 3. Cloud mass surface density above an extinction threshold as a
function of the threshold, in logarithmic scale. The dotted line shows
the relationship between the cloud column density in M⊙ pc−2 and the
extinction in the K band.

simple power-law to the data plotted in Fig. 3, obtaining Σ =
265 M⊙ pc−2 (A0/mag)0.8. Note that an error analysis of the data
points in Fig. 3 at A0 < 0.05 mag shows that they are signif-
icant, because the large number of independent measurements
contributing to these data make the statistical errors negligible,
and because the flatness of the plateau at low extinction values
makes them robust with respect to systematic errors (such as off-
sets in the NICER maps due to extinction in the control field).

3. Theoretical interpretation

The results presented above indicates that clouds have simi-
lar structures. Observationally (see, e.g., Lombardi et al. 2008;
Kainulainen et al. 2009; Lombardi et al. 2010; Froebrich &
Rowles 2010), many clouds show a log-normal distribution at
low extinctions:

pA(A) =
1√

2πσA
exp
[
− (ln A − ln A1)2

2σ2

]
, (2)

where A1 and σ are two positive parameters. A tail at high
extinctions, present in many clouds, is generally associated
with the effects of gravitational instability. The log-normality of
pA(A) is often linked with supersonic turbulence, although recent
results show that this is also a common feature of very different
classes of cloud models (Tassis et al. 2010).

Interestingly, we can express the mass and the area of a cloud
above an extinction threshold as simple integrals of pA(A). Given
a cloud of total area S tot, the area and mass above a given extinc-
tion threshold A0 are

S (A0) = S tot

∫ ∞

A0

pA(A) dA, (3)

M(A0) = S totµmpβ

∫ ∞

A0

ApA(A) dA. (4)

In particular, if we consider the log-normal distribution of
Eq. (2), we obtain for the column density above A0

Σ(A0) ≡ M(A0)
S (A0)

= A1µmpβκ(A0/A1), (5)

where κ is a dimensionless quantity defined as

κ(a) = exp
(
σ2

2

) 1 − erf
[(

ln a − σ2
)
/
√

2σ
]

1 − erf
[
ln a/

√
2σ
] · (6)
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small scatter on a set of nearby clouds investigated using NICER
(Lombardi & Alves 2001) and NICEST (Lombardi 2009); sec-
ond, we show that the same law, applied within a single cloud
(using different extinction thresholds) as M ∝ L2 does not hold.
Additionally, we argue that the first version of Larson’s third
law implies a universal physical structure for molecular clouds,
which we identify in their log-normal distributions for the pro-
jected gas density.

Larson’s third law, in its original formulation, links the av-
erage density

〈
n(H2)

〉
of clouds with their size L:

〈
n(H2)

〉
=

3400 cm−3(L/1 pc)α, with α = −1.10. Here L is defined as
the maximum observed linear extent of the cloud, and

〈
n(H2)

〉

is the average density of a sphere of diameter L and total mass
M identical to the cloud (typically estimated from 13CO data).
Larson’s data were more heterogeneous and included different
clouds studied at different contours of integrated intensity, which
resulted in a scatter of approximately one order of magnitude
about the assumed relation; as we will see, our data suggest in-
stead that Larson’s law holds with a scatter below 15%. The
fact that α ≃ −1 implies that the cloud projected column den-
sity,
〈
n(H2)

〉
L ∝ L−0.1, is approximately constant. Larson dis-

cussed a few possible explanations for this: one-dimensional
shock compressions, optical depth natural selection effects, and
observational biases owing to the limited dynamic range of the
13CO data.

2. An extinction measurement of Larson’s law

2.1. Definitions

We consider first (Sect. 2.3) the following version of Larson’s
third law. Since we have at our disposal complete extinction
maps, we can consider the area S of a cloud above a given extinc-
tion threshold A0 (throughout this letter, unless otherwise noted,
we will refer to extinction measurements in the K band, AK , and
drop everywhere the index K). We then define the cloud size
implicitly from S = π(L/2)2 (or the cloud radius as R = L/2).
Similarly, we can consider the cloud mass M above the same
extinction threshold.

We will also briefly investigate the mass vs. radius relation-
ship for each individual cloud, and verify whether we recover
Larson’s prediction M(R) ∝ R2 (Sect. 2.4). Note that the two
versions of Larson’s third law (different clouds above a fixed
extinction threshold, or same cloud at various extinction thresh-
olds) are clearly linked, but are not equivalent, in the sense that
only one of the two might hold. Note also Larson (1981) de-
facto studied different clouds at different thresholds, and there-
fore used a mixture of both versions considered separately here.

Throughout this letter we will treat molecular complexes as
single objects, and we will not split unconnected regions be-
longing to the same complex. Since typically a cloud will have
many clumps with relatively high column densities, this proce-
dure avoids the “creation” of new clouds when the extinction
threshold A0 is increased. This procedure is justified because our
objects are mainly well defined regions, relatively far from the
galactic plane, and with no or little contamination from other
clouds.

2.2. Data analysis

The data used here are extinction maps obtained from the point
source catalog of the Two Micron All Sky Survey (2MASS;
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Fig. 1. Cloud masses above extinction thresholds of A0 = 0.1 mag
(filled symbols) and A0 = 0.5 mag (open symbols) as a function of their
size. The two line shows the best constant surface density fits, which
correspond to Σ = 41 M⊙ pc−2 and Σ = 149 M⊙ pc−2 respectively.

Table 1. Best power-law fits M = aπRγ for various extinction thresh-
olds.

Threshold A0 a γ Scatter c
(mag) (M⊙ pc−γ) (percent)

0.1 41.2 1.99 11% 2.25
0.2 73.1 1.96 12% 2.00
0.5 149.0 2.01 14% 1.63
1.0 264.2 2.06 12% 1.44
1.5 379.8 2.07 14% 1.38

Notes. Note that because γ ≃ 2 in all cases, the quantity a can be inter-
preted as the average mass column density of the cloud above the corre-
sponding extinction threshold. The last two columns show the standard
deviation of the cloud column densities divided by their average (rela-
tive scatter) and the ratio between the average column densities and the
minimum column density set by the extinction threshold (c).

Kleinmann et al. 1994). Data for the various complexes
have been reduced using NICER (Lombardi & Alves 2001)
and NICEST (Lombardi 2009) and following the prescriptions
adopted in previous works (see Lombardi et al. 2006, 2008,
2010). The complexes considered are nearby molecular clouds,
and therefore we are able to well resolve most cores with the
2MASS data; the same clouds have been used in Lada et al.
(2010). Extinction measurements are converted into surface
mass densities using

Σ = µmpβK AK , (1)

where µ is the mean molecular weight, βK ≡ [N(Hi) +
2N(H2)]/AK ≃ 1.67 × 1022 cm−2 mag−1 is the gas-to-dust ratio
(Savage & Mathis 1979; Lilley 1955; Bohlin et al. 1978), and
mp is the proton mass. With a standard gas composition (63%
hydrogen, 36% helium, and 1% dust) we have µ ≃ 1.37 and
therefore Σ/AK ≃ 183 M⊙ pc−2 mag−1.

2.3. Larson’s third law for a constant extinction threshold

Figure 1 shows the amount of mass different clouds have above
extinction thresholds of AK = 0.1 mag and AK = 0.5 mag as a
function of the cloud “radii” (defined according to Sect. 2.1), to-
gether with the best power-law fit. As apparent from this plot, all
clouds follow exquisitely well a Larson-type relationship, with
M ∝ R2, and have therefore very similar projected mass densi-
ties at each extinction threshold. This result is also quantitatively
shown in Table 1, where we report the best-fit power-laws for the
mass vs. radius relation at different extinction thresholds. The
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Fig. 2. Mass vs. radius relationship; both quantities are defined as indi-
cated in Sect. 2.1.

exceptionally small scatter observed in Fig. 1 is also confirmed
by the results shown in Table 1: at all extinctions considered,
data follow the best-fit power-laws with relative standard devia-
tions always below 15%.

Table 1 also show the dimensionless factor c obtained from
the best quadratic fit M = cµmpβK A0πR2 in terms of the con-
stants appearing in Eq. (1). Hence, c = ⟨AK⟩/A0 ≥ 1, and the
fact that c ∼ 2 with a very small relative scatter among different
clouds indicates that all these objects have a very similar physi-
cal structure.

2.4. Larson’s third law for single clouds

Figure 2 shows the second version of Larson’s third law con-
sidered here, i.e. the mass vs. radius relationship. As apparent
from this figure, the tracks for the various clouds have similar
trends, but span a relatively large range of masses. In the range
R ∈ [0.1, 1] pc we can fit a power-law of the form M(R) =
380 M⊙ (R/pc)1.6, a result that compares well with the one ob-
tained by Kauffmann et al. (2010), M(R) = 400 M⊙ (R/pc)1.7.
Different clouds have quite similar exponents (the standard de-
viation of the power-law index is ∼0.18), but rather different
masses (the best-fit scale parameter for the mass ranges from 150
to 710 M⊙). Note, however, that since the power-law index is sig-
nificantly different from two, errors on the assumed distances of
the clouds would affect the scale parameter for the mass.

From this analysis we conclude that Larson’s third law is
not an accurate description of the mass vs. radius relationship
for single clouds. Specifically, at larger scales all clouds show a
flattening of the curves and deviates significantly from a power-
law, while at smaller scales clouds follow power-laws, but with
an exponent significantly different than two.

2.5. Cloud physical structure

As mentioned earlier, that an ensemble of clouds satisfies
Larson’s third law at different extinction thresholds suggests that
clouds have a universal physical structure.

In order to investigate this point better, we consider in Fig. 3
the average column density of cloud material above a given
extinction threshold, as a function of the extinction threshold.
Figure 3 indicates a remarkable uniformity among the various
clouds: they all show a relatively flat plateau up to ∼0.1 mag,
and then a constant rise up to 2–5 mag. In the range A0 ∈
[0.1, 1] mag, the curves for all clouds are confined within a
relatively narrow region. In this extinction range we can fit a
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Fig. 3. Cloud mass surface density above an extinction threshold as a
function of the threshold, in logarithmic scale. The dotted line shows
the relationship between the cloud column density in M⊙ pc−2 and the
extinction in the K band.

simple power-law to the data plotted in Fig. 3, obtaining Σ =
265 M⊙ pc−2 (A0/mag)0.8. Note that an error analysis of the data
points in Fig. 3 at A0 < 0.05 mag shows that they are signif-
icant, because the large number of independent measurements
contributing to these data make the statistical errors negligible,
and because the flatness of the plateau at low extinction values
makes them robust with respect to systematic errors (such as off-
sets in the NICER maps due to extinction in the control field).

3. Theoretical interpretation

The results presented above indicates that clouds have simi-
lar structures. Observationally (see, e.g., Lombardi et al. 2008;
Kainulainen et al. 2009; Lombardi et al. 2010; Froebrich &
Rowles 2010), many clouds show a log-normal distribution at
low extinctions:

pA(A) =
1√

2πσA
exp
[
− (ln A − ln A1)2

2σ2

]
, (2)

where A1 and σ are two positive parameters. A tail at high
extinctions, present in many clouds, is generally associated
with the effects of gravitational instability. The log-normality of
pA(A) is often linked with supersonic turbulence, although recent
results show that this is also a common feature of very different
classes of cloud models (Tassis et al. 2010).

Interestingly, we can express the mass and the area of a cloud
above an extinction threshold as simple integrals of pA(A). Given
a cloud of total area S tot, the area and mass above a given extinc-
tion threshold A0 are

S (A0) = S tot

∫ ∞

A0

pA(A) dA, (3)

M(A0) = S totµmpβ

∫ ∞

A0

ApA(A) dA. (4)

In particular, if we consider the log-normal distribution of
Eq. (2), we obtain for the column density above A0

Σ(A0) ≡ M(A0)
S (A0)

= A1µmpβκ(A0/A1), (5)

where κ is a dimensionless quantity defined as

κ(a) = exp
(
σ2

2

) 1 − erf
[(

ln a − σ2
)
/
√

2σ
]

1 − erf
[
ln a/

√
2σ
] · (6)
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small scatter on a set of nearby clouds investigated using NICER
(Lombardi & Alves 2001) and NICEST (Lombardi 2009); sec-
ond, we show that the same law, applied within a single cloud
(using different extinction thresholds) as M ∝ L2 does not hold.
Additionally, we argue that the first version of Larson’s third
law implies a universal physical structure for molecular clouds,
which we identify in their log-normal distributions for the pro-
jected gas density.

Larson’s third law, in its original formulation, links the av-
erage density

〈
n(H2)

〉
of clouds with their size L:

〈
n(H2)

〉
=

3400 cm−3(L/1 pc)α, with α = −1.10. Here L is defined as
the maximum observed linear extent of the cloud, and

〈
n(H2)

〉

is the average density of a sphere of diameter L and total mass
M identical to the cloud (typically estimated from 13CO data).
Larson’s data were more heterogeneous and included different
clouds studied at different contours of integrated intensity, which
resulted in a scatter of approximately one order of magnitude
about the assumed relation; as we will see, our data suggest in-
stead that Larson’s law holds with a scatter below 15%. The
fact that α ≃ −1 implies that the cloud projected column den-
sity,
〈
n(H2)

〉
L ∝ L−0.1, is approximately constant. Larson dis-

cussed a few possible explanations for this: one-dimensional
shock compressions, optical depth natural selection effects, and
observational biases owing to the limited dynamic range of the
13CO data.

2. An extinction measurement of Larson’s law

2.1. Definitions

We consider first (Sect. 2.3) the following version of Larson’s
third law. Since we have at our disposal complete extinction
maps, we can consider the area S of a cloud above a given extinc-
tion threshold A0 (throughout this letter, unless otherwise noted,
we will refer to extinction measurements in the K band, AK , and
drop everywhere the index K). We then define the cloud size
implicitly from S = π(L/2)2 (or the cloud radius as R = L/2).
Similarly, we can consider the cloud mass M above the same
extinction threshold.

We will also briefly investigate the mass vs. radius relation-
ship for each individual cloud, and verify whether we recover
Larson’s prediction M(R) ∝ R2 (Sect. 2.4). Note that the two
versions of Larson’s third law (different clouds above a fixed
extinction threshold, or same cloud at various extinction thresh-
olds) are clearly linked, but are not equivalent, in the sense that
only one of the two might hold. Note also Larson (1981) de-
facto studied different clouds at different thresholds, and there-
fore used a mixture of both versions considered separately here.

Throughout this letter we will treat molecular complexes as
single objects, and we will not split unconnected regions be-
longing to the same complex. Since typically a cloud will have
many clumps with relatively high column densities, this proce-
dure avoids the “creation” of new clouds when the extinction
threshold A0 is increased. This procedure is justified because our
objects are mainly well defined regions, relatively far from the
galactic plane, and with no or little contamination from other
clouds.

2.2. Data analysis

The data used here are extinction maps obtained from the point
source catalog of the Two Micron All Sky Survey (2MASS;
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Fig. 1. Cloud masses above extinction thresholds of A0 = 0.1 mag
(filled symbols) and A0 = 0.5 mag (open symbols) as a function of their
size. The two line shows the best constant surface density fits, which
correspond to Σ = 41 M⊙ pc−2 and Σ = 149 M⊙ pc−2 respectively.

Table 1. Best power-law fits M = aπRγ for various extinction thresh-
olds.

Threshold A0 a γ Scatter c
(mag) (M⊙ pc−γ) (percent)

0.1 41.2 1.99 11% 2.25
0.2 73.1 1.96 12% 2.00
0.5 149.0 2.01 14% 1.63
1.0 264.2 2.06 12% 1.44
1.5 379.8 2.07 14% 1.38

Notes. Note that because γ ≃ 2 in all cases, the quantity a can be inter-
preted as the average mass column density of the cloud above the corre-
sponding extinction threshold. The last two columns show the standard
deviation of the cloud column densities divided by their average (rela-
tive scatter) and the ratio between the average column densities and the
minimum column density set by the extinction threshold (c).

Kleinmann et al. 1994). Data for the various complexes
have been reduced using NICER (Lombardi & Alves 2001)
and NICEST (Lombardi 2009) and following the prescriptions
adopted in previous works (see Lombardi et al. 2006, 2008,
2010). The complexes considered are nearby molecular clouds,
and therefore we are able to well resolve most cores with the
2MASS data; the same clouds have been used in Lada et al.
(2010). Extinction measurements are converted into surface
mass densities using

Σ = µmpβK AK , (1)

where µ is the mean molecular weight, βK ≡ [N(Hi) +
2N(H2)]/AK ≃ 1.67 × 1022 cm−2 mag−1 is the gas-to-dust ratio
(Savage & Mathis 1979; Lilley 1955; Bohlin et al. 1978), and
mp is the proton mass. With a standard gas composition (63%
hydrogen, 36% helium, and 1% dust) we have µ ≃ 1.37 and
therefore Σ/AK ≃ 183 M⊙ pc−2 mag−1.

2.3. Larson’s third law for a constant extinction threshold

Figure 1 shows the amount of mass different clouds have above
extinction thresholds of AK = 0.1 mag and AK = 0.5 mag as a
function of the cloud “radii” (defined according to Sect. 2.1), to-
gether with the best power-law fit. As apparent from this plot, all
clouds follow exquisitely well a Larson-type relationship, with
M ∝ R2, and have therefore very similar projected mass densi-
ties at each extinction threshold. This result is also quantitatively
shown in Table 1, where we report the best-fit power-laws for the
mass vs. radius relation at different extinction thresholds. The
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Fig. 2. Mass vs. radius relationship; both quantities are defined as indi-
cated in Sect. 2.1.

exceptionally small scatter observed in Fig. 1 is also confirmed
by the results shown in Table 1: at all extinctions considered,
data follow the best-fit power-laws with relative standard devia-
tions always below 15%.

Table 1 also show the dimensionless factor c obtained from
the best quadratic fit M = cµmpβK A0πR2 in terms of the con-
stants appearing in Eq. (1). Hence, c = ⟨AK⟩/A0 ≥ 1, and the
fact that c ∼ 2 with a very small relative scatter among different
clouds indicates that all these objects have a very similar physi-
cal structure.

2.4. Larson’s third law for single clouds

Figure 2 shows the second version of Larson’s third law con-
sidered here, i.e. the mass vs. radius relationship. As apparent
from this figure, the tracks for the various clouds have similar
trends, but span a relatively large range of masses. In the range
R ∈ [0.1, 1] pc we can fit a power-law of the form M(R) =
380 M⊙ (R/pc)1.6, a result that compares well with the one ob-
tained by Kauffmann et al. (2010), M(R) = 400 M⊙ (R/pc)1.7.
Different clouds have quite similar exponents (the standard de-
viation of the power-law index is ∼0.18), but rather different
masses (the best-fit scale parameter for the mass ranges from 150
to 710 M⊙). Note, however, that since the power-law index is sig-
nificantly different from two, errors on the assumed distances of
the clouds would affect the scale parameter for the mass.

From this analysis we conclude that Larson’s third law is
not an accurate description of the mass vs. radius relationship
for single clouds. Specifically, at larger scales all clouds show a
flattening of the curves and deviates significantly from a power-
law, while at smaller scales clouds follow power-laws, but with
an exponent significantly different than two.

2.5. Cloud physical structure

As mentioned earlier, that an ensemble of clouds satisfies
Larson’s third law at different extinction thresholds suggests that
clouds have a universal physical structure.

In order to investigate this point better, we consider in Fig. 3
the average column density of cloud material above a given
extinction threshold, as a function of the extinction threshold.
Figure 3 indicates a remarkable uniformity among the various
clouds: they all show a relatively flat plateau up to ∼0.1 mag,
and then a constant rise up to 2–5 mag. In the range A0 ∈
[0.1, 1] mag, the curves for all clouds are confined within a
relatively narrow region. In this extinction range we can fit a
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Fig. 3. Cloud mass surface density above an extinction threshold as a
function of the threshold, in logarithmic scale. The dotted line shows
the relationship between the cloud column density in M⊙ pc−2 and the
extinction in the K band.

simple power-law to the data plotted in Fig. 3, obtaining Σ =
265 M⊙ pc−2 (A0/mag)0.8. Note that an error analysis of the data
points in Fig. 3 at A0 < 0.05 mag shows that they are signif-
icant, because the large number of independent measurements
contributing to these data make the statistical errors negligible,
and because the flatness of the plateau at low extinction values
makes them robust with respect to systematic errors (such as off-
sets in the NICER maps due to extinction in the control field).

3. Theoretical interpretation

The results presented above indicates that clouds have simi-
lar structures. Observationally (see, e.g., Lombardi et al. 2008;
Kainulainen et al. 2009; Lombardi et al. 2010; Froebrich &
Rowles 2010), many clouds show a log-normal distribution at
low extinctions:

pA(A) =
1√

2πσA
exp
[
− (ln A − ln A1)2

2σ2

]
, (2)

where A1 and σ are two positive parameters. A tail at high
extinctions, present in many clouds, is generally associated
with the effects of gravitational instability. The log-normality of
pA(A) is often linked with supersonic turbulence, although recent
results show that this is also a common feature of very different
classes of cloud models (Tassis et al. 2010).

Interestingly, we can express the mass and the area of a cloud
above an extinction threshold as simple integrals of pA(A). Given
a cloud of total area S tot, the area and mass above a given extinc-
tion threshold A0 are

S (A0) = S tot

∫ ∞

A0

pA(A) dA, (3)

M(A0) = S totµmpβ

∫ ∞

A0

ApA(A) dA. (4)

In particular, if we consider the log-normal distribution of
Eq. (2), we obtain for the column density above A0

Σ(A0) ≡ M(A0)
S (A0)

= A1µmpβκ(A0/A1), (5)

where κ is a dimensionless quantity defined as

κ(a) = exp
(
σ2

2

) 1 − erf
[(

ln a − σ2
)
/
√

2σ
]

1 − erf
[
ln a/

√
2σ
] · (6)
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Fig. 11. The probability distributions of pixel extinctions for the six cloud complexes. In each plot, the red, solid curve represents the best-fit with
a log-normal distribution. Lower panels show the residuals with respect to the best-fit.

distributions of column densities for the various clouds were fit-
ted with a log-normal distributions of the form2

h(AK) =
a

AK � A0
exp

⌥
↵↵↵↵↵ �

�
ln(AK � A0) � ln A1

⇥2

2⇥2

�
�����⌦ . (6)

For some of the clouds, such as Orion B, �Orionis, and Mon R2,
the fits appear to be better than for other ones, such as Orion A
or Rosette. However, in all cases residuals are well above the
expected levels3 and show systematic and structured deviations
even at low column densities. Additionally, all clouds show a
positive residual at the higher column densities, approximately
for AK > 0.2 mag. The significance of these results and the
goodness of the fits need to be further investigated.

One perhaps surprising feature of Fig. 11 is the presence
of a significant number of column density estimates with neg-
ative values. This could be either due to a zero-point o⇥set in the
control field or to uncertainties in the column density measure-
ments, which naturally broadens the intrinsic distribution and
possibly adds a fraction of negative measurements. Note also
that the amount of negative pixels observed is compatible with
the typical error on our extinction maps, which is of the order of
0.03 mag.

3.4. Small-scale inhomogeneities

Lada et al. (1994) first recognized that the local dispersion of
extinction measurements increases with the column density. In

2 Note that the functional form used here di⇥ers, in the definition of ⇥,
with respect to the form used in the previous papers.
3 The theoretical error follows a Poisson distribution, and is therefore
di⇥erent for each cloud and each bin. In the range displayed in Fig. 11,
the median error is approximately 0.1 mag, but since di⇥erent bins are
expected to be uncorrelated, the systematic o⇥sets shown by the various
clouds for AK > 0.2 mag are highly significant.

other words, within a single “pixel element”, the scatter of
the individual stellar column density estimates is proportional
to the average local column density estimate. This results im-
plies the presence of substructures on scales smaller than the
resolution of the extinction maps, and shows that theses sub-
structures are more evident in regions with high column den-
sity. Substructures could be due either to unresolved gradients
or to random fluctuations induced by turbulence (see Lada et al.
1999).

The presence of undetected inhomogeneities is important for
two reasons: (i) they might contain signatures of turbulent mo-
tions (see, e.g. Miesch & Bally 1994; Padoan et al. 1997a); and
(ii) they are bound to bias the extinction measurements towards
lower extinctions in high-column density regions (and, espe-
cially, in the very dense cores; see Lombardi 2009).

In the previous papers of this series we have considered a
quantity that traces well the inhomogeneities:

�2(✓) ⇥ ⇥̂2
ÂK

(✓) + ⇥2
ÂK

(✓) � ⇧
Var

�
Â(n)

K
⇥⌃

(✓). (7)

The �2 map is defined in terms of the observed variance of col-
umn density estimates,

⇥̂2
ÂK

(✓) ⇥
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, (8)

the average expected scatter due to the photometric errors and
the intrinsic dispersion in the colors of the stars
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and of the weighted average expected variance for the column
density measurements around ✓

⇧
Var

�
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Log-normal fits to cloud projected 
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Fig. 11. The probability distributions of pixel extinctions for the six cloud complexes. In each plot, the red, solid curve represents the best-fit with
a log-normal distribution. Lower panels show the residuals with respect to the best-fit.

distributions of column densities for the various clouds were fit-
ted with a log-normal distributions of the form2

h(AK) =
a

AK � A0
exp

⌥
↵↵↵↵↵ �

�
ln(AK � A0) � ln A1

⇥2

2⇥2

�
�����⌦ . (6)

For some of the clouds, such as Orion B, �Orionis, and Mon R2,
the fits appear to be better than for other ones, such as Orion A
or Rosette. However, in all cases residuals are well above the
expected levels3 and show systematic and structured deviations
even at low column densities. Additionally, all clouds show a
positive residual at the higher column densities, approximately
for AK > 0.2 mag. The significance of these results and the
goodness of the fits need to be further investigated.

