WMAP and Early Universe Cosmology

8th Paris Cosmology Colloquium, Dec 9-10 2004

Hiranya Peiris, KICP/EFI, University of Chicago

WMAP Science Team

GODDARD

Charles Bennett, P.I. Robert Hill Gary Hinshaw Al Kogut Michele Limon Nils Odegard Janet Weiland Edward Wollack

PRINCETON U.

Chris Barnes Rachel Bean Olivier Dore Norman Jarosik Lyman Page David Spergel U. CHICAGO

Stephan Meyer Hiranya Peiris UCLA Edward Wright

U. BRIT COLUMBIA Mark Halpern

BROWN U.

Greg Tucker

U. Texas, Austin

Eiichiro Komatsu

U. Penn.

Licia Verde

U. Toronto

Michael Nolta

WMAP Highlights

- Microwave Maps
 - High fidelity full-sky maps in five bands (23,33,41,61,94 GHz).
 - High S/N CMB maps.
 - Gaussianity of CMB.
- CMB Temperature
 - Power spectrum measured to /~700.
 - LCDM fits.

- CMB Polarization
 - Temp-Pol cross-power spectrum measured to *I*~400.
 - Early reionization.
 - A lot more...
 - Galaxy model
 - Point source catalogue
 - etc...
 - **Please visit** http://lambda.gsfc.nasa.gov

Cosmic History

Inflation-like epoch.

 $z_{eq} = 3230$ $t_{II} = 56$ kyr

 $z_{dec} = 1089 \quad t_U = 380 \text{ kyr}$

 $t_U = 200 \text{ Myr}$

z = 0 $t_{II} = 13.7$ Gyr

TEST MODEL CONSISTENCY and LIFT DEGENERACIES

Complementary in scales-redshift

What Simple Inflationary Models predict

- Flat universe: $\Omega_{tot} = 1$
- Gaussianity: $f_{NL} \sim 1 \quad \Phi(\vec{x}) = \Phi_{gaus}(\vec{x}) + f_{NL} \Phi_{gaus}^2(\vec{x})$ See talk by S. Matarrese
- Power Spectrum spectral index nearly scale-invariant: $n_s \sim 1$ $k^3 \langle \Phi \Phi \rangle \propto k^{n_s - 1}$
- Adiabatic superhorizon fluctuations

Guth (1981), Linde (1982), Albrecht & Steinhardt (1982), Sato (1981), Mukhanov & Chibisov (1981), Hawking (1982), Guth & Pi (1982), Starobinsky (1982), Bardeen et al. (1983), Mukhanov et al. (1992)

 Ω_{Λ} vs. Ω_{m}

WMAP Supports Single Field Inflationary Models

- Flat universe: $\Omega_{tot} = 1.02 \pm 0.07$
- Gaussianity: $-58 < f_{NL} < 134$
- Power Spectrum spectral index nearly scale-invariant:
 n_s = 0.99 ± 0.04 (WMAP only)
- Adiabatic initial conditions
- Superhorizon fluctuations (TE anticorrelations)

•The primordial power spectrum is not a perfect power law.

$$n_s(k) - 1 = n_s(k_0) - 1 + \frac{dn_s}{d \ln k} \ln \left(\frac{k}{k_0}\right)$$

e could be "running"

•There could be gravitational waves.

r=tensor-to-scalar ratio=
$$\frac{\langle h_{ij}h^{ij}\rangle(k_0)}{\langle \mathbf{R} \mathbf{R} \rangle(k_0)}$$

(The shape of the tensor power spectrum is determined by n_s and r using predictions of single field inflationary models.)

We use $k_0 = 0.002 \text{ Mpc}^{-1}$ (I ~ 30)

Generic predictions of single field slow roll models

Each point is a "viable" slow roll model, able to sustain inflation for sufficient e-foldings to solve cosmological problems.

Monte Carlo simulations following Kinney (2002) and Easther and Kinney (2002)

•The shape of the scalar field potential, $V(\phi)$, determines the observables.

•We use three parameters to characterize the shape:

• ε : "slope" of potential, $(V'/V)^2$

•n: "curvature" of potential, V''/V

• ξ : "jerk" of potential, (V'/V)(V''/V)

The curvature is the most important parameter in classifying the models.

$$\begin{cases} r = 16\varepsilon \\ n_s = 1 - 6\varepsilon + 2\eta \\ dn_s / d\ln k = -2\xi + 16\varepsilon\eta - 24\varepsilon^2 \end{cases}$$
$$\begin{cases} r = \frac{8}{3}(1 - n_s) + \frac{16}{3}\eta \\ dn_s / d\ln k + 2\xi = -\frac{2}{3}\left[(1 - n_s)^2 - 4\eta^2\right] \end{cases}$$

The curvature is the most important parameter in classifying the models.