One perhaps surprising feature of Fig. 11 is the presence
of a significant number of column density estimates with neg-
ative values. This could be either due to a zero-point o⇥set in the
control field or to uncertainties in the column density measure-
ments, which naturally broadens the intrinsic distribution and
possibly adds a fraction of negative measurements. Note also
that the amount of negative pixels observed is compatible with
the typical error on our extinction maps, which is of the order of
0.03 mag.

3.4. Small-scale inhomogeneities

Lada et al. (1994) first recognized that the local dispersion of
extinction measurements increases with the column density. In

2 Note that the functional form used here di⇥ers, in the definition of ⇥,
with respect to the form used in the previous papers.
3 The theoretical error follows a Poisson distribution, and is therefore
di⇥erent for each cloud and each bin. In the range displayed in Fig. 11,
the median error is approximately 0.1 mag, but since di⇥erent bins are
expected to be uncorrelated, the systematic o⇥sets shown by the various
clouds for AK > 0.2 mag are highly significant.

other words, within a single “pixel element”, the scatter of
the individual stellar column density estimates is proportional
to the average local column density estimate. This results im-
plies the presence of substructures on scales smaller than the
resolution of the extinction maps, and shows that theses sub-
structures are more evident in regions with high column den-
sity. Substructures could be due either to unresolved gradients
or to random fluctuations induced by turbulence (see Lada et al.
1999).

The presence of undetected inhomogeneities is important for
two reasons: (i) they might contain signatures of turbulent mo-
tions (see, e.g. Miesch & Bally 1994; Padoan et al. 1997a); and
(ii) they are bound to bias the extinction measurements towards
lower extinctions in high-column density regions (and, espe-
cially, in the very dense cores; see Lombardi 2009).

In the previous papers of this series we have considered a
quantity that traces well the inhomogeneities:
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Fig. 4. Probability density functions (PDFs) of a normalised column density for 13 star-forming clouds in the study. The error bars show the
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N
uncertainties. Solid lines show the fits of lognormal functions to the distributions around the peak, typically over the range ln Av/AV = [−0.5, 1].
The dispersion of the fitted function is shown in the panels. For some clouds, no reasonable fit was achieved over any AV range. For those clouds,
we show for a reference a function approximating the shape using a dotted line. The x-axis on top of the panels shows the extinction scale in
magnitudes.
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regions of dark complexes, i.e. in a very small fraction of the
large areas considered in this paper. Nevertheless, because of the
relevance of these regions in the process of star formation, it is
important to understand this bias and how to correct for it, as is
done in the Nicest method.

Corona Australis (see Fig. 1) is one of the most e�cient
star forming regions (Lada et al. 2010), is located at a distance
of about 130 pc (Casey et al. 1998), and harbors an embedded
cluster towards the Western-end of the cloud (see Fig. 1) with
about 50 young stars (Forbrich & Preibisch (2007); for a recent
review of the region see Neuhäuser & Forbrich 2008). The large
scale structure of the denser regions of the complex was studied
in C18O by Harju et al. (1993) and in dust emission by Chini
et al. (2003). Recently, Peterson et al. (2011) presented Spitzer
IRAC and MIPS observations of a 0.85 deg2 field centered on
the Corona Australis star-forming region, on the Western-end
of the cloud (Fig. 1). Combining the Spitzer results and data
form the literature these authors find a total of 116 candidate
young stellar objects (YSOs) and further evidence that star for-
mation is ongoing in the cloud. Using high-resolution spec-
troscopy from the VLT for a sample of 18 YSOs in the Coronet,
Sicilia-Aguilar et al. (2011) determines an age of <2 Myr, and
probably ⇠0.5–1 Myr for the age of this cluster. An extinction
map of the ⇠3� ⇥ 6� densest regions of the Corona Australis,
again the Western-end of the cloud, appeared in Schneider et al.
(2011), as part of a multi-tracer study of a sample of clouds that
was used to quantify a possible link between cloud structure and
turbulence.

One of the major complications in studying molecular cloud
structure is to account for the possibility that two or more clouds
are seen along the same line-of-sight. When this is the case, even
if one of the clouds is only a di↵use cloud, the structure analysis
is further complicated (see for example the probability distribu-
tion of pixel extinctions in the Pipe nebula, Fig. 20 of Lombardi
et al. 2006). This complication is minimized and can be safely
ignored for relatively high Galactic-latitude clouds like Corona
Australis that lies at a projected distance from the Galactic plane
of ⇠20�. Corona Australis is one of the most isolated Galactic
star forming cloud as seen from Earth which makes it an ideal
case study for molecular cloud structure and star formation.

This paper is organized as follows. In Sect. 2 we briefly de-
scribe the technique used to map the dust and we present the
main results obtained. A statistical analysis of our results and
a discussion of the bias introduced by foreground stars and un-
resolved substructures is presented in Sect. 3. Section 4 is de-
voted to the mass estimate of the cloud complexes. Finally, we
summarize the results obtained in this paper in Sect. 5.

2. Nicer and Nicest extinction maps

The data analysis was carried out following the Nicer and
Nicest techniques and used also in the previous papers of
this series, to which we refer for the details (see in particular
Paper III). We selected reliable point source detections from the
Two Micron All Sky Survey1 (2MASS, Kleinmann et al. (1994))
in the region:

�20� < l < 20�, �37� < b < �13�. (1)

This area (⇠870 deg2 containing approximately 10.7 million
point sources from the 2MASS catalog) contains the Corona
Australis cloud complex and its mainly dust free environment.
1 See http://www.ipac.caltech.edu/2mass/

Fig. 1. Optical image of the Corona Australis complex. The image cov-
ers approximately 3 by 5 deg2 and covers the Western-end of the cloud,
the densest region of the cloud where star formation is ongoing. By
clicking the “toggle image” box below while using Acrobat Reader, the
extinction map presented in this paper appears in green. Image courtesy
of Pavel Pech. Toggle image (online only)

As a preliminary check, we considered the color–color dia-
gram of the stars selected to verify the possible presence of ob-
vious anomalies in the extinction law. Unlike Paper II, we find
only a weak sign of possible contamination by evolved stars and
decided to proceed similarly to Paper III by retaining all objects.

After the selection of a control field for the calibration of
the intrinsic colors of stars (and their covariance matrix) we pro-
duced the final 2MASS/Nicer extinction map, shown in Fig. 2.
The selected control field was defined as a circle of ⇠4.5� cen-
tered on l = 349� and b = �17�. For best results, we smoothed
the individual extinctions measured for each star,

�
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, using a

moving weight average

ÂK(✓) =
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n= 1 W (n)(✓)Â(n)
KPN
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where ÂK(✓) is the extinction at the angular position ✓ and
W (n)(✓) is the weight for the nth star for the pixel at the loca-
tion ✓. This weight, in the standard Nicer algorithm, is a com-
bination of a smoothing, window function W

�
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regions of dark complexes, i.e. in a very small fraction of the
large areas considered in this paper. Nevertheless, because of the
relevance of these regions in the process of star formation, it is
important to understand this bias and how to correct for it, as is
done in the Nicest method.

Corona Australis (see Fig. 1) is one of the most e�cient
star forming regions (Lada et al. 2010), is located at a distance
of about 130 pc (Casey et al. 1998), and harbors an embedded
cluster towards the Western-end of the cloud (see Fig. 1) with
about 50 young stars (Forbrich & Preibisch (2007); for a recent
review of the region see Neuhäuser & Forbrich 2008). The large
scale structure of the denser regions of the complex was studied
in C18O by Harju et al. (1993) and in dust emission by Chini
et al. (2003). Recently, Peterson et al. (2011) presented Spitzer
IRAC and MIPS observations of a 0.85 deg2 field centered on
the Corona Australis star-forming region, on the Western-end
of the cloud (Fig. 1). Combining the Spitzer results and data
form the literature these authors find a total of 116 candidate
young stellar objects (YSOs) and further evidence that star for-
mation is ongoing in the cloud. Using high-resolution spec-
troscopy from the VLT for a sample of 18 YSOs in the Coronet,
Sicilia-Aguilar et al. (2011) determines an age of <2 Myr, and
probably ⇠0.5–1 Myr for the age of this cluster. An extinction
map of the ⇠3� ⇥ 6� densest regions of the Corona Australis,
again the Western-end of the cloud, appeared in Schneider et al.
(2011), as part of a multi-tracer study of a sample of clouds that
was used to quantify a possible link between cloud structure and
turbulence.

One of the major complications in studying molecular cloud
structure is to account for the possibility that two or more clouds
are seen along the same line-of-sight. When this is the case, even
if one of the clouds is only a di↵use cloud, the structure analysis
is further complicated (see for example the probability distribu-
tion of pixel extinctions in the Pipe nebula, Fig. 20 of Lombardi
et al. 2006). This complication is minimized and can be safely
ignored for relatively high Galactic-latitude clouds like Corona
Australis that lies at a projected distance from the Galactic plane
of ⇠20�. Corona Australis is one of the most isolated Galactic
star forming cloud as seen from Earth which makes it an ideal
case study for molecular cloud structure and star formation.

This paper is organized as follows. In Sect. 2 we briefly de-
scribe the technique used to map the dust and we present the
main results obtained. A statistical analysis of our results and
a discussion of the bias introduced by foreground stars and un-
resolved substructures is presented in Sect. 3. Section 4 is de-
voted to the mass estimate of the cloud complexes. Finally, we
summarize the results obtained in this paper in Sect. 5.

2. Nicer and Nicest extinction maps

The data analysis was carried out following the Nicer and
Nicest techniques and used also in the previous papers of
this series, to which we refer for the details (see in particular
Paper III). We selected reliable point source detections from the
Two Micron All Sky Survey1 (2MASS, Kleinmann et al. (1994))
in the region:

�20� < l < 20�, �37� < b < �13�. (1)

This area (⇠870 deg2 containing approximately 10.7 million
point sources from the 2MASS catalog) contains the Corona
Australis cloud complex and its mainly dust free environment.
1 See http://www.ipac.caltech.edu/2mass/

Fig. 1. Optical image of the Corona Australis complex. The image cov-
ers approximately 3 by 5 deg2 and covers the Western-end of the cloud,
the densest region of the cloud where star formation is ongoing. By
clicking the “toggle image” box below while using Acrobat Reader, the
extinction map presented in this paper appears in green. Image courtesy
of Pavel Pech. Toggle image (online only)

As a preliminary check, we considered the color–color dia-
gram of the stars selected to verify the possible presence of ob-
vious anomalies in the extinction law. Unlike Paper II, we find
only a weak sign of possible contamination by evolved stars and
decided to proceed similarly to Paper III by retaining all objects.

After the selection of a control field for the calibration of
the intrinsic colors of stars (and their covariance matrix) we pro-
duced the final 2MASS/Nicer extinction map, shown in Fig. 2.
The selected control field was defined as a circle of ⇠4.5� cen-
tered on l = 349� and b = �17�. For best results, we smoothed
the individual extinctions measured for each star,
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where ÂK(✓) is the extinction at the angular position ✓ and
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bination of a smoothing, window function W
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regions of dark complexes, i.e. in a very small fraction of the
large areas considered in this paper. Nevertheless, because of the
relevance of these regions in the process of star formation, it is
important to understand this bias and how to correct for it, as is
done in the Nicest method.

Corona Australis (see Fig. 1) is one of the most e�cient
star forming regions (Lada et al. 2010), is located at a distance
of about 130 pc (Casey et al. 1998), and harbors an embedded
cluster towards the Western-end of the cloud (see Fig. 1) with
about 50 young stars (Forbrich & Preibisch (2007); for a recent
review of the region see Neuhäuser & Forbrich 2008). The large
scale structure of the denser regions of the complex was studied
in C18O by Harju et al. (1993) and in dust emission by Chini
et al. (2003). Recently, Peterson et al. (2011) presented Spitzer
IRAC and MIPS observations of a 0.85 deg2 field centered on
the Corona Australis star-forming region, on the Western-end
of the cloud (Fig. 1). Combining the Spitzer results and data
form the literature these authors find a total of 116 candidate
young stellar objects (YSOs) and further evidence that star for-
mation is ongoing in the cloud. Using high-resolution spec-
troscopy from the VLT for a sample of 18 YSOs in the Coronet,
Sicilia-Aguilar et al. (2011) determines an age of <2 Myr, and
probably ⇠0.5–1 Myr for the age of this cluster. An extinction
map of the ⇠3� ⇥ 6� densest regions of the Corona Australis,
again the Western-end of the cloud, appeared in Schneider et al.
(2011), as part of a multi-tracer study of a sample of clouds that
was used to quantify a possible link between cloud structure and
turbulence.

One of the major complications in studying molecular cloud
structure is to account for the possibility that two or more clouds
are seen along the same line-of-sight. When this is the case, even
if one of the clouds is only a di↵use cloud, the structure analysis
is further complicated (see for example the probability distribu-
tion of pixel extinctions in the Pipe nebula, Fig. 20 of Lombardi
et al. 2006). This complication is minimized and can be safely
ignored for relatively high Galactic-latitude clouds like Corona
Australis that lies at a projected distance from the Galactic plane
of ⇠20�. Corona Australis is one of the most isolated Galactic
star forming cloud as seen from Earth which makes it an ideal
case study for molecular cloud structure and star formation.

This paper is organized as follows. In Sect. 2 we briefly de-
scribe the technique used to map the dust and we present the
main results obtained. A statistical analysis of our results and
a discussion of the bias introduced by foreground stars and un-
resolved substructures is presented in Sect. 3. Section 4 is de-
voted to the mass estimate of the cloud complexes. Finally, we
summarize the results obtained in this paper in Sect. 5.

2. Nicer and Nicest extinction maps

The data analysis was carried out following the Nicer and
Nicest techniques and used also in the previous papers of
this series, to which we refer for the details (see in particular
Paper III). We selected reliable point source detections from the
Two Micron All Sky Survey1 (2MASS, Kleinmann et al. (1994))
in the region:

�20� < l < 20�, �37� < b < �13�. (1)

This area (⇠870 deg2 containing approximately 10.7 million
point sources from the 2MASS catalog) contains the Corona
Australis cloud complex and its mainly dust free environment.
1 See http://www.ipac.caltech.edu/2mass/

Fig. 1. Optical image of the Corona Australis complex. The image cov-
ers approximately 3 by 5 deg2 and covers the Western-end of the cloud,
the densest region of the cloud where star formation is ongoing. By
clicking the “toggle image” box below while using Acrobat Reader, the
extinction map presented in this paper appears in green. Image courtesy
of Pavel Pech. Toggle image (online only)

As a preliminary check, we considered the color–color dia-
gram of the stars selected to verify the possible presence of ob-
vious anomalies in the extinction law. Unlike Paper II, we find
only a weak sign of possible contamination by evolved stars and
decided to proceed similarly to Paper III by retaining all objects.

After the selection of a control field for the calibration of
the intrinsic colors of stars (and their covariance matrix) we pro-
duced the final 2MASS/Nicer extinction map, shown in Fig. 2.
The selected control field was defined as a circle of ⇠4.5� cen-
tered on l = 349� and b = �17�. For best results, we smoothed
the individual extinctions measured for each star,
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KPN

n= 1 W (n)
, (2)
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Fig. 8. PDF of column density for the Corona Australis cloud. The solid
red curve represents the best-fit of a single log-normal distribution to the
data. The residuals of the fit are presented in the lower panel. The grey
area in the residual plot delimits what would be expected from pois-
son noise. Note that the residuals are not poissonian but exhibit a clear
pattern. The excess over the log-normal fit on the high extinction tail
is present in a similar manner to the results for the clouds in Papers III
and IV, and the results of Kainulainen et al. (2009) and Froebrich &
Rowles (2010).

provides a better fit to simulations than both the pure log-normal
and the skewed log-normal. As a caveat, Tassis et al. (2010)
used simulations to demonstrate that log-normal column density
distributions are generic features of diverse model clouds, and
should not be interpreted as being a consequence of supersonic
turbulence.

The comparison between the predictions from supersonic
flow simulations with observational data have given mixed re-
sults. In a recent investigation of the Perseus cloud Goodman
et al. (2009) found no obvious relation between Mach num-
ber and normalized column density variance, raising questions
on the suggested relation between Mach number and the width
of a log-normal column density PDF (e.g. Padoan et al. 1997;
Ostriker et al. 2001). On the other hand, using 2MASS NIR
extinction maps, Kainulainen et al. (2009) have characterized
the shape of the column density PDFs in nearby molecular
clouds and found that although the peaks of the PDFs were
generally consistent with log-normal distributions, there were
systematic excess “wings” at higher column densities for clouds
currently forming stars (including Corona Australis). Using a
similar approach, a similar cloud sample, and the same data base
(2MASS), Froebrich et al. (2007); Froebrich & Rowles (2010)
also found that some clouds show an excess of column density
compared to a log-normal distribution at higher column den-
sities, although they did not find a significant correlation with
star formation. Recently, Schneider et al. (2013) also found a
power-law excess over a log-normal column density PDF for
Orion B from Herschel data. Both Kainulainen et al. (2009) and
Froebrich & Rowles (2010) suggested that the observed excess
material over the log-normal PDF represents the cloud mate-
rial decoupled from the general turbulent field and dominated by
gravity. Schneider et al. (2013) also argue that the tail is related
to star formation, but stress that statistical density fluctuations,

intermittency, and magnetic fields can also cause the observed
excess.

4.1. A single log-normal PDF

In this section we take a closer look at the column density PDF of
the Corona Australis cloud. Figure 8 shows the PDF of column
density for the entire area of the cloud as defined in Fig. 7. As in
our previous papers of this series, we find a significant number
of column density estimates with negative values. This is due to
uncertainties in the column density measurements, which nat-
urally broadens the intrinsic distribution and adds a fraction of
negative measurements. Note, however, that the amount of neg-
ative pixels observed is compatible with the typical error on our
extinction maps, which is of the order of 0.02 mag. Also shown
in Fig. 8 is a best fit of a single log-normal function2 to the data
(red solid curve), of the form:

h(AK) =
a

AK � A0
exp
2
666664�
�
ln(AK � A0) � ln A1

�2

2�2
ln

3
777775 · (5)

where a is the normalization factor, A0 is the o↵set, the mean is
given by A1 ⇥ e�2

ln/2 + A0, and the median of the distribution is
A1 + A0. The o↵set A0 is introduced to allow the fit to explore
negative values of AK . The fit parameters are listed in Table 3.
The bottom panel shows the residuals of the fit, and the expected
1� error (grey area). Examination of the residuals shows two sig-
nificant features that deviate from the expected errors. First, the
residuals display a clear extended excess in the high-extinction
wing of the PDF. Second, although the amplitude of the resid-
uals is consistent with expectations in the core of the PDF, the
residuals exhibit a systematic correlated pattern of noise that de-
viates from the expectation of uncorrelated errors. The clouds in
Papers III and IV (Perseus, Taurus, California, Orion, Mon R2,
Rosette, and Canis Major) all displayed a similar pattern in the
residuals as seen in Fig. 8, suggesting that this is a general prob-
lem a↵ecting all log-normal fitting involving the core of the PDF,
and not particular to this cloud.

It is clear from Fig. 8 that a single function cannot account
su�ciently for the observed PDF. There is, nevertheless, enough
motivation to try to perform a two-component fit to the cloud
PDF, because of the apparent power-law tail at high column
densities over a log-normal PDF discussed in the literature, to
account for noise, or to account for the possible the presence
of unresolved spatial variations in the PDF. Recently, regional
variations in the column density PDF within a single cloud were
found (Pineda et al. 2008; Beaumont et al. 2012; Schneider et al.
2012), that suggest that superposition of di↵erent PDF compo-
nents is probably common. In the following paragraphs we will
investigate two cases of a two-component fit, namely: 1) a log-
normal plus a power-law tail; 2) a log-normal and a Gaussian;
and 3) a Gaussian + a power-law, to investigate the impact of
the errors on these fits. We performed our fits by simultaneously
adjusting all fit parameters for all distributions: in other words,
we did not fit separately di↵erent parts of the PDF using di↵er-
ent functional forms, but rather we fit the entire range with the
sum of all functional forms selected (log-normal + power law,
log-normal+Gaussian, and Gaussian + power law).

2 Note that the functional form used here di↵ers, in the definition
of �ln, with respect to the form used in Papers II and III, but is the
same as in Paper IV.

A18, page 7 of 10

Alves et al. (2014)

Systematic residuals in the entire
fitting region!



The end of a dreamA&A 565, A18 (2014)

regions of dark complexes, i.e. in a very small fraction of the
large areas considered in this paper. Nevertheless, because of the
relevance of these regions in the process of star formation, it is
important to understand this bias and how to correct for it, as is
done in the Nicest method.

Corona Australis (see Fig. 1) is one of the most e�cient
star forming regions (Lada et al. 2010), is located at a distance
of about 130 pc (Casey et al. 1998), and harbors an embedded
cluster towards the Western-end of the cloud (see Fig. 1) with
about 50 young stars (Forbrich & Preibisch (2007); for a recent
review of the region see Neuhäuser & Forbrich 2008). The large
scale structure of the denser regions of the complex was studied
in C18O by Harju et al. (1993) and in dust emission by Chini
et al. (2003). Recently, Peterson et al. (2011) presented Spitzer
IRAC and MIPS observations of a 0.85 deg2 field centered on
the Corona Australis star-forming region, on the Western-end
of the cloud (Fig. 1). Combining the Spitzer results and data
form the literature these authors find a total of 116 candidate
young stellar objects (YSOs) and further evidence that star for-
mation is ongoing in the cloud. Using high-resolution spec-
troscopy from the VLT for a sample of 18 YSOs in the Coronet,
Sicilia-Aguilar et al. (2011) determines an age of <2 Myr, and
probably ⇠0.5–1 Myr for the age of this cluster. An extinction
map of the ⇠3� ⇥ 6� densest regions of the Corona Australis,
again the Western-end of the cloud, appeared in Schneider et al.
(2011), as part of a multi-tracer study of a sample of clouds that
was used to quantify a possible link between cloud structure and
turbulence.

One of the major complications in studying molecular cloud
structure is to account for the possibility that two or more clouds
are seen along the same line-of-sight. When this is the case, even
if one of the clouds is only a di↵use cloud, the structure analysis
is further complicated (see for example the probability distribu-
tion of pixel extinctions in the Pipe nebula, Fig. 20 of Lombardi
et al. 2006). This complication is minimized and can be safely
ignored for relatively high Galactic-latitude clouds like Corona
Australis that lies at a projected distance from the Galactic plane
of ⇠20�. Corona Australis is one of the most isolated Galactic
star forming cloud as seen from Earth which makes it an ideal
case study for molecular cloud structure and star formation.

This paper is organized as follows. In Sect. 2 we briefly de-
scribe the technique used to map the dust and we present the
main results obtained. A statistical analysis of our results and
a discussion of the bias introduced by foreground stars and un-
resolved substructures is presented in Sect. 3. Section 4 is de-
voted to the mass estimate of the cloud complexes. Finally, we
summarize the results obtained in this paper in Sect. 5.

2. Nicer and Nicest extinction maps

The data analysis was carried out following the Nicer and
Nicest techniques and used also in the previous papers of
this series, to which we refer for the details (see in particular
Paper III). We selected reliable point source detections from the
Two Micron All Sky Survey1 (2MASS, Kleinmann et al. (1994))
in the region:

�20� < l < 20�, �37� < b < �13�. (1)

This area (⇠870 deg2 containing approximately 10.7 million
point sources from the 2MASS catalog) contains the Corona
Australis cloud complex and its mainly dust free environment.
1 See http://www.ipac.caltech.edu/2mass/

Fig. 1. Optical image of the Corona Australis complex. The image cov-
ers approximately 3 by 5 deg2 and covers the Western-end of the cloud,
the densest region of the cloud where star formation is ongoing. By
clicking the “toggle image” box below while using Acrobat Reader, the
extinction map presented in this paper appears in green. Image courtesy
of Pavel Pech. Toggle image (online only)

As a preliminary check, we considered the color–color dia-
gram of the stars selected to verify the possible presence of ob-
vious anomalies in the extinction law. Unlike Paper II, we find
only a weak sign of possible contamination by evolved stars and
decided to proceed similarly to Paper III by retaining all objects.

After the selection of a control field for the calibration of
the intrinsic colors of stars (and their covariance matrix) we pro-
duced the final 2MASS/Nicer extinction map, shown in Fig. 2.
The selected control field was defined as a circle of ⇠4.5� cen-
tered on l = 349� and b = �17�. For best results, we smoothed
the individual extinctions measured for each star,

�
Â(n)

K
 
, using a

moving weight average

ÂK(✓) =
PN

n= 1 W (n)(✓)Â(n)
KPN

n= 1 W (n)
, (2)

where ÂK(✓) is the extinction at the angular position ✓ and
W (n)(✓) is the weight for the nth star for the pixel at the loca-
tion ✓. This weight, in the standard Nicer algorithm, is a com-
bination of a smoothing, window function W

�
✓ � ✓(n)�, i.e. a
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Fig. 8. PDF of column density for the Corona Australis cloud. The solid
red curve represents the best-fit of a single log-normal distribution to the
data. The residuals of the fit are presented in the lower panel. The grey
area in the residual plot delimits what would be expected from pois-
son noise. Note that the residuals are not poissonian but exhibit a clear
pattern. The excess over the log-normal fit on the high extinction tail
is present in a similar manner to the results for the clouds in Papers III
and IV, and the results of Kainulainen et al. (2009) and Froebrich &
Rowles (2010).

provides a better fit to simulations than both the pure log-normal
and the skewed log-normal. As a caveat, Tassis et al. (2010)
used simulations to demonstrate that log-normal column density
distributions are generic features of diverse model clouds, and
should not be interpreted as being a consequence of supersonic
turbulence.

The comparison between the predictions from supersonic
flow simulations with observational data have given mixed re-
sults. In a recent investigation of the Perseus cloud Goodman
et al. (2009) found no obvious relation between Mach num-
ber and normalized column density variance, raising questions
on the suggested relation between Mach number and the width
of a log-normal column density PDF (e.g. Padoan et al. 1997;
Ostriker et al. 2001). On the other hand, using 2MASS NIR
extinction maps, Kainulainen et al. (2009) have characterized
the shape of the column density PDFs in nearby molecular
clouds and found that although the peaks of the PDFs were
generally consistent with log-normal distributions, there were
systematic excess “wings” at higher column densities for clouds
currently forming stars (including Corona Australis). Using a
similar approach, a similar cloud sample, and the same data base
(2MASS), Froebrich et al. (2007); Froebrich & Rowles (2010)
also found that some clouds show an excess of column density
compared to a log-normal distribution at higher column den-
sities, although they did not find a significant correlation with
star formation. Recently, Schneider et al. (2013) also found a
power-law excess over a log-normal column density PDF for
Orion B from Herschel data. Both Kainulainen et al. (2009) and
Froebrich & Rowles (2010) suggested that the observed excess
material over the log-normal PDF represents the cloud mate-
rial decoupled from the general turbulent field and dominated by
gravity. Schneider et al. (2013) also argue that the tail is related
to star formation, but stress that statistical density fluctuations,

intermittency, and magnetic fields can also cause the observed
excess.

4.1. A single log-normal PDF

In this section we take a closer look at the column density PDF of
the Corona Australis cloud. Figure 8 shows the PDF of column
density for the entire area of the cloud as defined in Fig. 7. As in
our previous papers of this series, we find a significant number
of column density estimates with negative values. This is due to
uncertainties in the column density measurements, which nat-
urally broadens the intrinsic distribution and adds a fraction of
negative measurements. Note, however, that the amount of neg-
ative pixels observed is compatible with the typical error on our
extinction maps, which is of the order of 0.02 mag. Also shown
in Fig. 8 is a best fit of a single log-normal function2 to the data
(red solid curve), of the form:

h(AK) =
a

AK � A0
exp
2
666664�
�
ln(AK � A0) � ln A1

�2

2�2
ln

3
777775 · (5)

where a is the normalization factor, A0 is the o↵set, the mean is
given by A1 ⇥ e�2

ln/2 + A0, and the median of the distribution is
A1 + A0. The o↵set A0 is introduced to allow the fit to explore
negative values of AK . The fit parameters are listed in Table 3.
The bottom panel shows the residuals of the fit, and the expected
1� error (grey area). Examination of the residuals shows two sig-
nificant features that deviate from the expected errors. First, the
residuals display a clear extended excess in the high-extinction
wing of the PDF. Second, although the amplitude of the resid-
uals is consistent with expectations in the core of the PDF, the
residuals exhibit a systematic correlated pattern of noise that de-
viates from the expectation of uncorrelated errors. The clouds in
Papers III and IV (Perseus, Taurus, California, Orion, Mon R2,
Rosette, and Canis Major) all displayed a similar pattern in the
residuals as seen in Fig. 8, suggesting that this is a general prob-
lem a↵ecting all log-normal fitting involving the core of the PDF,
and not particular to this cloud.

It is clear from Fig. 8 that a single function cannot account
su�ciently for the observed PDF. There is, nevertheless, enough
motivation to try to perform a two-component fit to the cloud
PDF, because of the apparent power-law tail at high column
densities over a log-normal PDF discussed in the literature, to
account for noise, or to account for the possible the presence
of unresolved spatial variations in the PDF. Recently, regional
variations in the column density PDF within a single cloud were
found (Pineda et al. 2008; Beaumont et al. 2012; Schneider et al.
2012), that suggest that superposition of di↵erent PDF compo-
nents is probably common. In the following paragraphs we will
investigate two cases of a two-component fit, namely: 1) a log-
normal plus a power-law tail; 2) a log-normal and a Gaussian;
and 3) a Gaussian + a power-law, to investigate the impact of
the errors on these fits. We performed our fits by simultaneously
adjusting all fit parameters for all distributions: in other words,
we did not fit separately di↵erent parts of the PDF using di↵er-
ent functional forms, but rather we fit the entire range with the
sum of all functional forms selected (log-normal + power law,
log-normal+Gaussian, and Gaussian + power law).

2 Note that the functional form used here di↵ers, in the definition
of �ln, with respect to the form used in Papers II and III, but is the
same as in Paper IV.
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Fig. 11. The probability distributions of pixel extinctions for the six cloud complexes. In each plot, the red, solid curve represents the best-fit with
a log-normal distribution. Lower panels show the residuals with respect to the best-fit.

distributions of column densities for the various clouds were fit-
ted with a log-normal distributions of the form2

h(AK) =
a

AK � A0
exp

⌥
↵↵↵↵↵ �

�
ln(AK � A0) � ln A1

⇥2

2⇥2

�
�����⌦ . (6)

For some of the clouds, such as Orion B, �Orionis, and Mon R2,
the fits appear to be better than for other ones, such as Orion A
or Rosette. However, in all cases residuals are well above the
expected levels3 and show systematic and structured deviations
even at low column densities. Additionally, all clouds show a
positive residual at the higher column densities, approximately
for AK > 0.2 mag. The significance of these results and the
goodness of the fits need to be further investigated.

One perhaps surprising feature of Fig. 11 is the presence
of a significant number of column density estimates with neg-
ative values. This could be either due to a zero-point o⇥set in the
control field or to uncertainties in the column density measure-
ments, which naturally broadens the intrinsic distribution and
possibly adds a fraction of negative measurements. Note also
that the amount of negative pixels observed is compatible with
the typical error on our extinction maps, which is of the order of
0.03 mag.

3.4. Small-scale inhomogeneities

Lada et al. (1994) first recognized that the local dispersion of
extinction measurements increases with the column density. In

2 Note that the functional form used here di⇥ers, in the definition of ⇥,
with respect to the form used in the previous papers.
3 The theoretical error follows a Poisson distribution, and is therefore
di⇥erent for each cloud and each bin. In the range displayed in Fig. 11,
the median error is approximately 0.1 mag, but since di⇥erent bins are
expected to be uncorrelated, the systematic o⇥sets shown by the various
clouds for AK > 0.2 mag are highly significant.

other words, within a single “pixel element”, the scatter of
the individual stellar column density estimates is proportional
to the average local column density estimate. This results im-
plies the presence of substructures on scales smaller than the
resolution of the extinction maps, and shows that theses sub-
structures are more evident in regions with high column den-
sity. Substructures could be due either to unresolved gradients
or to random fluctuations induced by turbulence (see Lada et al.
1999).

The presence of undetected inhomogeneities is important for
two reasons: (i) they might contain signatures of turbulent mo-
tions (see, e.g. Miesch & Bally 1994; Padoan et al. 1997a); and
(ii) they are bound to bias the extinction measurements towards
lower extinctions in high-column density regions (and, espe-
cially, in the very dense cores; see Lombardi 2009).

In the previous papers of this series we have considered a
quantity that traces well the inhomogeneities:
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The �2 map is defined in terms of the observed variance of col-
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K � ÂK(✓)
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Fig. 11. The probability distributions of pixel extinctions for the six cloud complexes. In each plot, the red, solid curve represents the best-fit with
a log-normal distribution. Lower panels show the residuals with respect to the best-fit.

distributions of column densities for the various clouds were fit-
ted with a log-normal distributions of the form2

h(AK) =
a

AK � A0
exp

⌥
↵↵↵↵↵ �

�
ln(AK � A0) � ln A1

⇥2

2⇥2

�
�����⌦ . (6)

For some of the clouds, such as Orion B, �Orionis, and Mon R2,
the fits appear to be better than for other ones, such as Orion A
or Rosette. However, in all cases residuals are well above the
expected levels3 and show systematic and structured deviations
even at low column densities. Additionally, all clouds show a
positive residual at the higher column densities, approximately
for AK > 0.2 mag. The significance of these results and the
goodness of the fits need to be further investigated.

One perhaps surprising feature of Fig. 11 is the presence
of a significant number of column density estimates with neg-
ative values. This could be either due to a zero-point o⇥set in the
control field or to uncertainties in the column density measure-
ments, which naturally broadens the intrinsic distribution and
possibly adds a fraction of negative measurements. Note also
that the amount of negative pixels observed is compatible with
the typical error on our extinction maps, which is of the order of
0.03 mag.

3.4. Small-scale inhomogeneities

Lada et al. (1994) first recognized that the local dispersion of
extinction measurements increases with the column density. In

2 Note that the functional form used here di⇥ers, in the definition of ⇥,
with respect to the form used in the previous papers.
3 The theoretical error follows a Poisson distribution, and is therefore
di⇥erent for each cloud and each bin. In the range displayed in Fig. 11,
the median error is approximately 0.1 mag, but since di⇥erent bins are
expected to be uncorrelated, the systematic o⇥sets shown by the various
clouds for AK > 0.2 mag are highly significant.

other words, within a single “pixel element”, the scatter of
the individual stellar column density estimates is proportional
to the average local column density estimate. This results im-
plies the presence of substructures on scales smaller than the
resolution of the extinction maps, and shows that theses sub-
structures are more evident in regions with high column den-
sity. Substructures could be due either to unresolved gradients
or to random fluctuations induced by turbulence (see Lada et al.
1999).

The presence of undetected inhomogeneities is important for
two reasons: (i) they might contain signatures of turbulent mo-
tions (see, e.g. Miesch & Bally 1994; Padoan et al. 1997a); and
(ii) they are bound to bias the extinction measurements towards
lower extinctions in high-column density regions (and, espe-
cially, in the very dense cores; see Lombardi 2009).

In the previous papers of this series we have considered a
quantity that traces well the inhomogeneities:
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ÂK

(✓) + ⇥2
ÂK
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regions of dark complexes, i.e. in a very small fraction of the
large areas considered in this paper. Nevertheless, because of the
relevance of these regions in the process of star formation, it is
important to understand this bias and how to correct for it, as is
done in the Nicest method.

Corona Australis (see Fig. 1) is one of the most e�cient
star forming regions (Lada et al. 2010), is located at a distance
of about 130 pc (Casey et al. 1998), and harbors an embedded
cluster towards the Western-end of the cloud (see Fig. 1) with
about 50 young stars (Forbrich & Preibisch (2007); for a recent
review of the region see Neuhäuser & Forbrich 2008). The large
scale structure of the denser regions of the complex was studied
in C18O by Harju et al. (1993) and in dust emission by Chini
et al. (2003). Recently, Peterson et al. (2011) presented Spitzer
IRAC and MIPS observations of a 0.85 deg2 field centered on
the Corona Australis star-forming region, on the Western-end
of the cloud (Fig. 1). Combining the Spitzer results and data
form the literature these authors find a total of 116 candidate
young stellar objects (YSOs) and further evidence that star for-
mation is ongoing in the cloud. Using high-resolution spec-
troscopy from the VLT for a sample of 18 YSOs in the Coronet,
Sicilia-Aguilar et al. (2011) determines an age of <2 Myr, and
probably ⇠0.5–1 Myr for the age of this cluster. An extinction
map of the ⇠3� ⇥ 6� densest regions of the Corona Australis,
again the Western-end of the cloud, appeared in Schneider et al.
(2011), as part of a multi-tracer study of a sample of clouds that
was used to quantify a possible link between cloud structure and
turbulence.

One of the major complications in studying molecular cloud
structure is to account for the possibility that two or more clouds
are seen along the same line-of-sight. When this is the case, even
if one of the clouds is only a di↵use cloud, the structure analysis
is further complicated (see for example the probability distribu-
tion of pixel extinctions in the Pipe nebula, Fig. 20 of Lombardi
et al. 2006). This complication is minimized and can be safely
ignored for relatively high Galactic-latitude clouds like Corona
Australis that lies at a projected distance from the Galactic plane
of ⇠20�. Corona Australis is one of the most isolated Galactic
star forming cloud as seen from Earth which makes it an ideal
case study for molecular cloud structure and star formation.

This paper is organized as follows. In Sect. 2 we briefly de-
scribe the technique used to map the dust and we present the
main results obtained. A statistical analysis of our results and
a discussion of the bias introduced by foreground stars and un-
resolved substructures is presented in Sect. 3. Section 4 is de-
voted to the mass estimate of the cloud complexes. Finally, we
summarize the results obtained in this paper in Sect. 5.

2. Nicer and Nicest extinction maps

The data analysis was carried out following the Nicer and
Nicest techniques and used also in the previous papers of
this series, to which we refer for the details (see in particular
Paper III). We selected reliable point source detections from the
Two Micron All Sky Survey1 (2MASS, Kleinmann et al. (1994))
in the region:

�20� < l < 20�, �37� < b < �13�. (1)

This area (⇠870 deg2 containing approximately 10.7 million
point sources from the 2MASS catalog) contains the Corona
Australis cloud complex and its mainly dust free environment.
1 See http://www.ipac.caltech.edu/2mass/

Fig. 1. Optical image of the Corona Australis complex. The image cov-
ers approximately 3 by 5 deg2 and covers the Western-end of the cloud,
the densest region of the cloud where star formation is ongoing. By
clicking the “toggle image” box below while using Acrobat Reader, the
extinction map presented in this paper appears in green. Image courtesy
of Pavel Pech. Toggle image (online only)

As a preliminary check, we considered the color–color dia-
gram of the stars selected to verify the possible presence of ob-
vious anomalies in the extinction law. Unlike Paper II, we find
only a weak sign of possible contamination by evolved stars and
decided to proceed similarly to Paper III by retaining all objects.

After the selection of a control field for the calibration of
the intrinsic colors of stars (and their covariance matrix) we pro-
duced the final 2MASS/Nicer extinction map, shown in Fig. 2.
The selected control field was defined as a circle of ⇠4.5� cen-
tered on l = 349� and b = �17�. For best results, we smoothed
the individual extinctions measured for each star,

�
Â(n)

K
 
, using a

moving weight average
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where ÂK(✓) is the extinction at the angular position ✓ and
W (n)(✓) is the weight for the nth star for the pixel at the loca-
tion ✓. This weight, in the standard Nicer algorithm, is a com-
bination of a smoothing, window function W
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Fig. 8. PDF of column density for the Corona Australis cloud. The solid
red curve represents the best-fit of a single log-normal distribution to the
data. The residuals of the fit are presented in the lower panel. The grey
area in the residual plot delimits what would be expected from pois-
son noise. Note that the residuals are not poissonian but exhibit a clear
pattern. The excess over the log-normal fit on the high extinction tail
is present in a similar manner to the results for the clouds in Papers III
and IV, and the results of Kainulainen et al. (2009) and Froebrich &
Rowles (2010).

provides a better fit to simulations than both the pure log-normal
and the skewed log-normal. As a caveat, Tassis et al. (2010)
used simulations to demonstrate that log-normal column density
distributions are generic features of diverse model clouds, and
should not be interpreted as being a consequence of supersonic
turbulence.

The comparison between the predictions from supersonic
flow simulations with observational data have given mixed re-
sults. In a recent investigation of the Perseus cloud Goodman
et al. (2009) found no obvious relation between Mach num-
ber and normalized column density variance, raising questions
on the suggested relation between Mach number and the width
of a log-normal column density PDF (e.g. Padoan et al. 1997;
Ostriker et al. 2001). On the other hand, using 2MASS NIR
extinction maps, Kainulainen et al. (2009) have characterized
the shape of the column density PDFs in nearby molecular
clouds and found that although the peaks of the PDFs were
generally consistent with log-normal distributions, there were
systematic excess “wings” at higher column densities for clouds
currently forming stars (including Corona Australis). Using a
similar approach, a similar cloud sample, and the same data base
(2MASS), Froebrich et al. (2007); Froebrich & Rowles (2010)
also found that some clouds show an excess of column density
compared to a log-normal distribution at higher column den-
sities, although they did not find a significant correlation with
star formation. Recently, Schneider et al. (2013) also found a
power-law excess over a log-normal column density PDF for
Orion B from Herschel data. Both Kainulainen et al. (2009) and
Froebrich & Rowles (2010) suggested that the observed excess
material over the log-normal PDF represents the cloud mate-
rial decoupled from the general turbulent field and dominated by
gravity. Schneider et al. (2013) also argue that the tail is related
to star formation, but stress that statistical density fluctuations,

intermittency, and magnetic fields can also cause the observed
excess.

4.1. A single log-normal PDF

In this section we take a closer look at the column density PDF of
the Corona Australis cloud. Figure 8 shows the PDF of column
density for the entire area of the cloud as defined in Fig. 7. As in
our previous papers of this series, we find a significant number
of column density estimates with negative values. This is due to
uncertainties in the column density measurements, which nat-
urally broadens the intrinsic distribution and adds a fraction of
negative measurements. Note, however, that the amount of neg-
ative pixels observed is compatible with the typical error on our
extinction maps, which is of the order of 0.02 mag. Also shown
in Fig. 8 is a best fit of a single log-normal function2 to the data
(red solid curve), of the form:

h(AK) =
a

AK � A0
exp
2
666664�
�
ln(AK � A0) � ln A1

�2

2�2
ln

3
777775 · (5)

where a is the normalization factor, A0 is the o↵set, the mean is
given by A1 ⇥ e�2

ln/2 + A0, and the median of the distribution is
A1 + A0. The o↵set A0 is introduced to allow the fit to explore
negative values of AK . The fit parameters are listed in Table 3.
The bottom panel shows the residuals of the fit, and the expected
1� error (grey area). Examination of the residuals shows two sig-
nificant features that deviate from the expected errors. First, the
residuals display a clear extended excess in the high-extinction
wing of the PDF. Second, although the amplitude of the resid-
uals is consistent with expectations in the core of the PDF, the
residuals exhibit a systematic correlated pattern of noise that de-
viates from the expectation of uncorrelated errors. The clouds in
Papers III and IV (Perseus, Taurus, California, Orion, Mon R2,
Rosette, and Canis Major) all displayed a similar pattern in the
residuals as seen in Fig. 8, suggesting that this is a general prob-
lem a↵ecting all log-normal fitting involving the core of the PDF,
and not particular to this cloud.

It is clear from Fig. 8 that a single function cannot account
su�ciently for the observed PDF. There is, nevertheless, enough
motivation to try to perform a two-component fit to the cloud
PDF, because of the apparent power-law tail at high column
densities over a log-normal PDF discussed in the literature, to
account for noise, or to account for the possible the presence
of unresolved spatial variations in the PDF. Recently, regional
variations in the column density PDF within a single cloud were
found (Pineda et al. 2008; Beaumont et al. 2012; Schneider et al.
2012), that suggest that superposition of di↵erent PDF compo-
nents is probably common. In the following paragraphs we will
investigate two cases of a two-component fit, namely: 1) a log-
normal plus a power-law tail; 2) a log-normal and a Gaussian;
and 3) a Gaussian + a power-law, to investigate the impact of
the errors on these fits. We performed our fits by simultaneously
adjusting all fit parameters for all distributions: in other words,
we did not fit separately di↵erent parts of the PDF using di↵er-
ent functional forms, but rather we fit the entire range with the
sum of all functional forms selected (log-normal + power law,
log-normal+Gaussian, and Gaussian + power law).

2 Note that the functional form used here di↵ers, in the definition
of �ln, with respect to the form used in Papers II and III, but is the
same as in Paper IV.
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regions of dark complexes, i.e. in a very small fraction of the
large areas considered in this paper. Nevertheless, because of the
relevance of these regions in the process of star formation, it is
important to understand this bias and how to correct for it, as is
done in the Nicest method.

Corona Australis (see Fig. 1) is one of the most e�cient
star forming regions (Lada et al. 2010), is located at a distance
of about 130 pc (Casey et al. 1998), and harbors an embedded
cluster towards the Western-end of the cloud (see Fig. 1) with
about 50 young stars (Forbrich & Preibisch (2007); for a recent
review of the region see Neuhäuser & Forbrich 2008). The large
scale structure of the denser regions of the complex was studied
in C18O by Harju et al. (1993) and in dust emission by Chini
et al. (2003). Recently, Peterson et al. (2011) presented Spitzer
IRAC and MIPS observations of a 0.85 deg2 field centered on
the Corona Australis star-forming region, on the Western-end
of the cloud (Fig. 1). Combining the Spitzer results and data
form the literature these authors find a total of 116 candidate
young stellar objects (YSOs) and further evidence that star for-
mation is ongoing in the cloud. Using high-resolution spec-
troscopy from the VLT for a sample of 18 YSOs in the Coronet,
Sicilia-Aguilar et al. (2011) determines an age of <2 Myr, and
probably ⇠0.5–1 Myr for the age of this cluster. An extinction
map of the ⇠3� ⇥ 6� densest regions of the Corona Australis,
again the Western-end of the cloud, appeared in Schneider et al.
(2011), as part of a multi-tracer study of a sample of clouds that
was used to quantify a possible link between cloud structure and
turbulence.

One of the major complications in studying molecular cloud
structure is to account for the possibility that two or more clouds
are seen along the same line-of-sight. When this is the case, even
if one of the clouds is only a di↵use cloud, the structure analysis
is further complicated (see for example the probability distribu-
tion of pixel extinctions in the Pipe nebula, Fig. 20 of Lombardi
et al. 2006). This complication is minimized and can be safely
ignored for relatively high Galactic-latitude clouds like Corona
Australis that lies at a projected distance from the Galactic plane
of ⇠20�. Corona Australis is one of the most isolated Galactic
star forming cloud as seen from Earth which makes it an ideal
case study for molecular cloud structure and star formation.

This paper is organized as follows. In Sect. 2 we briefly de-
scribe the technique used to map the dust and we present the
main results obtained. A statistical analysis of our results and
a discussion of the bias introduced by foreground stars and un-
resolved substructures is presented in Sect. 3. Section 4 is de-
voted to the mass estimate of the cloud complexes. Finally, we
summarize the results obtained in this paper in Sect. 5.

2. Nicer and Nicest extinction maps

The data analysis was carried out following the Nicer and
Nicest techniques and used also in the previous papers of
this series, to which we refer for the details (see in particular
Paper III). We selected reliable point source detections from the
Two Micron All Sky Survey1 (2MASS, Kleinmann et al. (1994))
in the region:

�20� < l < 20�, �37� < b < �13�. (1)

This area (⇠870 deg2 containing approximately 10.7 million
point sources from the 2MASS catalog) contains the Corona
Australis cloud complex and its mainly dust free environment.
1 See http://www.ipac.caltech.edu/2mass/

Fig. 1. Optical image of the Corona Australis complex. The image cov-
ers approximately 3 by 5 deg2 and covers the Western-end of the cloud,
the densest region of the cloud where star formation is ongoing. By
clicking the “toggle image” box below while using Acrobat Reader, the
extinction map presented in this paper appears in green. Image courtesy
of Pavel Pech. Toggle image (online only)

As a preliminary check, we considered the color–color dia-
gram of the stars selected to verify the possible presence of ob-
vious anomalies in the extinction law. Unlike Paper II, we find
only a weak sign of possible contamination by evolved stars and
decided to proceed similarly to Paper III by retaining all objects.

After the selection of a control field for the calibration of
the intrinsic colors of stars (and their covariance matrix) we pro-
duced the final 2MASS/Nicer extinction map, shown in Fig. 2.
The selected control field was defined as a circle of ⇠4.5� cen-
tered on l = 349� and b = �17�. For best results, we smoothed
the individual extinctions measured for each star,

�
Â(n)

K
 
, using a

moving weight average

ÂK(✓) =
PN

n= 1 W (n)(✓)Â(n)
KPN

n= 1 W (n)
, (2)

where ÂK(✓) is the extinction at the angular position ✓ and
W (n)(✓) is the weight for the nth star for the pixel at the loca-
tion ✓. This weight, in the standard Nicer algorithm, is a com-
bination of a smoothing, window function W

�
✓ � ✓(n)�, i.e. a
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Fig. 8. PDF of column density for the Corona Australis cloud. The solid
red curve represents the best-fit of a single log-normal distribution to the
data. The residuals of the fit are presented in the lower panel. The grey
area in the residual plot delimits what would be expected from pois-
son noise. Note that the residuals are not poissonian but exhibit a clear
pattern. The excess over the log-normal fit on the high extinction tail
is present in a similar manner to the results for the clouds in Papers III
and IV, and the results of Kainulainen et al. (2009) and Froebrich &
Rowles (2010).

provides a better fit to simulations than both the pure log-normal
and the skewed log-normal. As a caveat, Tassis et al. (2010)
used simulations to demonstrate that log-normal column density
distributions are generic features of diverse model clouds, and
should not be interpreted as being a consequence of supersonic
turbulence.

The comparison between the predictions from supersonic
flow simulations with observational data have given mixed re-
sults. In a recent investigation of the Perseus cloud Goodman
et al. (2009) found no obvious relation between Mach num-
ber and normalized column density variance, raising questions
on the suggested relation between Mach number and the width
of a log-normal column density PDF (e.g. Padoan et al. 1997;
Ostriker et al. 2001). On the other hand, using 2MASS NIR
extinction maps, Kainulainen et al. (2009) have characterized
the shape of the column density PDFs in nearby molecular
clouds and found that although the peaks of the PDFs were
generally consistent with log-normal distributions, there were
systematic excess “wings” at higher column densities for clouds
currently forming stars (including Corona Australis). Using a
similar approach, a similar cloud sample, and the same data base
(2MASS), Froebrich et al. (2007); Froebrich & Rowles (2010)
also found that some clouds show an excess of column density
compared to a log-normal distribution at higher column den-
sities, although they did not find a significant correlation with
star formation. Recently, Schneider et al. (2013) also found a
power-law excess over a log-normal column density PDF for
Orion B from Herschel data. Both Kainulainen et al. (2009) and
Froebrich & Rowles (2010) suggested that the observed excess
material over the log-normal PDF represents the cloud mate-
rial decoupled from the general turbulent field and dominated by
gravity. Schneider et al. (2013) also argue that the tail is related
to star formation, but stress that statistical density fluctuations,

intermittency, and magnetic fields can also cause the observed
excess.

4.1. A single log-normal PDF

In this section we take a closer look at the column density PDF of
the Corona Australis cloud. Figure 8 shows the PDF of column
density for the entire area of the cloud as defined in Fig. 7. As in
our previous papers of this series, we find a significant number
of column density estimates with negative values. This is due to
uncertainties in the column density measurements, which nat-
urally broadens the intrinsic distribution and adds a fraction of
negative measurements. Note, however, that the amount of neg-
ative pixels observed is compatible with the typical error on our
extinction maps, which is of the order of 0.02 mag. Also shown
in Fig. 8 is a best fit of a single log-normal function2 to the data
(red solid curve), of the form:

h(AK) =
a

AK � A0
exp
2
666664�
�
ln(AK � A0) � ln A1

�2

2�2
ln

3
777775 · (5)

where a is the normalization factor, A0 is the o↵set, the mean is
given by A1 ⇥ e�2

ln/2 + A0, and the median of the distribution is
A1 + A0. The o↵set A0 is introduced to allow the fit to explore
negative values of AK . The fit parameters are listed in Table 3.
The bottom panel shows the residuals of the fit, and the expected
1� error (grey area). Examination of the residuals shows two sig-
nificant features that deviate from the expected errors. First, the
residuals display a clear extended excess in the high-extinction
wing of the PDF. Second, although the amplitude of the resid-
uals is consistent with expectations in the core of the PDF, the
residuals exhibit a systematic correlated pattern of noise that de-
viates from the expectation of uncorrelated errors. The clouds in
Papers III and IV (Perseus, Taurus, California, Orion, Mon R2,
Rosette, and Canis Major) all displayed a similar pattern in the
residuals as seen in Fig. 8, suggesting that this is a general prob-
lem a↵ecting all log-normal fitting involving the core of the PDF,
and not particular to this cloud.

It is clear from Fig. 8 that a single function cannot account
su�ciently for the observed PDF. There is, nevertheless, enough
motivation to try to perform a two-component fit to the cloud
PDF, because of the apparent power-law tail at high column
densities over a log-normal PDF discussed in the literature, to
account for noise, or to account for the possible the presence
of unresolved spatial variations in the PDF. Recently, regional
variations in the column density PDF within a single cloud were
found (Pineda et al. 2008; Beaumont et al. 2012; Schneider et al.
2012), that suggest that superposition of di↵erent PDF compo-
nents is probably common. In the following paragraphs we will
investigate two cases of a two-component fit, namely: 1) a log-
normal plus a power-law tail; 2) a log-normal and a Gaussian;
and 3) a Gaussian + a power-law, to investigate the impact of
the errors on these fits. We performed our fits by simultaneously
adjusting all fit parameters for all distributions: in other words,
we did not fit separately di↵erent parts of the PDF using di↵er-
ent functional forms, but rather we fit the entire range with the
sum of all functional forms selected (log-normal + power law,
log-normal+Gaussian, and Gaussian + power law).

2 Note that the functional form used here di↵ers, in the definition
of �ln, with respect to the form used in Papers II and III, but is the
same as in Paper IV.
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Table 3. PDF fitting parameters for the di↵erent cases discussed (in magnitudes of AK).

Case µ � O↵set Ak cut Exponent �2

Single log-normal 0.589 0.055 �0.555 25 508
Log-normal 0.535 0.061 �0.501 4870
Power-law 0.121 �2.22 4870
Log-normal 0.088 0.474 �0.055 1122
Gaussian 0.034 0.032 1122
Gaussian 0.033 0.032 911
Power-law 0.08 �3.14 911
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Fig. 9. Column-density PDF two-component fit of Corona: the orange
and blue curves correspond to a log-normal and a power-law fit to the
observed PDF. The solid red curve represents the sum of the orange and
blue curves (below ⇠0.12 mag, the red curve coincides with the orange
curve). The fit of these two functions to the entire cloud produced better
residuals (grey area) than for the case of a single log-normal, but a clear
pattern in the residuals at lower column densities is still present.

4.2. Log-normal + power-law

Regarding the first case, a log-normal plus a power-law tail, this
is the most accepted case in the literature (Kainulainen et al.
2009; Froebrich & Rowles 2010; Schneider et al. 2013). We per-
formed a simultaneous fit of a log-normal and a power-law to
the data and the results are presented in Fig. 9. The parameters
for this fit are listed in Table 3. One can see both from the fig-
ure and the results of the fit that this is a better fit than a sin-
gle log-normal as discussed in Fig. 8. While the addition of the
power-law component improves the residuals at higher column
densities, it is clear that it could not account for the systematic
correlated pattern of noise in the residuals at the lower extinc-
tions in the vicinity the peak of the PDF.

4.3. Log-normal + Gaussian

The presence of negative values of extinction in the observed
PDF of the Corona cloud indicates that noise may contribute a
non-negligible signal to the overall PDF. To estimate the mag-
nitude of a possible noise component to the cloud PDF we con-
structed the PDF of pixels o↵ the main cloud. It peaks close to
zero extinction and has a Gaussian shape as would be expected
for measurements dominated by noise. Moreover its FWHM is
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Fig. 10. Column-density PDF two-component fit of Corona: the orange
and blue curves corresponds to a log-normal and a Gaussian simultane-
ous fits. The solid red curve represents the sum of the orange and blue
curves. The fit of these two functions to the entire cloud produced the
best fit, with residuals consistent with the expected uncorrelated errors
(grey area).

significant (⇠0.038 mag) and we conclude that such a noise
profile may represent a major component of the Corona PDF.
Therefore we performed a simultaneous fit of a Gaussian and a
log-normal function.

The results are shown in Fig. 10 and the parameters of the
fit are listed in Table 3. This is clearly a better fit than the pre-
vious case, as both the excess at high column densities and the
systematic correlated pattern of noise in the residuals have van-
ished, as well as the lower �2. The interpretation for this case
seems straightforward: the inherent errors in the extinction mea-
surements (blue curve) dominate the core of the observed col-
umn density PDF and are the main cause for the correlated noise
pattern in the residuals seen in the earlier fits (Figs. 8 and 9).
This has important consequences for interpreting the PDFs de-
rived from infrared extinction measurements of clouds like the
Corona. The cores of such PDFs are dominated by noise. The
observed cloud PDF is thus the convolution of the noise with
the underlying or intrinsic PDF of the cloud, which at infrared
extinctions below approximately 0.1 mag is relatively weak
compared to the noise. This may make it very di�cult to infer
the true nature of the intrinsic cloud PDF at levels of extinction
below AK ⇡ 0.15 mag. Thus, although a Gaussian + log-normal
function provides an excellent fit to the observed PDF of the
Corona cloud, it is not clear that this conclusively indicates that
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Table 3. PDF fitting parameters for the di↵erent cases discussed (in magnitudes of AK).

Case µ � O↵set Ak cut Exponent �2

Single log-normal 0.589 0.055 �0.555 25 508
Log-normal 0.535 0.061 �0.501 4870
Power-law 0.121 �2.22 4870
Log-normal 0.088 0.474 �0.055 1122
Gaussian 0.034 0.032 1122
Gaussian 0.033 0.032 911
Power-law 0.08 �3.14 911
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Fig. 9. Column-density PDF two-component fit of Corona: the orange
and blue curves correspond to a log-normal and a power-law fit to the
observed PDF. The solid red curve represents the sum of the orange and
blue curves (below ⇠0.12 mag, the red curve coincides with the orange
curve). The fit of these two functions to the entire cloud produced better
residuals (grey area) than for the case of a single log-normal, but a clear
pattern in the residuals at lower column densities is still present.

4.2. Log-normal + power-law

Regarding the first case, a log-normal plus a power-law tail, this
is the most accepted case in the literature (Kainulainen et al.
2009; Froebrich & Rowles 2010; Schneider et al. 2013). We per-
formed a simultaneous fit of a log-normal and a power-law to
the data and the results are presented in Fig. 9. The parameters
for this fit are listed in Table 3. One can see both from the fig-
ure and the results of the fit that this is a better fit than a sin-
gle log-normal as discussed in Fig. 8. While the addition of the
power-law component improves the residuals at higher column
densities, it is clear that it could not account for the systematic
correlated pattern of noise in the residuals at the lower extinc-
tions in the vicinity the peak of the PDF.

4.3. Log-normal + Gaussian

The presence of negative values of extinction in the observed
PDF of the Corona cloud indicates that noise may contribute a
non-negligible signal to the overall PDF. To estimate the mag-
nitude of a possible noise component to the cloud PDF we con-
structed the PDF of pixels o↵ the main cloud. It peaks close to
zero extinction and has a Gaussian shape as would be expected
for measurements dominated by noise. Moreover its FWHM is
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Fig. 10. Column-density PDF two-component fit of Corona: the orange
and blue curves corresponds to a log-normal and a Gaussian simultane-
ous fits. The solid red curve represents the sum of the orange and blue
curves. The fit of these two functions to the entire cloud produced the
best fit, with residuals consistent with the expected uncorrelated errors
(grey area).

significant (⇠0.038 mag) and we conclude that such a noise
profile may represent a major component of the Corona PDF.
Therefore we performed a simultaneous fit of a Gaussian and a
log-normal function.

The results are shown in Fig. 10 and the parameters of the
fit are listed in Table 3. This is clearly a better fit than the pre-
vious case, as both the excess at high column densities and the
systematic correlated pattern of noise in the residuals have van-
ished, as well as the lower �2. The interpretation for this case
seems straightforward: the inherent errors in the extinction mea-
surements (blue curve) dominate the core of the observed col-
umn density PDF and are the main cause for the correlated noise
pattern in the residuals seen in the earlier fits (Figs. 8 and 9).
This has important consequences for interpreting the PDFs de-
rived from infrared extinction measurements of clouds like the
Corona. The cores of such PDFs are dominated by noise. The
observed cloud PDF is thus the convolution of the noise with
the underlying or intrinsic PDF of the cloud, which at infrared
extinctions below approximately 0.1 mag is relatively weak
compared to the noise. This may make it very di�cult to infer
the true nature of the intrinsic cloud PDF at levels of extinction
below AK ⇡ 0.15 mag. Thus, although a Gaussian + log-normal
function provides an excellent fit to the observed PDF of the
Corona cloud, it is not clear that this conclusively indicates that
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Table 3. PDF fitting parameters for the di↵erent cases discussed (in magnitudes of AK).

Case µ � O↵set Ak cut Exponent �2

Single log-normal 0.589 0.055 �0.555 25 508
Log-normal 0.535 0.061 �0.501 4870
Power-law 0.121 �2.22 4870
Log-normal 0.088 0.474 �0.055 1122
Gaussian 0.034 0.032 1122
Gaussian 0.033 0.032 911
Power-law 0.08 �3.14 911
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Fig. 9. Column-density PDF two-component fit of Corona: the orange
and blue curves correspond to a log-normal and a power-law fit to the
observed PDF. The solid red curve represents the sum of the orange and
blue curves (below ⇠0.12 mag, the red curve coincides with the orange
curve). The fit of these two functions to the entire cloud produced better
residuals (grey area) than for the case of a single log-normal, but a clear
pattern in the residuals at lower column densities is still present.

4.2. Log-normal + power-law

Regarding the first case, a log-normal plus a power-law tail, this
is the most accepted case in the literature (Kainulainen et al.
2009; Froebrich & Rowles 2010; Schneider et al. 2013). We per-
formed a simultaneous fit of a log-normal and a power-law to
the data and the results are presented in Fig. 9. The parameters
for this fit are listed in Table 3. One can see both from the fig-
ure and the results of the fit that this is a better fit than a sin-
gle log-normal as discussed in Fig. 8. While the addition of the
power-law component improves the residuals at higher column
densities, it is clear that it could not account for the systematic
correlated pattern of noise in the residuals at the lower extinc-
tions in the vicinity the peak of the PDF.

4.3. Log-normal + Gaussian

The presence of negative values of extinction in the observed
PDF of the Corona cloud indicates that noise may contribute a
non-negligible signal to the overall PDF. To estimate the mag-
nitude of a possible noise component to the cloud PDF we con-
structed the PDF of pixels o↵ the main cloud. It peaks close to
zero extinction and has a Gaussian shape as would be expected
for measurements dominated by noise. Moreover its FWHM is
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Fig. 10. Column-density PDF two-component fit of Corona: the orange
and blue curves corresponds to a log-normal and a Gaussian simultane-
ous fits. The solid red curve represents the sum of the orange and blue
curves. The fit of these two functions to the entire cloud produced the
best fit, with residuals consistent with the expected uncorrelated errors
(grey area).

significant (⇠0.038 mag) and we conclude that such a noise
profile may represent a major component of the Corona PDF.
Therefore we performed a simultaneous fit of a Gaussian and a
log-normal function.

The results are shown in Fig. 10 and the parameters of the
fit are listed in Table 3. This is clearly a better fit than the pre-
vious case, as both the excess at high column densities and the
systematic correlated pattern of noise in the residuals have van-
ished, as well as the lower �2. The interpretation for this case
seems straightforward: the inherent errors in the extinction mea-
surements (blue curve) dominate the core of the observed col-
umn density PDF and are the main cause for the correlated noise
pattern in the residuals seen in the earlier fits (Figs. 8 and 9).
This has important consequences for interpreting the PDFs de-
rived from infrared extinction measurements of clouds like the
Corona. The cores of such PDFs are dominated by noise. The
observed cloud PDF is thus the convolution of the noise with
the underlying or intrinsic PDF of the cloud, which at infrared
extinctions below approximately 0.1 mag is relatively weak
compared to the noise. This may make it very di�cult to infer
the true nature of the intrinsic cloud PDF at levels of extinction
below AK ⇡ 0.15 mag. Thus, although a Gaussian + log-normal
function provides an excellent fit to the observed PDF of the
Corona cloud, it is not clear that this conclusively indicates that
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Table 3. PDF fitting parameters for the di↵erent cases discussed (in magnitudes of AK).

Case µ � O↵set Ak cut Exponent �2

Single log-normal 0.589 0.055 �0.555 25 508
Log-normal 0.535 0.061 �0.501 4870
Power-law 0.121 �2.22 4870
Log-normal 0.088 0.474 �0.055 1122
Gaussian 0.034 0.032 1122
Gaussian 0.033 0.032 911
Power-law 0.08 �3.14 911

0

2

4

6

8

10

12

p(
A

K
)

−0.1 0.0 0.1 0.2 0.3 0.4
−0.2
−0.1

0.0

0.1

AK (mag)

∆
p(

A
K

)

0.10 0.15 0.20 0.25 0.30
0.0

0.1

0.2

0.3

0.4Log-normal
Power-law

Fig. 9. Column-density PDF two-component fit of Corona: the orange
and blue curves correspond to a log-normal and a power-law fit to the
observed PDF. The solid red curve represents the sum of the orange and
blue curves (below ⇠0.12 mag, the red curve coincides with the orange
curve). The fit of these two functions to the entire cloud produced better
residuals (grey area) than for the case of a single log-normal, but a clear
pattern in the residuals at lower column densities is still present.

4.2. Log-normal + power-law

Regarding the first case, a log-normal plus a power-law tail, this
is the most accepted case in the literature (Kainulainen et al.
2009; Froebrich & Rowles 2010; Schneider et al. 2013). We per-
formed a simultaneous fit of a log-normal and a power-law to
the data and the results are presented in Fig. 9. The parameters
for this fit are listed in Table 3. One can see both from the fig-
ure and the results of the fit that this is a better fit than a sin-
gle log-normal as discussed in Fig. 8. While the addition of the
power-law component improves the residuals at higher column
densities, it is clear that it could not account for the systematic
correlated pattern of noise in the residuals at the lower extinc-
tions in the vicinity the peak of the PDF.

4.3. Log-normal + Gaussian

The presence of negative values of extinction in the observed
PDF of the Corona cloud indicates that noise may contribute a
non-negligible signal to the overall PDF. To estimate the mag-
nitude of a possible noise component to the cloud PDF we con-
structed the PDF of pixels o↵ the main cloud. It peaks close to
zero extinction and has a Gaussian shape as would be expected
for measurements dominated by noise. Moreover its FWHM is
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Fig. 10. Column-density PDF two-component fit of Corona: the orange
and blue curves corresponds to a log-normal and a Gaussian simultane-
ous fits. The solid red curve represents the sum of the orange and blue
curves. The fit of these two functions to the entire cloud produced the
best fit, with residuals consistent with the expected uncorrelated errors
(grey area).

significant (⇠0.038 mag) and we conclude that such a noise
profile may represent a major component of the Corona PDF.
Therefore we performed a simultaneous fit of a Gaussian and a
log-normal function.

The results are shown in Fig. 10 and the parameters of the
fit are listed in Table 3. This is clearly a better fit than the pre-
vious case, as both the excess at high column densities and the
systematic correlated pattern of noise in the residuals have van-
ished, as well as the lower �2. The interpretation for this case
seems straightforward: the inherent errors in the extinction mea-
surements (blue curve) dominate the core of the observed col-
umn density PDF and are the main cause for the correlated noise
pattern in the residuals seen in the earlier fits (Figs. 8 and 9).
This has important consequences for interpreting the PDFs de-
rived from infrared extinction measurements of clouds like the
Corona. The cores of such PDFs are dominated by noise. The
observed cloud PDF is thus the convolution of the noise with
the underlying or intrinsic PDF of the cloud, which at infrared
extinctions below approximately 0.1 mag is relatively weak
compared to the noise. This may make it very di�cult to infer
the true nature of the intrinsic cloud PDF at levels of extinction
below AK ⇡ 0.15 mag. Thus, although a Gaussian + log-normal
function provides an excellent fit to the observed PDF of the
Corona cloud, it is not clear that this conclusively indicates that
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Table 3. PDF fitting parameters for the di↵erent cases discussed (in magnitudes of AK).

Case µ � O↵set Ak cut Exponent �2

Single log-normal 0.589 0.055 �0.555 25 508
Log-normal 0.535 0.061 �0.501 4870
Power-law 0.121 �2.22 4870
Log-normal 0.088 0.474 �0.055 1122
Gaussian 0.034 0.032 1122
Gaussian 0.033 0.032 911
Power-law 0.08 �3.14 911
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Fig. 9. Column-density PDF two-component fit of Corona: the orange
and blue curves correspond to a log-normal and a power-law fit to the
observed PDF. The solid red curve represents the sum of the orange and
blue curves (below ⇠0.12 mag, the red curve coincides with the orange
curve). The fit of these two functions to the entire cloud produced better
residuals (grey area) than for the case of a single log-normal, but a clear
pattern in the residuals at lower column densities is still present.

4.2. Log-normal + power-law

Regarding the first case, a log-normal plus a power-law tail, this
is the most accepted case in the literature (Kainulainen et al.
2009; Froebrich & Rowles 2010; Schneider et al. 2013). We per-
formed a simultaneous fit of a log-normal and a power-law to
the data and the results are presented in Fig. 9. The parameters
for this fit are listed in Table 3. One can see both from the fig-
ure and the results of the fit that this is a better fit than a sin-
gle log-normal as discussed in Fig. 8. While the addition of the
power-law component improves the residuals at higher column
densities, it is clear that it could not account for the systematic
correlated pattern of noise in the residuals at the lower extinc-
tions in the vicinity the peak of the PDF.

4.3. Log-normal + Gaussian

The presence of negative values of extinction in the observed
PDF of the Corona cloud indicates that noise may contribute a
non-negligible signal to the overall PDF. To estimate the mag-
nitude of a possible noise component to the cloud PDF we con-
structed the PDF of pixels o↵ the main cloud. It peaks close to
zero extinction and has a Gaussian shape as would be expected
for measurements dominated by noise. Moreover its FWHM is
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Fig. 10. Column-density PDF two-component fit of Corona: the orange
and blue curves corresponds to a log-normal and a Gaussian simultane-
ous fits. The solid red curve represents the sum of the orange and blue
curves. The fit of these two functions to the entire cloud produced the
best fit, with residuals consistent with the expected uncorrelated errors
(grey area).

significant (⇠0.038 mag) and we conclude that such a noise
profile may represent a major component of the Corona PDF.
Therefore we performed a simultaneous fit of a Gaussian and a
log-normal function.

The results are shown in Fig. 10 and the parameters of the
fit are listed in Table 3. This is clearly a better fit than the pre-
vious case, as both the excess at high column densities and the
systematic correlated pattern of noise in the residuals have van-
ished, as well as the lower �2. The interpretation for this case
seems straightforward: the inherent errors in the extinction mea-
surements (blue curve) dominate the core of the observed col-
umn density PDF and are the main cause for the correlated noise
pattern in the residuals seen in the earlier fits (Figs. 8 and 9).
This has important consequences for interpreting the PDFs de-
rived from infrared extinction measurements of clouds like the
Corona. The cores of such PDFs are dominated by noise. The
observed cloud PDF is thus the convolution of the noise with
the underlying or intrinsic PDF of the cloud, which at infrared
extinctions below approximately 0.1 mag is relatively weak
compared to the noise. This may make it very di�cult to infer
the true nature of the intrinsic cloud PDF at levels of extinction
below AK ⇡ 0.15 mag. Thus, although a Gaussian + log-normal
function provides an excellent fit to the observed PDF of the
Corona cloud, it is not clear that this conclusively indicates that
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Table 3. PDF fitting parameters for the di↵erent cases discussed (in magnitudes of AK).

Case µ � O↵set Ak cut Exponent �2

Single log-normal 0.589 0.055 �0.555 25 508
Log-normal 0.535 0.061 �0.501 4870
Power-law 0.121 �2.22 4870
Log-normal 0.088 0.474 �0.055 1122
Gaussian 0.034 0.032 1122
Gaussian 0.033 0.032 911
Power-law 0.08 �3.14 911
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Fig. 9. Column-density PDF two-component fit of Corona: the orange
and blue curves correspond to a log-normal and a power-law fit to the
observed PDF. The solid red curve represents the sum of the orange and
blue curves (below ⇠0.12 mag, the red curve coincides with the orange
curve). The fit of these two functions to the entire cloud produced better
residuals (grey area) than for the case of a single log-normal, but a clear
pattern in the residuals at lower column densities is still present.

4.2. Log-normal + power-law

Regarding the first case, a log-normal plus a power-law tail, this
is the most accepted case in the literature (Kainulainen et al.
2009; Froebrich & Rowles 2010; Schneider et al. 2013). We per-
formed a simultaneous fit of a log-normal and a power-law to
the data and the results are presented in Fig. 9. The parameters
for this fit are listed in Table 3. One can see both from the fig-
ure and the results of the fit that this is a better fit than a sin-
gle log-normal as discussed in Fig. 8. While the addition of the
power-law component improves the residuals at higher column
densities, it is clear that it could not account for the systematic
correlated pattern of noise in the residuals at the lower extinc-
tions in the vicinity the peak of the PDF.

4.3. Log-normal + Gaussian

The presence of negative values of extinction in the observed
PDF of the Corona cloud indicates that noise may contribute a
non-negligible signal to the overall PDF. To estimate the mag-
nitude of a possible noise component to the cloud PDF we con-
structed the PDF of pixels o↵ the main cloud. It peaks close to
zero extinction and has a Gaussian shape as would be expected
for measurements dominated by noise. Moreover its FWHM is

0

2

4

6

8

10

12

p
(A

K
)

−0.1 0.0 0.1 0.2 0.3 0.4
−0.2

−0.1

0.0

0.1

AK (mag)

∆
p
(A

K
)

0.10 0.15 0.20 0.25 0.30
0.0

0.1

0.2

0.3

0.4Log-normal
Gaussian

Fig. 10. Column-density PDF two-component fit of Corona: the orange
and blue curves corresponds to a log-normal and a Gaussian simultane-
ous fits. The solid red curve represents the sum of the orange and blue
curves. The fit of these two functions to the entire cloud produced the
best fit, with residuals consistent with the expected uncorrelated errors
(grey area).

significant (⇠0.038 mag) and we conclude that such a noise
profile may represent a major component of the Corona PDF.
Therefore we performed a simultaneous fit of a Gaussian and a
log-normal function.

The results are shown in Fig. 10 and the parameters of the
fit are listed in Table 3. This is clearly a better fit than the pre-
vious case, as both the excess at high column densities and the
systematic correlated pattern of noise in the residuals have van-
ished, as well as the lower �2. The interpretation for this case
seems straightforward: the inherent errors in the extinction mea-
surements (blue curve) dominate the core of the observed col-
umn density PDF and are the main cause for the correlated noise
pattern in the residuals seen in the earlier fits (Figs. 8 and 9).
This has important consequences for interpreting the PDFs de-
rived from infrared extinction measurements of clouds like the
Corona. The cores of such PDFs are dominated by noise. The
observed cloud PDF is thus the convolution of the noise with
the underlying or intrinsic PDF of the cloud, which at infrared
extinctions below approximately 0.1 mag is relatively weak
compared to the noise. This may make it very di�cult to infer
the true nature of the intrinsic cloud PDF at levels of extinction
below AK ⇡ 0.15 mag. Thus, although a Gaussian + log-normal
function provides an excellent fit to the observed PDF of the
Corona cloud, it is not clear that this conclusively indicates that
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Table 3. PDF fitting parameters for the di↵erent cases discussed (in magnitudes of AK).

Case µ � O↵set Ak cut Exponent �2

Single log-normal 0.589 0.055 �0.555 25 508
Log-normal 0.535 0.061 �0.501 4870
Power-law 0.121 �2.22 4870
Log-normal 0.088 0.474 �0.055 1122
Gaussian 0.034 0.032 1122
Gaussian 0.033 0.032 911
Power-law 0.08 �3.14 911
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Fig. 9. Column-density PDF two-component fit of Corona: the orange
and blue curves correspond to a log-normal and a power-law fit to the
observed PDF. The solid red curve represents the sum of the orange and
blue curves (below ⇠0.12 mag, the red curve coincides with the orange
curve). The fit of these two functions to the entire cloud produced better
residuals (grey area) than for the case of a single log-normal, but a clear
pattern in the residuals at lower column densities is still present.

4.2. Log-normal + power-law

Regarding the first case, a log-normal plus a power-law tail, this
is the most accepted case in the literature (Kainulainen et al.
2009; Froebrich & Rowles 2010; Schneider et al. 2013). We per-
formed a simultaneous fit of a log-normal and a power-law to
the data and the results are presented in Fig. 9. The parameters
for this fit are listed in Table 3. One can see both from the fig-
ure and the results of the fit that this is a better fit than a sin-
gle log-normal as discussed in Fig. 8. While the addition of the
power-law component improves the residuals at higher column
densities, it is clear that it could not account for the systematic
correlated pattern of noise in the residuals at the lower extinc-
tions in the vicinity the peak of the PDF.

4.3. Log-normal + Gaussian

The presence of negative values of extinction in the observed
PDF of the Corona cloud indicates that noise may contribute a
non-negligible signal to the overall PDF. To estimate the mag-
nitude of a possible noise component to the cloud PDF we con-
structed the PDF of pixels o↵ the main cloud. It peaks close to
zero extinction and has a Gaussian shape as would be expected
for measurements dominated by noise. Moreover its FWHM is
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Fig. 10. Column-density PDF two-component fit of Corona: the orange
and blue curves corresponds to a log-normal and a Gaussian simultane-
ous fits. The solid red curve represents the sum of the orange and blue
curves. The fit of these two functions to the entire cloud produced the
best fit, with residuals consistent with the expected uncorrelated errors
(grey area).

significant (⇠0.038 mag) and we conclude that such a noise
profile may represent a major component of the Corona PDF.
Therefore we performed a simultaneous fit of a Gaussian and a
log-normal function.

The results are shown in Fig. 10 and the parameters of the
fit are listed in Table 3. This is clearly a better fit than the pre-
vious case, as both the excess at high column densities and the
systematic correlated pattern of noise in the residuals have van-
ished, as well as the lower �2. The interpretation for this case
seems straightforward: the inherent errors in the extinction mea-
surements (blue curve) dominate the core of the observed col-
umn density PDF and are the main cause for the correlated noise
pattern in the residuals seen in the earlier fits (Figs. 8 and 9).
This has important consequences for interpreting the PDFs de-
rived from infrared extinction measurements of clouds like the
Corona. The cores of such PDFs are dominated by noise. The
observed cloud PDF is thus the convolution of the noise with
the underlying or intrinsic PDF of the cloud, which at infrared
extinctions below approximately 0.1 mag is relatively weak
compared to the noise. This may make it very di�cult to infer
the true nature of the intrinsic cloud PDF at levels of extinction
below AK ⇡ 0.15 mag. Thus, although a Gaussian + log-normal
function provides an excellent fit to the observed PDF of the
Corona cloud, it is not clear that this conclusively indicates that
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Table 3. PDF fitting parameters for the di↵erent cases discussed (in magnitudes of AK).

Case µ � O↵set Ak cut Exponent �2

Single log-normal 0.589 0.055 �0.555 25 508
Log-normal 0.535 0.061 �0.501 4870
Power-law 0.121 �2.22 4870
Log-normal 0.088 0.474 �0.055 1122
Gaussian 0.034 0.032 1122
Gaussian 0.033 0.032 911
Power-law 0.08 �3.14 911
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Fig. 9. Column-density PDF two-component fit of Corona: the orange
and blue curves correspond to a log-normal and a power-law fit to the
observed PDF. The solid red curve represents the sum of the orange and
blue curves (below ⇠0.12 mag, the red curve coincides with the orange
curve). The fit of these two functions to the entire cloud produced better
residuals (grey area) than for the case of a single log-normal, but a clear
pattern in the residuals at lower column densities is still present.

4.2. Log-normal + power-law

Regarding the first case, a log-normal plus a power-law tail, this
is the most accepted case in the literature (Kainulainen et al.
2009; Froebrich & Rowles 2010; Schneider et al. 2013). We per-
formed a simultaneous fit of a log-normal and a power-law to
the data and the results are presented in Fig. 9. The parameters
for this fit are listed in Table 3. One can see both from the fig-
ure and the results of the fit that this is a better fit than a sin-
gle log-normal as discussed in Fig. 8. While the addition of the
power-law component improves the residuals at higher column
densities, it is clear that it could not account for the systematic
correlated pattern of noise in the residuals at the lower extinc-
tions in the vicinity the peak of the PDF.

4.3. Log-normal + Gaussian

The presence of negative values of extinction in the observed
PDF of the Corona cloud indicates that noise may contribute a
non-negligible signal to the overall PDF. To estimate the mag-
nitude of a possible noise component to the cloud PDF we con-
structed the PDF of pixels o↵ the main cloud. It peaks close to
zero extinction and has a Gaussian shape as would be expected
for measurements dominated by noise. Moreover its FWHM is
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Fig. 10. Column-density PDF two-component fit of Corona: the orange
and blue curves corresponds to a log-normal and a Gaussian simultane-
ous fits. The solid red curve represents the sum of the orange and blue
curves. The fit of these two functions to the entire cloud produced the
best fit, with residuals consistent with the expected uncorrelated errors
(grey area).

significant (⇠0.038 mag) and we conclude that such a noise
profile may represent a major component of the Corona PDF.
Therefore we performed a simultaneous fit of a Gaussian and a
log-normal function.

The results are shown in Fig. 10 and the parameters of the
fit are listed in Table 3. This is clearly a better fit than the pre-
vious case, as both the excess at high column densities and the
systematic correlated pattern of noise in the residuals have van-
ished, as well as the lower �2. The interpretation for this case
seems straightforward: the inherent errors in the extinction mea-
surements (blue curve) dominate the core of the observed col-
umn density PDF and are the main cause for the correlated noise
pattern in the residuals seen in the earlier fits (Figs. 8 and 9).
This has important consequences for interpreting the PDFs de-
rived from infrared extinction measurements of clouds like the
Corona. The cores of such PDFs are dominated by noise. The
observed cloud PDF is thus the convolution of the noise with
the underlying or intrinsic PDF of the cloud, which at infrared
extinctions below approximately 0.1 mag is relatively weak
compared to the noise. This may make it very di�cult to infer
the true nature of the intrinsic cloud PDF at levels of extinction
below AK ⇡ 0.15 mag. Thus, although a Gaussian + log-normal
function provides an excellent fit to the observed PDF of the
Corona cloud, it is not clear that this conclusively indicates that
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Table 3. PDF fitting parameters for the di↵erent cases discussed (in magnitudes of AK).

Case µ � O↵set Ak cut Exponent �2

Single log-normal 0.589 0.055 �0.555 25 508
Log-normal 0.535 0.061 �0.501 4870
Power-law 0.121 �2.22 4870
Log-normal 0.088 0.474 �0.055 1122
Gaussian 0.034 0.032 1122
Gaussian 0.033 0.032 911
Power-law 0.08 �3.14 911
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Fig. 9. Column-density PDF two-component fit of Corona: the orange
and blue curves correspond to a log-normal and a power-law fit to the
observed PDF. The solid red curve represents the sum of the orange and
blue curves (below ⇠0.12 mag, the red curve coincides with the orange
curve). The fit of these two functions to the entire cloud produced better
residuals (grey area) than for the case of a single log-normal, but a clear
pattern in the residuals at lower column densities is still present.

4.2. Log-normal + power-law

Regarding the first case, a log-normal plus a power-law tail, this
is the most accepted case in the literature (Kainulainen et al.
2009; Froebrich & Rowles 2010; Schneider et al. 2013). We per-
formed a simultaneous fit of a log-normal and a power-law to
the data and the results are presented in Fig. 9. The parameters
for this fit are listed in Table 3. One can see both from the fig-
ure and the results of the fit that this is a better fit than a sin-
gle log-normal as discussed in Fig. 8. While the addition of the
power-law component improves the residuals at higher column
densities, it is clear that it could not account for the systematic
correlated pattern of noise in the residuals at the lower extinc-
tions in the vicinity the peak of the PDF.

4.3. Log-normal + Gaussian

The presence of negative values of extinction in the observed
PDF of the Corona cloud indicates that noise may contribute a
non-negligible signal to the overall PDF. To estimate the mag-
nitude of a possible noise component to the cloud PDF we con-
structed the PDF of pixels o↵ the main cloud. It peaks close to
zero extinction and has a Gaussian shape as would be expected
for measurements dominated by noise. Moreover its FWHM is
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Fig. 10. Column-density PDF two-component fit of Corona: the orange
and blue curves corresponds to a log-normal and a Gaussian simultane-
ous fits. The solid red curve represents the sum of the orange and blue
curves. The fit of these two functions to the entire cloud produced the
best fit, with residuals consistent with the expected uncorrelated errors
(grey area).

significant (⇠0.038 mag) and we conclude that such a noise
profile may represent a major component of the Corona PDF.
Therefore we performed a simultaneous fit of a Gaussian and a
log-normal function.

The results are shown in Fig. 10 and the parameters of the
fit are listed in Table 3. This is clearly a better fit than the pre-
vious case, as both the excess at high column densities and the
systematic correlated pattern of noise in the residuals have van-
ished, as well as the lower �2. The interpretation for this case
seems straightforward: the inherent errors in the extinction mea-
surements (blue curve) dominate the core of the observed col-
umn density PDF and are the main cause for the correlated noise
pattern in the residuals seen in the earlier fits (Figs. 8 and 9).
This has important consequences for interpreting the PDFs de-
rived from infrared extinction measurements of clouds like the
Corona. The cores of such PDFs are dominated by noise. The
observed cloud PDF is thus the convolution of the noise with
the underlying or intrinsic PDF of the cloud, which at infrared
extinctions below approximately 0.1 mag is relatively weak
compared to the noise. This may make it very di�cult to infer
the true nature of the intrinsic cloud PDF at levels of extinction
below AK ⇡ 0.15 mag. Thus, although a Gaussian + log-normal
function provides an excellent fit to the observed PDF of the
Corona cloud, it is not clear that this conclusively indicates that
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Table 3. PDF fitting parameters for the di↵erent cases discussed (in magnitudes of AK).

Case µ � O↵set Ak cut Exponent �2

Single log-normal 0.589 0.055 �0.555 25 508
Log-normal 0.535 0.061 �0.501 4870
Power-law 0.121 �2.22 4870
Log-normal 0.088 0.474 �0.055 1122
Gaussian 0.034 0.032 1122
Gaussian 0.033 0.032 911
Power-law 0.08 �3.14 911
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blue curves (below ⇠0.12 mag, the red curve coincides with the orange
curve). The fit of these two functions to the entire cloud produced better
residuals (grey area) than for the case of a single log-normal, but a clear
pattern in the residuals at lower column densities is still present.

4.2. Log-normal + power-law

Regarding the first case, a log-normal plus a power-law tail, this
is the most accepted case in the literature (Kainulainen et al.
2009; Froebrich & Rowles 2010; Schneider et al. 2013). We per-
formed a simultaneous fit of a log-normal and a power-law to
the data and the results are presented in Fig. 9. The parameters
for this fit are listed in Table 3. One can see both from the fig-
ure and the results of the fit that this is a better fit than a sin-
gle log-normal as discussed in Fig. 8. While the addition of the
power-law component improves the residuals at higher column
densities, it is clear that it could not account for the systematic
correlated pattern of noise in the residuals at the lower extinc-
tions in the vicinity the peak of the PDF.

4.3. Log-normal + Gaussian

The presence of negative values of extinction in the observed
PDF of the Corona cloud indicates that noise may contribute a
non-negligible signal to the overall PDF. To estimate the mag-
nitude of a possible noise component to the cloud PDF we con-
structed the PDF of pixels o↵ the main cloud. It peaks close to
zero extinction and has a Gaussian shape as would be expected
for measurements dominated by noise. Moreover its FWHM is
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significant (⇠0.038 mag) and we conclude that such a noise
profile may represent a major component of the Corona PDF.
Therefore we performed a simultaneous fit of a Gaussian and a
log-normal function.

The results are shown in Fig. 10 and the parameters of the
fit are listed in Table 3. This is clearly a better fit than the pre-
vious case, as both the excess at high column densities and the
systematic correlated pattern of noise in the residuals have van-
ished, as well as the lower �2. The interpretation for this case
seems straightforward: the inherent errors in the extinction mea-
surements (blue curve) dominate the core of the observed col-
umn density PDF and are the main cause for the correlated noise
pattern in the residuals seen in the earlier fits (Figs. 8 and 9).
This has important consequences for interpreting the PDFs de-
rived from infrared extinction measurements of clouds like the
Corona. The cores of such PDFs are dominated by noise. The
observed cloud PDF is thus the convolution of the noise with
the underlying or intrinsic PDF of the cloud, which at infrared
extinctions below approximately 0.1 mag is relatively weak
compared to the noise. This may make it very di�cult to infer
the true nature of the intrinsic cloud PDF at levels of extinction
below AK ⇡ 0.15 mag. Thus, although a Gaussian + log-normal
function provides an excellent fit to the observed PDF of the
Corona cloud, it is not clear that this conclusively indicates that
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Dust emission data
M. Lombardi et al.: Herschel-Planck optical-depth maps – I. Orion

3.1. Physical model

Since molecular clouds are optically thin to dust-emission at the
frequencies and densities considered here, we describe the spe-
cific intensity at a frequency ⌫ as a modified blackbody:

I⌫ = B⌫(T )
⇥
1 � e�⌧⌫

⇤ ' B⌫(T )⌧⌫, (1)

where ⌧⌫ is the optical-depth at the frequency ⌫ and B⌫(T ) is the
blackbody function at the temperature T :

B⌫(T ) =
2h⌫3

c2
1

eh⌫/kT � 1
· (2)

Following standard practice, we assumed that frequency depen-
dence of the optical depth ⌧⌫ can be written as

⌧⌫ = ⌧⌫0

 
⌫

⌫0

!�
, (3)

where � ' 2 and where ⌫0 is an arbitrary reference frequency.
Following the standard adopted by the Planck collaboration (see
below Sect. 3.3), we used ⌫0 = 353 GHz, corresponding to � =
850 µm, and we indicate the corresponding optical depth as ⌧850.

The Herschel bolometers respond to the in-beam flux den-
sity S ⌫, that is, to the specific intensity integrated over the beam
profile. Therefore, to convert the measured flux into an inten-
sity, we need to take into account the beam size at the spe-
cific wavelength. As explained below (see Sect. 3.2), because of
changes of the beam size with frequency, in this step we need to
choose between two distinct models of dust-emission, pointlike
or extended.

We stress that when using this physical model we are making
the assumption that temperature gradients are negligible along
the line of sight. This is of course an approximation, in particular
at the low temperatures that characterize molecular clouds where
a small increase of T produces a large increase in the intensity.
Therefore, when observing a cloud that has a gradient of tem-
perature along the line of sight, one will receive photons mostly
from the warmer regions crossed by the line of sight (typically,
from the outskirts of dense regions). Therefore, the temperature
derived from a fit of the data with Eq. (1) will not be a simple
average of the dust temperatures along the line of sight, but will
be biased high (Shetty et al. 2009); as a consequence, the optical
depth will be underestimated (Malinen et al. 2011). These ef-
fects can be very strong when large gradients are present, which
is generally the case toward embedded protostars that warm up
their local environment, or at a more extreme case, when a clus-
ter of embedded ionizing massive stars create an Hii region, as
in the case of the Orion nebula. For these reasons, we interpret T
in Eq. (1) as an e↵ective dust temperature for an observed dust
column.

3.2. SED fit

If we know the optical depth ⌧850, the e↵ective dust tempera-
ture T , and the exponent � in a given direction of the sky, we can
use Eqs. (1)�(3) to infer the intensity I⌫ at each frequency ⌫. In
reality, and if we aim to exploit the higher resolution of Herschel,
we only have at our disposal the fluxes measured by the PACS
and SPIRE instruments at specific wide bands. For our purposes,
it is useful to consider the PACS 100 µm and 160 µm bands, and
the SPIRE 250 µm, 350 µm, and 500 µm (the PACS 70 µm band
is not always optically thin, and in many regions has a very low
flux because it is far away from the peak of the blackbody at
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Fig. 1. Total throughputs of the PACS and SPIRE bands for extended
emission and, superimposed as gray graphs, three modified blackbodies
with T 2 {12 K, 18 K, 24 K} and with � = 1.8. All lines are in arbitrary
units (i.e., the vertical axis only shows relative values).

the temperatures that characterize molecular clouds, ⇠15 K, see
Fig. 1).

To solve the inverse problem, that is, infer the optical depth
and e↵ective dust temperature (and, eventually, the exponent �)
from the data, we proceeded as follows: we first convolved all
Herschel data to the poorest resolution, that is, to FWHM500 µm =
36 arcsec, corresponding to the SPIRE 500 µm data; then we per-
formed a fit of the observed spectral energy distribution (SED)
by integrating the modified blackbody intensity of Eq. (1) within
each Herschel bandpass. For the latter step we used the relative
spectral response functions (i.e., the total instrument through-
puts) available for the PACS and SPIRE bands, and for SPIRE,
as recommended in the SPIRE user manual, we corrected with
the �2 factor corresponding to the throughput for extended emis-
sion, which is appropriate for di↵use emission (higher than the
resolution of the instrument)1.

The Herschel bolometers measure the flux integrated within
each filter,

S̄ =

R
S p,e(⌫)Rp,e(⌫) d⌫
R

Rp,e(⌫) d⌫
, (4)

where S p,e(⌫) is the in-beam source flux density and Rp,e(⌫)
is the specific passband throughput for point (p) or extended
(e) sources (cf. Fig. 1, where Re(⌫) is reported for the PACS
and SPIRE passbands). The Herschel pipeline assumes that the
source is point-like and has an SED such that S p(⌫)⌫ = constant
across the passband,

S p(⌫) = S p(⌫0)
⌫0
⌫
· (5)

Therefore, the flux provided by the pipeline for each passband
corresponds to the flux that a point source with the spectral en-
ergy distribution (5) would have at the reference frequency ⌫0,
that is, S p(⌫0). To obtain this quantity, the pipeline converts the

1 We deliberately ignore point sources in the analysis such as embed-
ded protostars. Therefore, in areas contaminated by these objects the
derived dust column-density and temperature might not be accurate. For
point sources one should use the original PSF without the �2 factor.
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The Herschel bolometers respond to the in-beam flux den-
sity S ⌫, that is, to the specific intensity integrated over the beam
profile. Therefore, to convert the measured flux into an inten-
sity, we need to take into account the beam size at the spe-
cific wavelength. As explained below (see Sect. 3.2), because of
changes of the beam size with frequency, in this step we need to
choose between two distinct models of dust-emission, pointlike
or extended.

We stress that when using this physical model we are making
the assumption that temperature gradients are negligible along
the line of sight. This is of course an approximation, in particular
at the low temperatures that characterize molecular clouds where
a small increase of T produces a large increase in the intensity.
Therefore, when observing a cloud that has a gradient of tem-
perature along the line of sight, one will receive photons mostly
from the warmer regions crossed by the line of sight (typically,
from the outskirts of dense regions). Therefore, the temperature
derived from a fit of the data with Eq. (1) will not be a simple
average of the dust temperatures along the line of sight, but will
be biased high (Shetty et al. 2009); as a consequence, the optical
depth will be underestimated (Malinen et al. 2011). These ef-
fects can be very strong when large gradients are present, which
is generally the case toward embedded protostars that warm up
their local environment, or at a more extreme case, when a clus-
ter of embedded ionizing massive stars create an Hii region, as
in the case of the Orion nebula. For these reasons, we interpret T
in Eq. (1) as an e↵ective dust temperature for an observed dust
column.

3.2. SED fit

If we know the optical depth ⌧850, the e↵ective dust tempera-
ture T , and the exponent � in a given direction of the sky, we can
use Eqs. (1)�(3) to infer the intensity I⌫ at each frequency ⌫. In
reality, and if we aim to exploit the higher resolution of Herschel,
we only have at our disposal the fluxes measured by the PACS
and SPIRE instruments at specific wide bands. For our purposes,
it is useful to consider the PACS 100 µm and 160 µm bands, and
the SPIRE 250 µm, 350 µm, and 500 µm (the PACS 70 µm band
is not always optically thin, and in many regions has a very low
flux because it is far away from the peak of the blackbody at
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the temperatures that characterize molecular clouds, ⇠15 K, see
Fig. 1).

To solve the inverse problem, that is, infer the optical depth
and e↵ective dust temperature (and, eventually, the exponent �)
from the data, we proceeded as follows: we first convolved all
Herschel data to the poorest resolution, that is, to FWHM500 µm =
36 arcsec, corresponding to the SPIRE 500 µm data; then we per-
formed a fit of the observed spectral energy distribution (SED)
by integrating the modified blackbody intensity of Eq. (1) within
each Herschel bandpass. For the latter step we used the relative
spectral response functions (i.e., the total instrument through-
puts) available for the PACS and SPIRE bands, and for SPIRE,
as recommended in the SPIRE user manual, we corrected with
the �2 factor corresponding to the throughput for extended emis-
sion, which is appropriate for di↵use emission (higher than the
resolution of the instrument)1.

The Herschel bolometers measure the flux integrated within
each filter,

S̄ =
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S p,e(⌫)Rp,e(⌫) d⌫
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Rp,e(⌫) d⌫
, (4)

where S p,e(⌫) is the in-beam source flux density and Rp,e(⌫)
is the specific passband throughput for point (p) or extended
(e) sources (cf. Fig. 1, where Re(⌫) is reported for the PACS
and SPIRE passbands). The Herschel pipeline assumes that the
source is point-like and has an SED such that S p(⌫)⌫ = constant
across the passband,

S p(⌫) = S p(⌫0)
⌫0
⌫
· (5)

Therefore, the flux provided by the pipeline for each passband
corresponds to the flux that a point source with the spectral en-
ergy distribution (5) would have at the reference frequency ⌫0,
that is, S p(⌫0). To obtain this quantity, the pipeline converts the

1 We deliberately ignore point sources in the analysis such as embed-
ded protostars. Therefore, in areas contaminated by these objects the
derived dust column-density and temperature might not be accurate. For
point sources one should use the original PSF without the �2 factor.
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3.1. Physical model

Since molecular clouds are optically thin to dust-emission at the
frequencies and densities considered here, we describe the spe-
cific intensity at a frequency ⌫ as a modified blackbody:
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where � ' 2 and where ⌫0 is an arbitrary reference frequency.
Following the standard adopted by the Planck collaboration (see
below Sect. 3.3), we used ⌫0 = 353 GHz, corresponding to � =
850 µm, and we indicate the corresponding optical depth as ⌧850.

The Herschel bolometers respond to the in-beam flux den-
sity S ⌫, that is, to the specific intensity integrated over the beam
profile. Therefore, to convert the measured flux into an inten-
sity, we need to take into account the beam size at the spe-
cific wavelength. As explained below (see Sect. 3.2), because of
changes of the beam size with frequency, in this step we need to
choose between two distinct models of dust-emission, pointlike
or extended.

We stress that when using this physical model we are making
the assumption that temperature gradients are negligible along
the line of sight. This is of course an approximation, in particular
at the low temperatures that characterize molecular clouds where
a small increase of T produces a large increase in the intensity.
Therefore, when observing a cloud that has a gradient of tem-
perature along the line of sight, one will receive photons mostly
from the warmer regions crossed by the line of sight (typically,
from the outskirts of dense regions). Therefore, the temperature
derived from a fit of the data with Eq. (1) will not be a simple
average of the dust temperatures along the line of sight, but will
be biased high (Shetty et al. 2009); as a consequence, the optical
depth will be underestimated (Malinen et al. 2011). These ef-
fects can be very strong when large gradients are present, which
is generally the case toward embedded protostars that warm up
their local environment, or at a more extreme case, when a clus-
ter of embedded ionizing massive stars create an Hii region, as
in the case of the Orion nebula. For these reasons, we interpret T
in Eq. (1) as an e↵ective dust temperature for an observed dust
column.

3.2. SED fit

If we know the optical depth ⌧850, the e↵ective dust tempera-
ture T , and the exponent � in a given direction of the sky, we can
use Eqs. (1)�(3) to infer the intensity I⌫ at each frequency ⌫. In
reality, and if we aim to exploit the higher resolution of Herschel,
we only have at our disposal the fluxes measured by the PACS
and SPIRE instruments at specific wide bands. For our purposes,
it is useful to consider the PACS 100 µm and 160 µm bands, and
the SPIRE 250 µm, 350 µm, and 500 µm (the PACS 70 µm band
is not always optically thin, and in many regions has a very low
flux because it is far away from the peak of the blackbody at
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the temperatures that characterize molecular clouds, ⇠15 K, see
Fig. 1).

To solve the inverse problem, that is, infer the optical depth
and e↵ective dust temperature (and, eventually, the exponent �)
from the data, we proceeded as follows: we first convolved all
Herschel data to the poorest resolution, that is, to FWHM500 µm =
36 arcsec, corresponding to the SPIRE 500 µm data; then we per-
formed a fit of the observed spectral energy distribution (SED)
by integrating the modified blackbody intensity of Eq. (1) within
each Herschel bandpass. For the latter step we used the relative
spectral response functions (i.e., the total instrument through-
puts) available for the PACS and SPIRE bands, and for SPIRE,
as recommended in the SPIRE user manual, we corrected with
the �2 factor corresponding to the throughput for extended emis-
sion, which is appropriate for di↵use emission (higher than the
resolution of the instrument)1.

The Herschel bolometers measure the flux integrated within
each filter,

S̄ =

R
S p,e(⌫)Rp,e(⌫) d⌫
R

Rp,e(⌫) d⌫
, (4)

where S p,e(⌫) is the in-beam source flux density and Rp,e(⌫)
is the specific passband throughput for point (p) or extended
(e) sources (cf. Fig. 1, where Re(⌫) is reported for the PACS
and SPIRE passbands). The Herschel pipeline assumes that the
source is point-like and has an SED such that S p(⌫)⌫ = constant
across the passband,

S p(⌫) = S p(⌫0)
⌫0
⌫
· (5)

Therefore, the flux provided by the pipeline for each passband
corresponds to the flux that a point source with the spectral en-
ergy distribution (5) would have at the reference frequency ⌫0,
that is, S p(⌫0). To obtain this quantity, the pipeline converts the

1 We deliberately ignore point sources in the analysis such as embed-
ded protostars. Therefore, in areas contaminated by these objects the
derived dust column-density and temperature might not be accurate. For
point sources one should use the original PSF without the �2 factor.
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Fig. 9. Top left: GLIMPSE 8 µm image in our ℓ = 30◦ test region. Right: modified blackbody fits to the points marked on the filament in the
top left panel. Since the 70 µm point is not included in these fits (see Sect. 3.2) it is plotted as an X while the other points are shown with their
20% calibration error bars. The errors quoted in temperature and column density are the formal fit errors. As discussed in Sect. 4.1, these are not
necessarily representative of the true errors. Bottom left: the temperature and column densities derived along the filament, with 10 points marked.
Note the inverse relation between temperature and column density in this example, especially from points 8 to 10.

Table 2. Smoothed cirrus emission properties.

Hi-GAL field β1 N(H2)1 Temperature1

(×1022 cm−2) (K)
ℓ = 30◦ 1.7 ± 0.2 0.7 ± 0.3 23 ± 1
ℓ = 59◦ 1.5 ± 0.2 0.3 ± 0.1 21 ± 1

Notes. (1) The values given are the median of all valid values in the map,
and the uncertainty quoted is the standard deviation.

4.3. The temperature and column density maps

We present full temperature and column density maps of the
Hi-GAL ℓ = 30◦ and ℓ = 59◦ SDP fields. These maps are shown
in Fig. 10 and will be available for download as FITS files online
with the Hi-GAL data when the processed data is released pub-
licly. The source mask label maps, the source mask temperature
and column density maps, the error maps of these quantities, the
cirrus emission temperature, column density, and β maps, and
their error maps as well as the star formation tracer label maps
will all be available for download. The maps presented in Fig. 10
are displayed such that the values inside the source masks repre-
sent the background-subtracted fit values, while the values out-
side the source mask are the fits to the background itself.

The uncertainties in these maps are discussed in Sect. 4.1.
In addition to those, we found that in the ℓ = 30◦ field, our fits
were returning unsensible parameters at high Galactic latitudes
(|b| >∼ 0.8◦). This is due to imperfect calibration of the zero-level

offsets which is especially problematic at high Galactic latitudes
where the flux levels are already low. This imperfect calibra-
tion negates any physical meaning in the relative fluxes of the
Hi-GAL bands in this region. We do not see this same problem
in the l = 59◦ field, presumably due to the overall lower vari-
ance in flux values from high to low Galactic latitudes. We made
several attempts at correcting or properly ignoring those points,
with little success, and therefore, recommend that the maps in
the ℓ = 30◦ field only be used within |b| ≤ 0.8◦. Additionally,
pixels near the edges of the source masks were just barely above
the background, and can produce unphysical fits, so be cautious
of any pixel that is right on the edge of the source mask.

The column density follows the far-IR flux closely, while the
temperature is quite varied, and in many cases, inversely corre-
lated with the column density. The median temperatures for all
the pixels in the source masks are 26 and 20 K, while the me-
dian column densities are 0.25 and 0.10 × 1022 cm−2 (for the ℓ =
30◦ and ℓ = 59◦ field, respectively). The highest column density
points are found in W43, the large complex near ℓ = 30.75◦, b =
−0.05◦ (Bally et al. 2010), where the bright millimeter points,
MM1−MM4, have beam-averaged column densities of around
1023 cm−2.

4.4. The association of Far-IR clumps with mIRb
and mIRd sources

The association of Hi-GAL sources identified in the Far-IR with
mid-IR sources is of interest, as that gives some indication of
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Fig. 9. Top left: GLIMPSE 8 µm image in our ℓ = 30◦ test region. Right: modified blackbody fits to the points marked on the filament in the
top left panel. Since the 70 µm point is not included in these fits (see Sect. 3.2) it is plotted as an X while the other points are shown with their
20% calibration error bars. The errors quoted in temperature and column density are the formal fit errors. As discussed in Sect. 4.1, these are not
necessarily representative of the true errors. Bottom left: the temperature and column densities derived along the filament, with 10 points marked.
Note the inverse relation between temperature and column density in this example, especially from points 8 to 10.

Table 2. Smoothed cirrus emission properties.

Hi-GAL field β1 N(H2)1 Temperature1

(×1022 cm−2) (K)
ℓ = 30◦ 1.7 ± 0.2 0.7 ± 0.3 23 ± 1
ℓ = 59◦ 1.5 ± 0.2 0.3 ± 0.1 21 ± 1

Notes. (1) The values given are the median of all valid values in the map,
and the uncertainty quoted is the standard deviation.

4.3. The temperature and column density maps

We present full temperature and column density maps of the
Hi-GAL ℓ = 30◦ and ℓ = 59◦ SDP fields. These maps are shown
in Fig. 10 and will be available for download as FITS files online
with the Hi-GAL data when the processed data is released pub-
licly. The source mask label maps, the source mask temperature
and column density maps, the error maps of these quantities, the
cirrus emission temperature, column density, and β maps, and
their error maps as well as the star formation tracer label maps
will all be available for download. The maps presented in Fig. 10
are displayed such that the values inside the source masks repre-
sent the background-subtracted fit values, while the values out-
side the source mask are the fits to the background itself.

The uncertainties in these maps are discussed in Sect. 4.1.
In addition to those, we found that in the ℓ = 30◦ field, our fits
were returning unsensible parameters at high Galactic latitudes
(|b| >∼ 0.8◦). This is due to imperfect calibration of the zero-level

offsets which is especially problematic at high Galactic latitudes
where the flux levels are already low. This imperfect calibra-
tion negates any physical meaning in the relative fluxes of the
Hi-GAL bands in this region. We do not see this same problem
in the l = 59◦ field, presumably due to the overall lower vari-
ance in flux values from high to low Galactic latitudes. We made
several attempts at correcting or properly ignoring those points,
with little success, and therefore, recommend that the maps in
the ℓ = 30◦ field only be used within |b| ≤ 0.8◦. Additionally,
pixels near the edges of the source masks were just barely above
the background, and can produce unphysical fits, so be cautious
of any pixel that is right on the edge of the source mask.

The column density follows the far-IR flux closely, while the
temperature is quite varied, and in many cases, inversely corre-
lated with the column density. The median temperatures for all
the pixels in the source masks are 26 and 20 K, while the me-
dian column densities are 0.25 and 0.10 × 1022 cm−2 (for the ℓ =
30◦ and ℓ = 59◦ field, respectively). The highest column density
points are found in W43, the large complex near ℓ = 30.75◦, b =
−0.05◦ (Bally et al. 2010), where the bright millimeter points,
MM1−MM4, have beam-averaged column densities of around
1023 cm−2.

4.4. The association of Far-IR clumps with mIRb
and mIRd sources

The association of Hi-GAL sources identified in the Far-IR with
mid-IR sources is of interest, as that gives some indication of
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Fig. 9. Top left: GLIMPSE 8 µm image in our ℓ = 30◦ test region. Right: modified blackbody fits to the points marked on the filament in the
top left panel. Since the 70 µm point is not included in these fits (see Sect. 3.2) it is plotted as an X while the other points are shown with their
20% calibration error bars. The errors quoted in temperature and column density are the formal fit errors. As discussed in Sect. 4.1, these are not
necessarily representative of the true errors. Bottom left: the temperature and column densities derived along the filament, with 10 points marked.
Note the inverse relation between temperature and column density in this example, especially from points 8 to 10.

Table 2. Smoothed cirrus emission properties.

Hi-GAL field β1 N(H2)1 Temperature1

(×1022 cm−2) (K)
ℓ = 30◦ 1.7 ± 0.2 0.7 ± 0.3 23 ± 1
ℓ = 59◦ 1.5 ± 0.2 0.3 ± 0.1 21 ± 1

Notes. (1) The values given are the median of all valid values in the map,
and the uncertainty quoted is the standard deviation.

4.3. The temperature and column density maps

We present full temperature and column density maps of the
Hi-GAL ℓ = 30◦ and ℓ = 59◦ SDP fields. These maps are shown
in Fig. 10 and will be available for download as FITS files online
with the Hi-GAL data when the processed data is released pub-
licly. The source mask label maps, the source mask temperature
and column density maps, the error maps of these quantities, the
cirrus emission temperature, column density, and β maps, and
their error maps as well as the star formation tracer label maps
will all be available for download. The maps presented in Fig. 10
are displayed such that the values inside the source masks repre-
sent the background-subtracted fit values, while the values out-
side the source mask are the fits to the background itself.

The uncertainties in these maps are discussed in Sect. 4.1.
In addition to those, we found that in the ℓ = 30◦ field, our fits
were returning unsensible parameters at high Galactic latitudes
(|b| >∼ 0.8◦). This is due to imperfect calibration of the zero-level

offsets which is especially problematic at high Galactic latitudes
where the flux levels are already low. This imperfect calibra-
tion negates any physical meaning in the relative fluxes of the
Hi-GAL bands in this region. We do not see this same problem
in the l = 59◦ field, presumably due to the overall lower vari-
ance in flux values from high to low Galactic latitudes. We made
several attempts at correcting or properly ignoring those points,
with little success, and therefore, recommend that the maps in
the ℓ = 30◦ field only be used within |b| ≤ 0.8◦. Additionally,
pixels near the edges of the source masks were just barely above
the background, and can produce unphysical fits, so be cautious
of any pixel that is right on the edge of the source mask.

The column density follows the far-IR flux closely, while the
temperature is quite varied, and in many cases, inversely corre-
lated with the column density. The median temperatures for all
the pixels in the source masks are 26 and 20 K, while the me-
dian column densities are 0.25 and 0.10 × 1022 cm−2 (for the ℓ =
30◦ and ℓ = 59◦ field, respectively). The highest column density
points are found in W43, the large complex near ℓ = 30.75◦, b =
−0.05◦ (Bally et al. 2010), where the bright millimeter points,
MM1−MM4, have beam-averaged column densities of around
1023 cm−2.

4.4. The association of Far-IR clumps with mIRb
and mIRd sources

The association of Hi-GAL sources identified in the Far-IR with
mid-IR sources is of interest, as that gives some indication of
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Fig. 9. Top left: GLIMPSE 8 µm image in our ℓ = 30◦ test region. Right: modified blackbody fits to the points marked on the filament in the
top left panel. Since the 70 µm point is not included in these fits (see Sect. 3.2) it is plotted as an X while the other points are shown with their
20% calibration error bars. The errors quoted in temperature and column density are the formal fit errors. As discussed in Sect. 4.1, these are not
necessarily representative of the true errors. Bottom left: the temperature and column densities derived along the filament, with 10 points marked.
Note the inverse relation between temperature and column density in this example, especially from points 8 to 10.

Table 2. Smoothed cirrus emission properties.

Hi-GAL field β1 N(H2)1 Temperature1

(×1022 cm−2) (K)
ℓ = 30◦ 1.7 ± 0.2 0.7 ± 0.3 23 ± 1
ℓ = 59◦ 1.5 ± 0.2 0.3 ± 0.1 21 ± 1

Notes. (1) The values given are the median of all valid values in the map,
and the uncertainty quoted is the standard deviation.

4.3. The temperature and column density maps

We present full temperature and column density maps of the
Hi-GAL ℓ = 30◦ and ℓ = 59◦ SDP fields. These maps are shown
in Fig. 10 and will be available for download as FITS files online
with the Hi-GAL data when the processed data is released pub-
licly. The source mask label maps, the source mask temperature
and column density maps, the error maps of these quantities, the
cirrus emission temperature, column density, and β maps, and
their error maps as well as the star formation tracer label maps
will all be available for download. The maps presented in Fig. 10
are displayed such that the values inside the source masks repre-
sent the background-subtracted fit values, while the values out-
side the source mask are the fits to the background itself.

The uncertainties in these maps are discussed in Sect. 4.1.
In addition to those, we found that in the ℓ = 30◦ field, our fits
were returning unsensible parameters at high Galactic latitudes
(|b| >∼ 0.8◦). This is due to imperfect calibration of the zero-level

offsets which is especially problematic at high Galactic latitudes
where the flux levels are already low. This imperfect calibra-
tion negates any physical meaning in the relative fluxes of the
Hi-GAL bands in this region. We do not see this same problem
in the l = 59◦ field, presumably due to the overall lower vari-
ance in flux values from high to low Galactic latitudes. We made
several attempts at correcting or properly ignoring those points,
with little success, and therefore, recommend that the maps in
the ℓ = 30◦ field only be used within |b| ≤ 0.8◦. Additionally,
pixels near the edges of the source masks were just barely above
the background, and can produce unphysical fits, so be cautious
of any pixel that is right on the edge of the source mask.

The column density follows the far-IR flux closely, while the
temperature is quite varied, and in many cases, inversely corre-
lated with the column density. The median temperatures for all
the pixels in the source masks are 26 and 20 K, while the me-
dian column densities are 0.25 and 0.10 × 1022 cm−2 (for the ℓ =
30◦ and ℓ = 59◦ field, respectively). The highest column density
points are found in W43, the large complex near ℓ = 30.75◦, b =
−0.05◦ (Bally et al. 2010), where the bright millimeter points,
MM1−MM4, have beam-averaged column densities of around
1023 cm−2.

4.4. The association of Far-IR clumps with mIRb
and mIRd sources

The association of Hi-GAL sources identified in the Far-IR with
mid-IR sources is of interest, as that gives some indication of

A128, page 10 of 17

• Temperature gradients along the 
l.o.s. bias τ low

• Things almost certainly go wrong 
near OB associations y

I⌫ = B⌫(T )
⇥
1� e�⌧⌫

⇤
' B⌫(T )⌧⌫

⌧⌫ = ⌫⌃dust / ⌫�



Orion A & B
(Lombardi et al. 2014) 



O r i o n A

O
r i
o
n
B

M o n R 2

NGC 2024

NGC 2068
NGC 2071

NGC 1977OrionNebula

10 pc







204◦206◦208◦210◦212◦214◦216◦

Galactic Longitude

−22◦

−20◦

−18◦

−16◦

−14◦

−12◦

G
al

ac
ti

c
L

at
it

u
d

e

0

1

2

3

4

5

τ
8

5
0
×

1
0

4



204◦206◦208◦210◦212◦214◦216◦

Galactic Longitude

−22◦

−20◦

−18◦

−16◦

−14◦

−12◦

G
al

ac
ti

c
L

at
it

u
d

e

0

1

2

3

4

5

τ
8

5
0
×

1
0

4



204◦206◦208◦210◦212◦214◦216◦

Galactic Longitude

−22◦

−20◦

−18◦

−16◦

−14◦

−12◦

G
al

ac
ti

c
L

at
it

u
d
e

16

18

20

22

24

26

T
[K

]



Herschel PDF for Orion B

Lombardi et al. (2014)

10−2 10−1 100 101

10−2

10−1

100

101

102

103

104

105

AK [mag]

−
S
′
(>

A
K

)
[p

c2
m

ag
−

1
]

2MASS/Nicest
Herschel
Herschel + Planck



Herschel PDF for Orion B
• PDF is hardly symmetric 

in log-log
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higher column densities

• …with exponent –3
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• The only sensible definition of a cloud 
boundary is using iso-density 
contours.

• Which contour levels are we able to 
use securely?
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Low-column density part of PDFs

Lombardi et al. (2015)

A&A 576, L1 (2015)

2.1. Resolution and noise biases

Each method of probing the column density has a finite resolu-
tion and di↵erent noise levels (with the two being inversely pro-
portional to each other, for a given sensitivity). The e↵ects of a
finite resolution on the PDF are di�cult to predict and quantify,
because they depend on the (unresolved) small-scale structure of
the cloud. Generally, extinction measurements demonstrate that
clouds tend to be relatively smooth at low column densities; i.e.,
they show only small local variations in extinction, compared to
their denser parts, which are very uneven, and therefore the most
a↵ected by resolution (see Lombardi et al. 2010). Thus, obser-
vations with finite resolutions will often “move” mass from the
denser parts to the less dense ones, and the observed PDFs will
thus show a lack of dense material.

The e↵ects of statistical noise can instead be characterized
better: noise acts by smoothing the intrinsic PDF over AK with
a size of the smoothing kernel equal to the average noise level
within each bin. Therefore, the noise level sets the resolution in
extinction of the PDF. Depending on the technique used to de-
rive the cloud column density, the noise level can be constant in
the field or can vary. For near-infrared (NIR) extinction studies,
the K-band extinction measurements toward a star have a typ-
ical error around 0.15 mag, and therefore NIR extinction maps
have a fraction of this noise level (because several individual
extinction measurements are averaged within each resolution el-
ement): however, since the use of more stars per resolution el-
ement comes at the price of lower resolution, typical errors on
NIR extinction maps are in the range 0.03 mag to 0.10 mag.
Moreover, since the density of background stars decreases in the
denser regions of molecular clouds, the noise of NIR extinction
maps increases with the dust column density. This level of noise
has a significant impact on the lower end of the PDF (where the
signal-to-noise ratio approaches unity) and makes it virtually im-
possible to characterize the PDF for AK . 0.1 mag with NIR
extinction (see Alves et al. 2014). The statistical noise of other
tracers, such as dust emission or CO observations, depends on
the depth of the observation and (at least in principle) can be
significantly below 0.1 mag (but see below).

On top of statistical noise, many column density tracers
are also plagued by systematic errors. As mentioned above, we
do not consider these, but it is worth recalling that extinction
studies are a↵ected by unresolved substructures and foreground
stars, especially for high column densities (Lombardi 2009);
dust emission maps su↵er from temperature gradients along the
line of sight and inaccuracies in the dust opacity model; and ra-
dio observations are plagued by a very limited dynamic range
(which essentially prevents the study of the PDF).

2.2. Projection and boundary bias

Our view of molecular clouds is confused by projection e↵ects:
the volume probed to derive the PDF is a cone, and intervening
material along the line of sight essentially makes it impossible
to probe the PDFs at low column densities (and, in some cases,
close to the Galactic plane, at medium densities too)1.

As a consequence, molecular cloud boundaries generally are
not well defined in dust emission or extinction maps. Even for
clouds relatively distant from the galactic plane (such as Orion,
Taurus, or Perseus) it is di�cult to go below AK ⇠ 0.1 mag: that

1 This is strictly true for dust extinction and emission studies.
However, for relatively uncrowded regions, CO measurements have
some power to remove this confusion using velocity information.
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Fig. 1. E↵ect of 11 di↵erent boundaries used to derive the PDF of
Orion B (dark: smaller area, light: larger area, by equal steps of ⇠4%).
The e↵ect on the PDF is almost exclusively confined to AK < 0.1 mag.

is, iso-contours corresponding to lower values of extinction of
one cloud are generally merged with unrelated cloud material in
the foreground and background.

Operationally, the choice of the sky area used to derive the
PDF clearly a↵ects the measurement of the PDF. Including or
excluding regions angularly close to the cloud has an impact on
the overall shape of the PDF, especially at low column densities.
For example, larger boundaries generally tend to extend the PDF
to lower values of AK .

3. Herschel-derived PDF of nearby clouds

Because of the e↵ects discussed in Sect. 2, in order to measure
the PDFs of molecular clouds we need to use well-calibrated
data with the highest dynamic range and a large areal coverage
of the clouds. Therefore, we follow Lombardi et al. (2014) by us-
ing Herschel emission maps complemented with Planck/IRAS
data for the outskirts of the clouds to derive column densi-
ties. We finally convert the optical depth to extinction using
2MASS/Nicest maps.

As argued in the previous section, the PDF is expected to
be a↵ected by choice of cloud boundaries. Figure 1 shows how
the histogram of the bin areas (thus essentially unnormalized
PDFs) of Orion B changes when using di↵erent boundaries. As
expected, this has a strong impact on AK < 0.1 mag, while the
high end of the PDF is left unchanged.

As mentioned earlier, unrelated foreground or background
material can contribute to the observed PDF. One way to correct
for this is to look at the lowest extinction value in a large area
around the cloud and to remove this amount from the extinction
map (see also Schneider et al. 2015). Of course, this is a crude
approximation since the subtracted column density is taken to
be constant within the field. As a result, we expect “corrected”
column densities to be a↵ected by an additional noise equal to
the average scatter of the superimposed material. This quantity,
however, can be estimated (although approximately) by check-
ing the o↵-field column density scatter and by applying a set of
o↵sets that spans the same range in extinction. To test the bias
associated with such a correction, we subtracted di↵erent extinc-
tion o↵sets to the PDF of Orion B. The result of this experiment
(Fig. 2) demonstrates that this operation mostly a↵ects the low
end of the PDF: in particular, large o↵set corrections make the
PDF peak broader (in a log-log plot) and move it to the left.
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2.1. Resolution and noise biases

Each method of probing the column density has a finite resolu-
tion and di↵erent noise levels (with the two being inversely pro-
portional to each other, for a given sensitivity). The e↵ects of a
finite resolution on the PDF are di�cult to predict and quantify,
because they depend on the (unresolved) small-scale structure of
the cloud. Generally, extinction measurements demonstrate that
clouds tend to be relatively smooth at low column densities; i.e.,
they show only small local variations in extinction, compared to
their denser parts, which are very uneven, and therefore the most
a↵ected by resolution (see Lombardi et al. 2010). Thus, obser-
vations with finite resolutions will often “move” mass from the
denser parts to the less dense ones, and the observed PDFs will
thus show a lack of dense material.

The e↵ects of statistical noise can instead be characterized
better: noise acts by smoothing the intrinsic PDF over AK with
a size of the smoothing kernel equal to the average noise level
within each bin. Therefore, the noise level sets the resolution in
extinction of the PDF. Depending on the technique used to de-
rive the cloud column density, the noise level can be constant in
the field or can vary. For near-infrared (NIR) extinction studies,
the K-band extinction measurements toward a star have a typ-
ical error around 0.15 mag, and therefore NIR extinction maps
have a fraction of this noise level (because several individual
extinction measurements are averaged within each resolution el-
ement): however, since the use of more stars per resolution el-
ement comes at the price of lower resolution, typical errors on
NIR extinction maps are in the range 0.03 mag to 0.10 mag.
Moreover, since the density of background stars decreases in the
denser regions of molecular clouds, the noise of NIR extinction
maps increases with the dust column density. This level of noise
has a significant impact on the lower end of the PDF (where the
signal-to-noise ratio approaches unity) and makes it virtually im-
possible to characterize the PDF for AK . 0.1 mag with NIR
extinction (see Alves et al. 2014). The statistical noise of other
tracers, such as dust emission or CO observations, depends on
the depth of the observation and (at least in principle) can be
significantly below 0.1 mag (but see below).

On top of statistical noise, many column density tracers
are also plagued by systematic errors. As mentioned above, we
do not consider these, but it is worth recalling that extinction
studies are a↵ected by unresolved substructures and foreground
stars, especially for high column densities (Lombardi 2009);
dust emission maps su↵er from temperature gradients along the
line of sight and inaccuracies in the dust opacity model; and ra-
dio observations are plagued by a very limited dynamic range
(which essentially prevents the study of the PDF).

2.2. Projection and boundary bias

Our view of molecular clouds is confused by projection e↵ects:
the volume probed to derive the PDF is a cone, and intervening
material along the line of sight essentially makes it impossible
to probe the PDFs at low column densities (and, in some cases,
close to the Galactic plane, at medium densities too)1.

As a consequence, molecular cloud boundaries generally are
not well defined in dust emission or extinction maps. Even for
clouds relatively distant from the galactic plane (such as Orion,
Taurus, or Perseus) it is di�cult to go below AK ⇠ 0.1 mag: that

1 This is strictly true for dust extinction and emission studies.
However, for relatively uncrowded regions, CO measurements have
some power to remove this confusion using velocity information.
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Fig. 1. E↵ect of 11 di↵erent boundaries used to derive the PDF of
Orion B (dark: smaller area, light: larger area, by equal steps of ⇠4%).
The e↵ect on the PDF is almost exclusively confined to AK < 0.1 mag.

is, iso-contours corresponding to lower values of extinction of
one cloud are generally merged with unrelated cloud material in
the foreground and background.

Operationally, the choice of the sky area used to derive the
PDF clearly a↵ects the measurement of the PDF. Including or
excluding regions angularly close to the cloud has an impact on
the overall shape of the PDF, especially at low column densities.
For example, larger boundaries generally tend to extend the PDF
to lower values of AK .

3. Herschel-derived PDF of nearby clouds

Because of the e↵ects discussed in Sect. 2, in order to measure
the PDFs of molecular clouds we need to use well-calibrated
data with the highest dynamic range and a large areal coverage
of the clouds. Therefore, we follow Lombardi et al. (2014) by us-
ing Herschel emission maps complemented with Planck/IRAS
data for the outskirts of the clouds to derive column densi-
ties. We finally convert the optical depth to extinction using
2MASS/Nicest maps.

As argued in the previous section, the PDF is expected to
be a↵ected by choice of cloud boundaries. Figure 1 shows how
the histogram of the bin areas (thus essentially unnormalized
PDFs) of Orion B changes when using di↵erent boundaries. As
expected, this has a strong impact on AK < 0.1 mag, while the
high end of the PDF is left unchanged.

As mentioned earlier, unrelated foreground or background
material can contribute to the observed PDF. One way to correct
for this is to look at the lowest extinction value in a large area
around the cloud and to remove this amount from the extinction
map (see also Schneider et al. 2015). Of course, this is a crude
approximation since the subtracted column density is taken to
be constant within the field. As a result, we expect “corrected”
column densities to be a↵ected by an additional noise equal to
the average scatter of the superimposed material. This quantity,
however, can be estimated (although approximately) by check-
ing the o↵-field column density scatter and by applying a set of
o↵sets that spans the same range in extinction. To test the bias
associated with such a correction, we subtracted di↵erent extinc-
tion o↵sets to the PDF of Orion B. The result of this experiment
(Fig. 2) demonstrates that this operation mostly a↵ects the low
end of the PDF: in particular, large o↵set corrections make the
PDF peak broader (in a log-log plot) and move it to the left.
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2.1. Resolution and noise biases

Each method of probing the column density has a finite resolu-
tion and di↵erent noise levels (with the two being inversely pro-
portional to each other, for a given sensitivity). The e↵ects of a
finite resolution on the PDF are di�cult to predict and quantify,
because they depend on the (unresolved) small-scale structure of
the cloud. Generally, extinction measurements demonstrate that
clouds tend to be relatively smooth at low column densities; i.e.,
they show only small local variations in extinction, compared to
their denser parts, which are very uneven, and therefore the most
a↵ected by resolution (see Lombardi et al. 2010). Thus, obser-
vations with finite resolutions will often “move” mass from the
denser parts to the less dense ones, and the observed PDFs will
thus show a lack of dense material.

The e↵ects of statistical noise can instead be characterized
better: noise acts by smoothing the intrinsic PDF over AK with
a size of the smoothing kernel equal to the average noise level
within each bin. Therefore, the noise level sets the resolution in
extinction of the PDF. Depending on the technique used to de-
rive the cloud column density, the noise level can be constant in
the field or can vary. For near-infrared (NIR) extinction studies,
the K-band extinction measurements toward a star have a typ-
ical error around 0.15 mag, and therefore NIR extinction maps
have a fraction of this noise level (because several individual
extinction measurements are averaged within each resolution el-
ement): however, since the use of more stars per resolution el-
ement comes at the price of lower resolution, typical errors on
NIR extinction maps are in the range 0.03 mag to 0.10 mag.
Moreover, since the density of background stars decreases in the
denser regions of molecular clouds, the noise of NIR extinction
maps increases with the dust column density. This level of noise
has a significant impact on the lower end of the PDF (where the
signal-to-noise ratio approaches unity) and makes it virtually im-
possible to characterize the PDF for AK . 0.1 mag with NIR
extinction (see Alves et al. 2014). The statistical noise of other
tracers, such as dust emission or CO observations, depends on
the depth of the observation and (at least in principle) can be
significantly below 0.1 mag (but see below).

On top of statistical noise, many column density tracers
are also plagued by systematic errors. As mentioned above, we
do not consider these, but it is worth recalling that extinction
studies are a↵ected by unresolved substructures and foreground
stars, especially for high column densities (Lombardi 2009);
dust emission maps su↵er from temperature gradients along the
line of sight and inaccuracies in the dust opacity model; and ra-
dio observations are plagued by a very limited dynamic range
(which essentially prevents the study of the PDF).

2.2. Projection and boundary bias

Our view of molecular clouds is confused by projection e↵ects:
the volume probed to derive the PDF is a cone, and intervening
material along the line of sight essentially makes it impossible
to probe the PDFs at low column densities (and, in some cases,
close to the Galactic plane, at medium densities too)1.

As a consequence, molecular cloud boundaries generally are
not well defined in dust emission or extinction maps. Even for
clouds relatively distant from the galactic plane (such as Orion,
Taurus, or Perseus) it is di�cult to go below AK ⇠ 0.1 mag: that

1 This is strictly true for dust extinction and emission studies.
However, for relatively uncrowded regions, CO measurements have
some power to remove this confusion using velocity information.

10�2 10�1 100 101
10�3

10�2

10�1

100

101

102

AK [mag]

A
re

a
pe

rb
in

[p
c2 ]

Fig. 1. E↵ect of 11 di↵erent boundaries used to derive the PDF of
Orion B (dark: smaller area, light: larger area, by equal steps of ⇠4%).
The e↵ect on the PDF is almost exclusively confined to AK < 0.1 mag.

is, iso-contours corresponding to lower values of extinction of
one cloud are generally merged with unrelated cloud material in
the foreground and background.

Operationally, the choice of the sky area used to derive the
PDF clearly a↵ects the measurement of the PDF. Including or
excluding regions angularly close to the cloud has an impact on
the overall shape of the PDF, especially at low column densities.
For example, larger boundaries generally tend to extend the PDF
to lower values of AK .

3. Herschel-derived PDF of nearby clouds

Because of the e↵ects discussed in Sect. 2, in order to measure
the PDFs of molecular clouds we need to use well-calibrated
data with the highest dynamic range and a large areal coverage
of the clouds. Therefore, we follow Lombardi et al. (2014) by us-
ing Herschel emission maps complemented with Planck/IRAS
data for the outskirts of the clouds to derive column densi-
ties. We finally convert the optical depth to extinction using
2MASS/Nicest maps.

As argued in the previous section, the PDF is expected to
be a↵ected by choice of cloud boundaries. Figure 1 shows how
the histogram of the bin areas (thus essentially unnormalized
PDFs) of Orion B changes when using di↵erent boundaries. As
expected, this has a strong impact on AK < 0.1 mag, while the
high end of the PDF is left unchanged.

As mentioned earlier, unrelated foreground or background
material can contribute to the observed PDF. One way to correct
for this is to look at the lowest extinction value in a large area
around the cloud and to remove this amount from the extinction
map (see also Schneider et al. 2015). Of course, this is a crude
approximation since the subtracted column density is taken to
be constant within the field. As a result, we expect “corrected”
column densities to be a↵ected by an additional noise equal to
the average scatter of the superimposed material. This quantity,
however, can be estimated (although approximately) by check-
ing the o↵-field column density scatter and by applying a set of
o↵sets that spans the same range in extinction. To test the bias
associated with such a correction, we subtracted di↵erent extinc-
tion o↵sets to the PDF of Orion B. The result of this experiment
(Fig. 2) demonstrates that this operation mostly a↵ects the low
end of the PDF: in particular, large o↵set corrections make the
PDF peak broader (in a log-log plot) and move it to the left.
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2.1. Resolution and noise biases

Each method of probing the column density has a finite resolu-
tion and di↵erent noise levels (with the two being inversely pro-
portional to each other, for a given sensitivity). The e↵ects of a
finite resolution on the PDF are di�cult to predict and quantify,
because they depend on the (unresolved) small-scale structure of
the cloud. Generally, extinction measurements demonstrate that
clouds tend to be relatively smooth at low column densities; i.e.,
they show only small local variations in extinction, compared to
their denser parts, which are very uneven, and therefore the most
a↵ected by resolution (see Lombardi et al. 2010). Thus, obser-
vations with finite resolutions will often “move” mass from the
denser parts to the less dense ones, and the observed PDFs will
thus show a lack of dense material.

The e↵ects of statistical noise can instead be characterized
better: noise acts by smoothing the intrinsic PDF over AK with
a size of the smoothing kernel equal to the average noise level
within each bin. Therefore, the noise level sets the resolution in
extinction of the PDF. Depending on the technique used to de-
rive the cloud column density, the noise level can be constant in
the field or can vary. For near-infrared (NIR) extinction studies,
the K-band extinction measurements toward a star have a typ-
ical error around 0.15 mag, and therefore NIR extinction maps
have a fraction of this noise level (because several individual
extinction measurements are averaged within each resolution el-
ement): however, since the use of more stars per resolution el-
ement comes at the price of lower resolution, typical errors on
NIR extinction maps are in the range 0.03 mag to 0.10 mag.
Moreover, since the density of background stars decreases in the
denser regions of molecular clouds, the noise of NIR extinction
maps increases with the dust column density. This level of noise
has a significant impact on the lower end of the PDF (where the
signal-to-noise ratio approaches unity) and makes it virtually im-
possible to characterize the PDF for AK . 0.1 mag with NIR
extinction (see Alves et al. 2014). The statistical noise of other
tracers, such as dust emission or CO observations, depends on
the depth of the observation and (at least in principle) can be
significantly below 0.1 mag (but see below).

On top of statistical noise, many column density tracers
are also plagued by systematic errors. As mentioned above, we
do not consider these, but it is worth recalling that extinction
studies are a↵ected by unresolved substructures and foreground
stars, especially for high column densities (Lombardi 2009);
dust emission maps su↵er from temperature gradients along the
line of sight and inaccuracies in the dust opacity model; and ra-
dio observations are plagued by a very limited dynamic range
(which essentially prevents the study of the PDF).

2.2. Projection and boundary bias

Our view of molecular clouds is confused by projection e↵ects:
the volume probed to derive the PDF is a cone, and intervening
material along the line of sight essentially makes it impossible
to probe the PDFs at low column densities (and, in some cases,
close to the Galactic plane, at medium densities too)1.

As a consequence, molecular cloud boundaries generally are
not well defined in dust emission or extinction maps. Even for
clouds relatively distant from the galactic plane (such as Orion,
Taurus, or Perseus) it is di�cult to go below AK ⇠ 0.1 mag: that

1 This is strictly true for dust extinction and emission studies.
However, for relatively uncrowded regions, CO measurements have
some power to remove this confusion using velocity information.
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Fig. 1. E↵ect of 11 di↵erent boundaries used to derive the PDF of
Orion B (dark: smaller area, light: larger area, by equal steps of ⇠4%).
The e↵ect on the PDF is almost exclusively confined to AK < 0.1 mag.

is, iso-contours corresponding to lower values of extinction of
one cloud are generally merged with unrelated cloud material in
the foreground and background.

Operationally, the choice of the sky area used to derive the
PDF clearly a↵ects the measurement of the PDF. Including or
excluding regions angularly close to the cloud has an impact on
the overall shape of the PDF, especially at low column densities.
For example, larger boundaries generally tend to extend the PDF
to lower values of AK .

3. Herschel-derived PDF of nearby clouds

Because of the e↵ects discussed in Sect. 2, in order to measure
the PDFs of molecular clouds we need to use well-calibrated
data with the highest dynamic range and a large areal coverage
of the clouds. Therefore, we follow Lombardi et al. (2014) by us-
ing Herschel emission maps complemented with Planck/IRAS
data for the outskirts of the clouds to derive column densi-
ties. We finally convert the optical depth to extinction using
2MASS/Nicest maps.

As argued in the previous section, the PDF is expected to
be a↵ected by choice of cloud boundaries. Figure 1 shows how
the histogram of the bin areas (thus essentially unnormalized
PDFs) of Orion B changes when using di↵erent boundaries. As
expected, this has a strong impact on AK < 0.1 mag, while the
high end of the PDF is left unchanged.

As mentioned earlier, unrelated foreground or background
material can contribute to the observed PDF. One way to correct
for this is to look at the lowest extinction value in a large area
around the cloud and to remove this amount from the extinction
map (see also Schneider et al. 2015). Of course, this is a crude
approximation since the subtracted column density is taken to
be constant within the field. As a result, we expect “corrected”
column densities to be a↵ected by an additional noise equal to
the average scatter of the superimposed material. This quantity,
however, can be estimated (although approximately) by check-
ing the o↵-field column density scatter and by applying a set of
o↵sets that spans the same range in extinction. To test the bias
associated with such a correction, we subtracted di↵erent extinc-
tion o↵sets to the PDF of Orion B. The result of this experiment
(Fig. 2) demonstrates that this operation mostly a↵ects the low
end of the PDF: in particular, large o↵set corrections make the
PDF peak broader (in a log-log plot) and move it to the left.
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Fig. 2. E↵ect of 11 di↵erent o↵sets for the superposition bias correction
in the PDF of Orion B (by steps of 0.02 mag).
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Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
Polaris 0.01 3.9 +25� Pipe 0.29 3.0 5�
California 0.10 2.5 �8� Taurus 0.01 2.3 �15�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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Fig. 2. E↵ect of 11 di↵erent o↵sets for the superposition bias correction
in the PDF of Orion B (by steps of 0.02 mag).

Polaris Pipe California Taurus

Oph Perseus OrionB OrionA

10�2 10�1 100 101
10�3

10�2

10�1

100

101

102

AK [mag]

A
re

a
pe

rb
in

[p
c2 ]

Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
Polaris 0.01 3.9 +25� Pipe 0.29 3.0 5�
California 0.10 2.5 �8� Taurus 0.01 2.3 �15�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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we show for a reference a function approximating the shape using a dotted line. The x-axis on top of the panels shows the extinction scale in
magnitudes.



Ka
inu

lai
ne

n 
et

 a
l. (

20
09

)
Log-normals everywhere!J. Kainulainen et al.: Probing the evolution of molecular cloud structure , Online Material p 1

Fig. 4. Probability density functions (PDFs) of a normalised column density for 13 star-forming clouds in the study. The error bars show the
√

N
uncertainties. Solid lines show the fits of lognormal functions to the distributions around the peak, typically over the range ln Av/AV = [−0.5, 1].
The dispersion of the fitted function is shown in the panels. For some clouds, no reasonable fit was achieved over any AV range. For those clouds,
we show for a reference a function approximating the shape using a dotted line. The x-axis on top of the panels shows the extinction scale in
magnitudes.

?



Ka
inu

lai
ne

n 
et

 a
l. (

20
09

)
Log-normals everywhere!J. Kainulainen et al.: Probing the evolution of molecular cloud structure , Online Material p 1

Fig. 4. Probability density functions (PDFs) of a normalised column density for 13 star-forming clouds in the study. The error bars show the
√

N
uncertainties. Solid lines show the fits of lognormal functions to the distributions around the peak, typically over the range ln Av/AV = [−0.5, 1].
The dispersion of the fitted function is shown in the panels. For some clouds, no reasonable fit was achieved over any AV range. For those clouds,
we show for a reference a function approximating the shape using a dotted line. The x-axis on top of the panels shows the extinction scale in
magnitudes.

?
, c

en
so

re
d



10−3

10−2

10−1

100

101

102

103

104

S
(>

A
K

)
[p

c2
]

2MASS/Nicest
Herschel
Herschel + Planck

10−2 10−1 100 101

−4

−3

−2

−1

0

AK [mag]

d
ln

S
/d

ln
A

K

10−3

10−2

10−1

100

101

102

103

S
(>

A
K

)
[p

c2
]

2MASS/Nicest
Herschel
Herschel + Planck

10−2 10−1 100 101

−4

−3

−2

−1

0

AK [mag]

d
ln

S
/d

ln
A

K

Lombardi et al. (2014) Alves et al. (2015)

Area functions (integrals of PDFs)
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Consider an isothermal sphere:
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Toy model

Consider an isothermal sphere:

𝜌 ~ R–2
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Toy model

Consider an isothermal sphere:

𝜌 ~ R–2

AK ~ Σ ~ R–1
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3rd Larson’s law
A&A 519, L7 (2010)

small scatter on a set of nearby clouds investigated using NICER
(Lombardi & Alves 2001) and NICEST (Lombardi 2009); sec-
ond, we show that the same law, applied within a single cloud
(using different extinction thresholds) as M ∝ L2 does not hold.
Additionally, we argue that the first version of Larson’s third
law implies a universal physical structure for molecular clouds,
which we identify in their log-normal distributions for the pro-
jected gas density.

Larson’s third law, in its original formulation, links the av-
erage density

〈
n(H2)

〉
of clouds with their size L:

〈
n(H2)

〉
=

3400 cm−3(L/1 pc)α, with α = −1.10. Here L is defined as
the maximum observed linear extent of the cloud, and

〈
n(H2)

〉

is the average density of a sphere of diameter L and total mass
M identical to the cloud (typically estimated from 13CO data).
Larson’s data were more heterogeneous and included different
clouds studied at different contours of integrated intensity, which
resulted in a scatter of approximately one order of magnitude
about the assumed relation; as we will see, our data suggest in-
stead that Larson’s law holds with a scatter below 15%. The
fact that α ≃ −1 implies that the cloud projected column den-
sity,
〈
n(H2)

〉
L ∝ L−0.1, is approximately constant. Larson dis-

cussed a few possible explanations for this: one-dimensional
shock compressions, optical depth natural selection effects, and
observational biases owing to the limited dynamic range of the
13CO data.

2. An extinction measurement of Larson’s law

2.1. Definitions

We consider first (Sect. 2.3) the following version of Larson’s
third law. Since we have at our disposal complete extinction
maps, we can consider the area S of a cloud above a given extinc-
tion threshold A0 (throughout this letter, unless otherwise noted,
we will refer to extinction measurements in the K band, AK , and
drop everywhere the index K). We then define the cloud size
implicitly from S = π(L/2)2 (or the cloud radius as R = L/2).
Similarly, we can consider the cloud mass M above the same
extinction threshold.

We will also briefly investigate the mass vs. radius relation-
ship for each individual cloud, and verify whether we recover
Larson’s prediction M(R) ∝ R2 (Sect. 2.4). Note that the two
versions of Larson’s third law (different clouds above a fixed
extinction threshold, or same cloud at various extinction thresh-
olds) are clearly linked, but are not equivalent, in the sense that
only one of the two might hold. Note also Larson (1981) de-
facto studied different clouds at different thresholds, and there-
fore used a mixture of both versions considered separately here.

Throughout this letter we will treat molecular complexes as
single objects, and we will not split unconnected regions be-
longing to the same complex. Since typically a cloud will have
many clumps with relatively high column densities, this proce-
dure avoids the “creation” of new clouds when the extinction
threshold A0 is increased. This procedure is justified because our
objects are mainly well defined regions, relatively far from the
galactic plane, and with no or little contamination from other
clouds.

2.2. Data analysis

The data used here are extinction maps obtained from the point
source catalog of the Two Micron All Sky Survey (2MASS;
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Fig. 1. Cloud masses above extinction thresholds of A0 = 0.1 mag
(filled symbols) and A0 = 0.5 mag (open symbols) as a function of their
size. The two line shows the best constant surface density fits, which
correspond to Σ = 41 M⊙ pc−2 and Σ = 149 M⊙ pc−2 respectively.

Table 1. Best power-law fits M = aπRγ for various extinction thresh-
olds.

Threshold A0 a γ Scatter c
(mag) (M⊙ pc−γ) (percent)

0.1 41.2 1.99 11% 2.25
0.2 73.1 1.96 12% 2.00
0.5 149.0 2.01 14% 1.63
1.0 264.2 2.06 12% 1.44
1.5 379.8 2.07 14% 1.38

Notes. Note that because γ ≃ 2 in all cases, the quantity a can be inter-
preted as the average mass column density of the cloud above the corre-
sponding extinction threshold. The last two columns show the standard
deviation of the cloud column densities divided by their average (rela-
tive scatter) and the ratio between the average column densities and the
minimum column density set by the extinction threshold (c).

Kleinmann et al. 1994). Data for the various complexes
have been reduced using NICER (Lombardi & Alves 2001)
and NICEST (Lombardi 2009) and following the prescriptions
adopted in previous works (see Lombardi et al. 2006, 2008,
2010). The complexes considered are nearby molecular clouds,
and therefore we are able to well resolve most cores with the
2MASS data; the same clouds have been used in Lada et al.
(2010). Extinction measurements are converted into surface
mass densities using

Σ = µmpβK AK , (1)

where µ is the mean molecular weight, βK ≡ [N(Hi) +
2N(H2)]/AK ≃ 1.67 × 1022 cm−2 mag−1 is the gas-to-dust ratio
(Savage & Mathis 1979; Lilley 1955; Bohlin et al. 1978), and
mp is the proton mass. With a standard gas composition (63%
hydrogen, 36% helium, and 1% dust) we have µ ≃ 1.37 and
therefore Σ/AK ≃ 183 M⊙ pc−2 mag−1.

2.3. Larson’s third law for a constant extinction threshold

Figure 1 shows the amount of mass different clouds have above
extinction thresholds of AK = 0.1 mag and AK = 0.5 mag as a
function of the cloud “radii” (defined according to Sect. 2.1), to-
gether with the best power-law fit. As apparent from this plot, all
clouds follow exquisitely well a Larson-type relationship, with
M ∝ R2, and have therefore very similar projected mass densi-
ties at each extinction threshold. This result is also quantitatively
shown in Table 1, where we report the best-fit power-laws for the
mass vs. radius relation at different extinction thresholds. The
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Fig. 2. Mass vs. radius relationship; both quantities are defined as indi-
cated in Sect. 2.1.

exceptionally small scatter observed in Fig. 1 is also confirmed
by the results shown in Table 1: at all extinctions considered,
data follow the best-fit power-laws with relative standard devia-
tions always below 15%.

Table 1 also show the dimensionless factor c obtained from
the best quadratic fit M = cµmpβK A0πR2 in terms of the con-
stants appearing in Eq. (1). Hence, c = ⟨AK⟩/A0 ≥ 1, and the
fact that c ∼ 2 with a very small relative scatter among different
clouds indicates that all these objects have a very similar physi-
cal structure.

2.4. Larson’s third law for single clouds

Figure 2 shows the second version of Larson’s third law con-
sidered here, i.e. the mass vs. radius relationship. As apparent
from this figure, the tracks for the various clouds have similar
trends, but span a relatively large range of masses. In the range
R ∈ [0.1, 1] pc we can fit a power-law of the form M(R) =
380 M⊙ (R/pc)1.6, a result that compares well with the one ob-
tained by Kauffmann et al. (2010), M(R) = 400 M⊙ (R/pc)1.7.
Different clouds have quite similar exponents (the standard de-
viation of the power-law index is ∼0.18), but rather different
masses (the best-fit scale parameter for the mass ranges from 150
to 710 M⊙). Note, however, that since the power-law index is sig-
nificantly different from two, errors on the assumed distances of
the clouds would affect the scale parameter for the mass.

From this analysis we conclude that Larson’s third law is
not an accurate description of the mass vs. radius relationship
for single clouds. Specifically, at larger scales all clouds show a
flattening of the curves and deviates significantly from a power-
law, while at smaller scales clouds follow power-laws, but with
an exponent significantly different than two.

2.5. Cloud physical structure

As mentioned earlier, that an ensemble of clouds satisfies
Larson’s third law at different extinction thresholds suggests that
clouds have a universal physical structure.

In order to investigate this point better, we consider in Fig. 3
the average column density of cloud material above a given
extinction threshold, as a function of the extinction threshold.
Figure 3 indicates a remarkable uniformity among the various
clouds: they all show a relatively flat plateau up to ∼0.1 mag,
and then a constant rise up to 2–5 mag. In the range A0 ∈
[0.1, 1] mag, the curves for all clouds are confined within a
relatively narrow region. In this extinction range we can fit a
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Fig. 3. Cloud mass surface density above an extinction threshold as a
function of the threshold, in logarithmic scale. The dotted line shows
the relationship between the cloud column density in M⊙ pc−2 and the
extinction in the K band.

simple power-law to the data plotted in Fig. 3, obtaining Σ =
265 M⊙ pc−2 (A0/mag)0.8. Note that an error analysis of the data
points in Fig. 3 at A0 < 0.05 mag shows that they are signif-
icant, because the large number of independent measurements
contributing to these data make the statistical errors negligible,
and because the flatness of the plateau at low extinction values
makes them robust with respect to systematic errors (such as off-
sets in the NICER maps due to extinction in the control field).

3. Theoretical interpretation

The results presented above indicates that clouds have simi-
lar structures. Observationally (see, e.g., Lombardi et al. 2008;
Kainulainen et al. 2009; Lombardi et al. 2010; Froebrich &
Rowles 2010), many clouds show a log-normal distribution at
low extinctions:

pA(A) =
1√

2πσA
exp
[
− (ln A − ln A1)2

2σ2

]
, (2)

where A1 and σ are two positive parameters. A tail at high
extinctions, present in many clouds, is generally associated
with the effects of gravitational instability. The log-normality of
pA(A) is often linked with supersonic turbulence, although recent
results show that this is also a common feature of very different
classes of cloud models (Tassis et al. 2010).

Interestingly, we can express the mass and the area of a cloud
above an extinction threshold as simple integrals of pA(A). Given
a cloud of total area S tot, the area and mass above a given extinc-
tion threshold A0 are

S (A0) = S tot

∫ ∞

A0

pA(A) dA, (3)

M(A0) = S totµmpβ

∫ ∞

A0

ApA(A) dA. (4)

In particular, if we consider the log-normal distribution of
Eq. (2), we obtain for the column density above A0

Σ(A0) ≡ M(A0)
S (A0)

= A1µmpβκ(A0/A1), (5)

where κ is a dimensionless quantity defined as

κ(a) = exp
(
σ2

2

) 1 − erf
[(

ln a − σ2
)
/
√

2σ
]

1 − erf
[
ln a/

√
2σ
] · (6)
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small scatter on a set of nearby clouds investigated using NICER
(Lombardi & Alves 2001) and NICEST (Lombardi 2009); sec-
ond, we show that the same law, applied within a single cloud
(using different extinction thresholds) as M ∝ L2 does not hold.
Additionally, we argue that the first version of Larson’s third
law implies a universal physical structure for molecular clouds,
which we identify in their log-normal distributions for the pro-
jected gas density.

Larson’s third law, in its original formulation, links the av-
erage density

〈
n(H2)

〉
of clouds with their size L:

〈
n(H2)

〉
=

3400 cm−3(L/1 pc)α, with α = −1.10. Here L is defined as
the maximum observed linear extent of the cloud, and

〈
n(H2)

〉

is the average density of a sphere of diameter L and total mass
M identical to the cloud (typically estimated from 13CO data).
Larson’s data were more heterogeneous and included different
clouds studied at different contours of integrated intensity, which
resulted in a scatter of approximately one order of magnitude
about the assumed relation; as we will see, our data suggest in-
stead that Larson’s law holds with a scatter below 15%. The
fact that α ≃ −1 implies that the cloud projected column den-
sity,
〈
n(H2)

〉
L ∝ L−0.1, is approximately constant. Larson dis-

cussed a few possible explanations for this: one-dimensional
shock compressions, optical depth natural selection effects, and
observational biases owing to the limited dynamic range of the
13CO data.

2. An extinction measurement of Larson’s law

2.1. Definitions

We consider first (Sect. 2.3) the following version of Larson’s
third law. Since we have at our disposal complete extinction
maps, we can consider the area S of a cloud above a given extinc-
tion threshold A0 (throughout this letter, unless otherwise noted,
we will refer to extinction measurements in the K band, AK , and
drop everywhere the index K). We then define the cloud size
implicitly from S = π(L/2)2 (or the cloud radius as R = L/2).
Similarly, we can consider the cloud mass M above the same
extinction threshold.

We will also briefly investigate the mass vs. radius relation-
ship for each individual cloud, and verify whether we recover
Larson’s prediction M(R) ∝ R2 (Sect. 2.4). Note that the two
versions of Larson’s third law (different clouds above a fixed
extinction threshold, or same cloud at various extinction thresh-
olds) are clearly linked, but are not equivalent, in the sense that
only one of the two might hold. Note also Larson (1981) de-
facto studied different clouds at different thresholds, and there-
fore used a mixture of both versions considered separately here.

Throughout this letter we will treat molecular complexes as
single objects, and we will not split unconnected regions be-
longing to the same complex. Since typically a cloud will have
many clumps with relatively high column densities, this proce-
dure avoids the “creation” of new clouds when the extinction
threshold A0 is increased. This procedure is justified because our
objects are mainly well defined regions, relatively far from the
galactic plane, and with no or little contamination from other
clouds.

2.2. Data analysis

The data used here are extinction maps obtained from the point
source catalog of the Two Micron All Sky Survey (2MASS;
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Fig. 1. Cloud masses above extinction thresholds of A0 = 0.1 mag
(filled symbols) and A0 = 0.5 mag (open symbols) as a function of their
size. The two line shows the best constant surface density fits, which
correspond to Σ = 41 M⊙ pc−2 and Σ = 149 M⊙ pc−2 respectively.

Table 1. Best power-law fits M = aπRγ for various extinction thresh-
olds.

Threshold A0 a γ Scatter c
(mag) (M⊙ pc−γ) (percent)

0.1 41.2 1.99 11% 2.25
0.2 73.1 1.96 12% 2.00
0.5 149.0 2.01 14% 1.63
1.0 264.2 2.06 12% 1.44
1.5 379.8 2.07 14% 1.38

Notes. Note that because γ ≃ 2 in all cases, the quantity a can be inter-
preted as the average mass column density of the cloud above the corre-
sponding extinction threshold. The last two columns show the standard
deviation of the cloud column densities divided by their average (rela-
tive scatter) and the ratio between the average column densities and the
minimum column density set by the extinction threshold (c).

Kleinmann et al. 1994). Data for the various complexes
have been reduced using NICER (Lombardi & Alves 2001)
and NICEST (Lombardi 2009) and following the prescriptions
adopted in previous works (see Lombardi et al. 2006, 2008,
2010). The complexes considered are nearby molecular clouds,
and therefore we are able to well resolve most cores with the
2MASS data; the same clouds have been used in Lada et al.
(2010). Extinction measurements are converted into surface
mass densities using

Σ = µmpβK AK , (1)

where µ is the mean molecular weight, βK ≡ [N(Hi) +
2N(H2)]/AK ≃ 1.67 × 1022 cm−2 mag−1 is the gas-to-dust ratio
(Savage & Mathis 1979; Lilley 1955; Bohlin et al. 1978), and
mp is the proton mass. With a standard gas composition (63%
hydrogen, 36% helium, and 1% dust) we have µ ≃ 1.37 and
therefore Σ/AK ≃ 183 M⊙ pc−2 mag−1.

2.3. Larson’s third law for a constant extinction threshold

Figure 1 shows the amount of mass different clouds have above
extinction thresholds of AK = 0.1 mag and AK = 0.5 mag as a
function of the cloud “radii” (defined according to Sect. 2.1), to-
gether with the best power-law fit. As apparent from this plot, all
clouds follow exquisitely well a Larson-type relationship, with
M ∝ R2, and have therefore very similar projected mass densi-
ties at each extinction threshold. This result is also quantitatively
shown in Table 1, where we report the best-fit power-laws for the
mass vs. radius relation at different extinction thresholds. The
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Fig. 2. Mass vs. radius relationship; both quantities are defined as indi-
cated in Sect. 2.1.

exceptionally small scatter observed in Fig. 1 is also confirmed
by the results shown in Table 1: at all extinctions considered,
data follow the best-fit power-laws with relative standard devia-
tions always below 15%.

Table 1 also show the dimensionless factor c obtained from
the best quadratic fit M = cµmpβK A0πR2 in terms of the con-
stants appearing in Eq. (1). Hence, c = ⟨AK⟩/A0 ≥ 1, and the
fact that c ∼ 2 with a very small relative scatter among different
clouds indicates that all these objects have a very similar physi-
cal structure.

2.4. Larson’s third law for single clouds

Figure 2 shows the second version of Larson’s third law con-
sidered here, i.e. the mass vs. radius relationship. As apparent
from this figure, the tracks for the various clouds have similar
trends, but span a relatively large range of masses. In the range
R ∈ [0.1, 1] pc we can fit a power-law of the form M(R) =
380 M⊙ (R/pc)1.6, a result that compares well with the one ob-
tained by Kauffmann et al. (2010), M(R) = 400 M⊙ (R/pc)1.7.
Different clouds have quite similar exponents (the standard de-
viation of the power-law index is ∼0.18), but rather different
masses (the best-fit scale parameter for the mass ranges from 150
to 710 M⊙). Note, however, that since the power-law index is sig-
nificantly different from two, errors on the assumed distances of
the clouds would affect the scale parameter for the mass.

From this analysis we conclude that Larson’s third law is
not an accurate description of the mass vs. radius relationship
for single clouds. Specifically, at larger scales all clouds show a
flattening of the curves and deviates significantly from a power-
law, while at smaller scales clouds follow power-laws, but with
an exponent significantly different than two.

2.5. Cloud physical structure

As mentioned earlier, that an ensemble of clouds satisfies
Larson’s third law at different extinction thresholds suggests that
clouds have a universal physical structure.

In order to investigate this point better, we consider in Fig. 3
the average column density of cloud material above a given
extinction threshold, as a function of the extinction threshold.
Figure 3 indicates a remarkable uniformity among the various
clouds: they all show a relatively flat plateau up to ∼0.1 mag,
and then a constant rise up to 2–5 mag. In the range A0 ∈
[0.1, 1] mag, the curves for all clouds are confined within a
relatively narrow region. In this extinction range we can fit a
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Fig. 3. Cloud mass surface density above an extinction threshold as a
function of the threshold, in logarithmic scale. The dotted line shows
the relationship between the cloud column density in M⊙ pc−2 and the
extinction in the K band.

simple power-law to the data plotted in Fig. 3, obtaining Σ =
265 M⊙ pc−2 (A0/mag)0.8. Note that an error analysis of the data
points in Fig. 3 at A0 < 0.05 mag shows that they are signif-
icant, because the large number of independent measurements
contributing to these data make the statistical errors negligible,
and because the flatness of the plateau at low extinction values
makes them robust with respect to systematic errors (such as off-
sets in the NICER maps due to extinction in the control field).

3. Theoretical interpretation

The results presented above indicates that clouds have simi-
lar structures. Observationally (see, e.g., Lombardi et al. 2008;
Kainulainen et al. 2009; Lombardi et al. 2010; Froebrich &
Rowles 2010), many clouds show a log-normal distribution at
low extinctions:

pA(A) =
1√

2πσA
exp
[
− (ln A − ln A1)2

2σ2

]
, (2)

where A1 and σ are two positive parameters. A tail at high
extinctions, present in many clouds, is generally associated
with the effects of gravitational instability. The log-normality of
pA(A) is often linked with supersonic turbulence, although recent
results show that this is also a common feature of very different
classes of cloud models (Tassis et al. 2010).

Interestingly, we can express the mass and the area of a cloud
above an extinction threshold as simple integrals of pA(A). Given
a cloud of total area S tot, the area and mass above a given extinc-
tion threshold A0 are

S (A0) = S tot

∫ ∞

A0

pA(A) dA, (3)

M(A0) = S totµmpβ

∫ ∞

A0

ApA(A) dA. (4)

In particular, if we consider the log-normal distribution of
Eq. (2), we obtain for the column density above A0

Σ(A0) ≡ M(A0)
S (A0)

= A1µmpβκ(A0/A1), (5)

where κ is a dimensionless quantity defined as

κ(a) = exp
(
σ2

2

) 1 − erf
[(

ln a − σ2
)
/
√

2σ
]

1 − erf
[
ln a/

√
2σ
] · (6)
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M. Lombardi et al.: Molecular clouds have power-law PDFs
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Fig. 2. E↵ect of 11 di↵erent o↵sets for the superposition bias correction
in the PDF of Orion B (by steps of 0.02 mag).
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Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
Polaris 0.01 3.9 +25� Pipe 0.29 3.0 5�
California 0.10 2.5 �8� Taurus 0.01 2.3 �15�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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Fig. 2. E↵ect of 11 di↵erent o↵sets for the superposition bias correction
in the PDF of Orion B (by steps of 0.02 mag).
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Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
Polaris 0.01 3.9 +25� Pipe 0.29 3.0 5�
California 0.10 2.5 �8� Taurus 0.01 2.3 �15�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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Fig. 2. E↵ect of 11 di↵erent o↵sets for the superposition bias correction
in the PDF of Orion B (by steps of 0.02 mag).
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Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
Polaris 0.01 3.9 +25� Pipe 0.29 3.0 5�
California 0.10 2.5 �8� Taurus 0.01 2.3 �15�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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Fig. 2. E↵ect of 11 di↵erent o↵sets for the superposition bias correction
in the PDF of Orion B (by steps of 0.02 mag).
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Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
Polaris 0.01 3.9 +25� Pipe 0.29 3.0 5�
California 0.10 2.5 �8� Taurus 0.01 2.3 �15�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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Fig. 2. E↵ect of 11 di↵erent o↵sets for the superposition bias correction
in the PDF of Orion B (by steps of 0.02 mag).
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Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
Polaris 0.01 3.9 +25� Pipe 0.29 3.0 5�
California 0.10 2.5 �8� Taurus 0.01 2.3 �15�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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Fig. 2. E↵ect of 11 di↵erent o↵sets for the superposition bias correction
in the PDF of Orion B (by steps of 0.02 mag).
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Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
Polaris 0.01 3.9 +25� Pipe 0.29 3.0 5�
California 0.10 2.5 �8� Taurus 0.01 2.3 �15�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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Fig. 2. E↵ect of 11 di↵erent o↵sets for the superposition bias correction
in the PDF of Orion B (by steps of 0.02 mag).
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Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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Fig. 2. E↵ect of 11 di↵erent o↵sets for the superposition bias correction
in the PDF of Orion B (by steps of 0.02 mag).
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Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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in the PDF of Orion B (by steps of 0.02 mag).
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Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
Polaris 0.01 3.9 +25� Pipe 0.29 3.0 5�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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Fig. 2. E↵ect of 11 di↵erent o↵sets for the superposition bias correction
in the PDF of Orion B (by steps of 0.02 mag).
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Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
Polaris 0.01 3.9 +25� Pipe 0.29 3.0 5�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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Fig. 2. E↵ect of 11 di↵erent o↵sets for the superposition bias correction
in the PDF of Orion B (by steps of 0.02 mag).
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Fig. 3. Areas per extinction bin of di↵erent molecular clouds from
Herschel/Planck dust-emission data. Bins span 0.01 dex.

These simple tests demonstrate that the low end of the
PDF is essentially unconstrained by the observations. We thus
limit our investigation to the PDF at medium-to-high column
densities. Figure 3 shows the raw histograms of bin areas
for a set of molecular clouds, with boundaries selected from
2MASS/Nicest extinction maps (see Lombardi et al. 2006,
2008, 2010, 2011)2. We stress that using Planck data for the out-
skirts of the clouds was critical for investigating regions outside
the Herschel coverage but still at relatively high values of extinc-
tion. Clearly there is a wide variety of PDF shapes, and in almost
all cases there, they do not look like simple log-normal functions
(which would appear as parabolae here). However, as discussed
earlier, each cloud is a↵ected by di↵erent levels of contamina-
tion due to unrelated foreground and background material. To
remove this bias, we proceed as in Fig. 2 and subtract, for each
cloud, a custom o↵set appropriately determined by careful ex-
amination of the outskirts of each object and list in Table1.

2 As discussed in the text, this figure is constructed directly from his-
tograms of the logarithm of the column density map of each cloud,
and di↵ers by a simple scaling factor / AK from Figs. 17 and 18 of
Lombardi et al. (2014), which are constructed as derivative of the area
function.

Table 1. Extinction correction, the computed slopes n of the power law
of the various clouds’ PDFs and the clouds’ Galactic latitudes b.

Cloud �AK n b Cloud �AK n b
Oph 0.06 1.8 17� Perseus 0.02 1.7 �20�
Orion B 0.03 2.0 �15� Orion A 0.02 1.9 �19�
Polaris 0.01 3.9 +25� Pipe 0.29 3.0 5�
California 0.10 2.5 �8� Taurus 0.01 2.3 �15�
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Fig. 4. PDFs of molecular clouds considered in this Letter, together with
the PDF generated by a simple toy model (truncated isothermal profile,
see Sect. 4) as a black dashed line. The PDFs have been corrected for the
superposition bias by subtracting a constant o↵set to the dust extinction
maps used to derive them.

The result is shown as (normalized) PDFs in Fig. 4.
Interestingly, many of the di↵erences at AK ⇠ 0.1 mag to
0.5 mag evident in Fig. 3 are absent or mitigated in Fig. 4, sug-
gesting that they are artificially induced by superposition of un-
related foreground and background material.

At extinctions >0.2 mag, the PDFs exhibit power-law
shapes spanning approximately two decades with slopes rang-
ing roughly between �4 and �2 (see Fig. 4 and Table1 where we
list the indexes derived from a fit of the PDFs). In addition, they
exhibit a turnover from a power law form near AK ⇠ 0.2 mag.
Log-normal PDFs, which would appear as simple symmetric
parabolae in these plots, are not evident for AK > 0.1 mag,
with the possible exception of Polaris. Rather, it is evident that
PDFs are very asymmetric in the log-log plot. Again, Polaris is
a notable exception in this plot: it is more symmetric and dis-
plays a break at significantly lower column densities, as well
as a steeper slope at the high extinction side. As argued above,
the di↵erences shown by clouds below AK ⇠ 0.1 mag are not
significant; therefore, we cannot even assess whether there is a
universal shape for the PDF in this regime, and in case there is,
if the PDF is flat or increasing in this interval. Moreover, in this
regime much of the measured extinction is likely to come from
unrelated, more di↵use, atomic and molecular gas along the line
of sight, rather than from the molecular cloud itself. At such low
extinctions, it would be very di�cult to separate any contribu-
tion to the intrinsic cloud PDF arising from a cloud’s own (more
di↵use) outermost layers.

4. Discussion

Our inability to investigate the low end of the PDF limits our
ability to distinguish di↵erent models for its shape. However,
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Polaris log-normal fit

• A log-normal fit of Polaris 
works in the range AK 0.05 
to 0.2 mag
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Polaris log-normal fit

• A log-normal fit of Polaris 
works in the range AK 0.05 
to 0.2 mag

• Consider a (toy) model of 
a Bonnor-Ebert polytropic 
sphere
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Polaris log-normal fit

• A log-normal fit of Polaris 
works in the range AK 0.05 
to 0.2 mag

• Consider a (toy) model of 
a Bonnor-Ebert polytropic 
sphere

• The associated PDF fits 
the measured one over 2 
order of magnitues!
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Polaris log-normal fit

• A log-normal fit of Polaris 
works in the range AK 0.05 
to 0.2 mag

• Consider a (toy) model of 
a Bonnor-Ebert polytropic 
sphere

• The associated PDF fits 
the measured one over 2 
order of magnitues!

• Caveat: ad-hoc model, but 
shows that log-normal is 
not that good
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The local Schmidt law

Lombardi et al. (2013), Lada et al. (2013)



The local Schmidt law

• In the cloud we studied, the density of 
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Figure 5. Left panel shows the local Schmidt scaling relation in the Orion A molecular cloud. The protostellar surface density, Σ∗(AK), rises steeply with increasing
extinction in this cloud. The solid line is a least-squares fit to the data which yielded a power-law index, β, of 2.0 in agreement with the Bayesian analysis (see the
text). The right panel shows the variation in the cumulative protostellar fraction (CPF) with extinction in Orion A. The function is relatively flat in the lower extinction
regions that make up the bulk of the cloud. However, it drops steeply at extinctions in excess of 1 mag in spite of the apparently unabated, nonlinear rise in Σ∗ with
extinction. This behavior in the CPF is a consequence of the steep fall off of cloud area with extinction seen in Figure 6. Nonetheless, 80% of the protostars in Orion A
are found at extinctions in excess of 0.8 mag.

3. THE TOTAL STAR FORMATION RATE AND THE
CRUCIAL ROLE OF CLOUD STRUCTURE

3.1. The Integrated Star Formation Scaling Relation

By itself, the Schmidt scaling relation does not appear to be
a reliable predictor of star formation activity in local GMCs.
Moreover, observations indicate that clouds of similar size,
mass, and average Σgas can have total or integrated SFRs and
global values of ΣSFR that vary by as much as an order of
magnitude (Lada et al. 2010; see also Figure 8). Given the
generally similar natures of the star formation laws in our cloud
sample, how is it possible to explain this variation? To answer
this question and address the issue of how a steeply rising
star formation law produces a steeply declining population of
protostars and SFR at large column densities, we must explicitly
take into account the relation between cloud column density
and is surface area. The number of protostars at a given level of
extinction, AK, is the product of the area S(AK) encompassing
that extinction and Σ∗(AK). The total number of protostars is
given by the integral of this product over all extinctions in the
cloud.

Suppose we know the integral relation between the projected
surface area of the cloud and the column density, expressed in
terms of the area of the cloud above a given extinction AK . Let us
call this relation the surface area distribution function, S(>AK ).
Then the total number of protostars in the cloud is

N∗ =
∫

Σ∗(AK) dS =
∫

Σ∗(AK)|S ′(>AK )| dAK. (10)

This equation tells us that we can estimate the expected
number of protostars that a cloud will produce from the integral
of the product of the density of protostars as a function of AK
and the differential cloud area. We now propose that variations
in the SFRs between clouds are largely due to variations in the
function S(>AK ) and its derivative.

In Figure 6 we show plots of S(>AK ) versus AK for the four
clouds in this study and the Pipe Molecular Cloud for compari-
son. The figure shows that for all clouds S(>AK ) is a decreasing

Table 2
Predicted and Observed Protostellar Population

Population Orion A California Taurus Orion B

Observed 329 54 51 90
Predicteda 332.7 55.4 52.1 90.5

Note. a N∗ =
∫

Σ∗(AK) dS and Σ∗(AK ) = A0 + κA
β
K .

function of AK and falls steeply at the higher extinctions. Large
differences in amplitudes and shapes are apparent for the five
sources, even on this log–log plot. These differences appear to
be qualitatively correlated with the differing levels of star for-
mation in the clouds, from Orion A, the most active, to the Pipe,
the least active star-forming cloud. This confirms our intuition
regarding the importance of S(>AK ) in determining the level of
star formation, given the similar nature of the local Schmidt law
for these clouds. To further test this idea, we evaluated the inte-
gral Equation (10) for each cloud with Σ∗ given by Equation (7)
and the A

β
Ks calculated from our extinction maps. The results

are shown in Table 2 and the predictions agree very well with
the observations. Our analysis also confirms our earlier suspi-
cions (Lada et al. 2009, 2010) that differences in cloud structure,
particularly at high extinctions, were the primary cause of the
differences in total SFRs between local clouds.

We note that in a recent paper, Burkert & Hartmann (2013)
analyzed data for a sample clouds in the Spitzer C2D survey
reported by Heiderman et al. (2010) and found the surface area
of the clouds to decrease rapidly with mass column density for
the combined cloud sample, similar to what is found here. They
further suggested that this steep decline in cloud surface area
drives the steep rise in ΣSFR in the Schmidt relation and moreover
posited that the variations in S(>AK) between clouds produce
variations in the βs of the corresponding Schmidt relations. We
find no evidence to support this suggestion in the local cloud data
presented here. Instead, as pointed out earlier, we find similar
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SUMMARY

1. For 20 years we have screwed up the simplest characterization of 
cloud structure, the PDF… but we now know PDFs are power lows

2. Various other scaling laws hold (Larson’s 3rd law, the local Schmidt law)

3. Large differences in the SFRs of molecular clouds are to be linked to 
their internal structure (slope of the PDF)