Negative curvature models

spontaneous symmetry breaking potential

e.g. new inflation

Albrecht & Steinhardt (1982), Linde (1982)

 $n_s < 1$ (red tilt) & tiny r & tiny $dn_s/d\ln k$

Small positive curvature models

 $n_s < 1$ (red tilt) & large r & tiny $dn_s/dlnk$

Large positive curvature models

 $n_s>1$ (blue tilt) & tiny r & tiny $dn_s/d\ln k$

Intermediate positive curvature models

 $n_s < 1$ (red tilt) & large r & tiny $dn_s/dlnk$

•Many inflationary models favour minimal "running".

If true, third derivative of potential is important.

Testing inflation at a detailed level

Categorizing single field slow roll models

Negative curvature (e.g.: new inflation)

Small positive curvature (e.g.: chaotic inflation, extended inflation)

Intermediate positive curvature

Large positive curvature (e.g.: hybrid inflation)

Recommended: For given model, sit on that point and run likelihood analysis (may need to integrate mode equation directly).

Constraining Inflation

95% Confidence Limits:

r<0.9 (no priors) => Energy scale of inflation $V^{1/4} < 3.3 \times 10^{16} \text{ GeV}$ (95% CL)

r<0.43 (no running)

r<0.28 (red tilt)

 $\lambda \phi^4$ model, Excluded at more than 3-sigma if N<50

Double Field Models

- If there is a scalar field, why not two?
- Distinctive signatures of double field models:
 - Fluctuations may not be purely adiabatic
 - Entropy (isocurvature) perturbations
- We perturb entropy between CDM and photons
 - Parameterize by two slopes (n_{ad}, n_{ent}) , a fractional contribution of the entropy mode (f_{ent}) , and a correlation angle $(\cos \Delta)$.

Double field models

• Motivation: Can we reduce low l anisotropy?

 $\frac{\Delta T}{T} = \frac{1}{5} \left(\hat{R}_{rad} - 2\hat{S}_{rad} \right)$

•CMB anisotropy can be reduced, when *R* and *S* are correlated.

See talk by J. Lesgourgues

Constraint on correlated CDM isocurvature fraction

Chi-square not improved by addition of three extra parameters •No evidence for entropy perturbations between CDM and photons.

- Primordial fluctuations seem to be purely adiabatic.
- Supporting single field (simplest) inflationary models.

•No broad classes of inflation cannot currently be ruled out (because we cannot exclude $n_s=1,r=0$), but specific models are starting to be able to be ruled out.

Inflation: Problems

Is Inflation a Theory?

While the simplest versions of inflation have definite predictions (flat universe, Gaussian scale invariant spectrum of adiabatic fluctuations), inflationary models with more baroque forms of $V(\phi)$ can produce non-flat universes, non-Gaussian fluctuations, non-adiabatic fluctuations, and deviations from scale invariance.

INFLATION IS A PARADIGM

Testing Specific Inflationary Models

- Cosmologists need to test simplest models
- Particle theorists need to motivate models
 - String theory
 - Multiple dimensional cosmologies

See talks by H. de Vega & N. Sanchez

Testing the Simplest Models

Deviations from scale invariance

- > $m^2\phi^2$ inflation predicts $n_s = 0.97$
- \succ WMAP + ACT (or Planck) should detect these deviation from scale invariance at greater than 3 σ
- Further tests of non-Gaussianity (See talk by S. Matarrese)

Gravity waves from inflation

> $m^2\phi^2$ inflation predicts a gravity wave background at a level detectable by WMAP (with ~8 years of integration) and Planck

Current Status of Inflation

- Standard big bang models has a number of fundamental problems
- Inflationary scenario solves these problems by positing an inflaton potential
 - Inflaton potential form is currently ad-hoc

Simplest Versions of Inflation are Testable!

Reduced chisq for TT only 1.09

Effects neglected on covariance matrix

• Weak lensing

- Beam asymmetries
- Non-gaussianity of the noise (striping)
- Features in inflation potential (Peiris et al. 2003)

0.5% to 1% error on the error!

Modifying the Inflaton Potential (0.1% change in amplitude)

See e.g. Adams, Cresswell & Easther (astro-ph/0102236), Hunt & Sarkar (astro-ph/0408138)

More Power Spectrum Outliers

Lewis (astro-ph/0310186) observes that the number of 3σ points (above) is high. Notes that only 3/16000 simulations have a lower value of C_{181} (arrow).

See Talk by O. Dore

Martin & Ringeval (astro-ph/0310382) and Okamoto and Lim (astro-ph/0312284) fit toy trans-Planckian model to spectrum: $\Delta\chi^2 = 16$ for 3(?) parameters.

100

1000

10

Are TP effects observable even in principle?

- Feasibility study only
- Significant theoretical uncertainties (need a proper model to test!)
- Needs favorable piece of parameter space
- Tensor detection and (H/M) detection coupled

Easther, Kinney, and Peiris (in preparation)

Standard Model fits WMAP data

- LCDM, Adiabatic, flat, composed of:
 - Baryonic Matter = $4.7\pm0.6\%$
 - Dark Matter = $24\pm7\%$
 - Dark Energy = $71\pm7\%$
- Power Spectrum Slope = 0.99±0.04
- Hubble Constant = 72±5 km/s/Mpc [fits HST Key Project]
- $\Omega_{\rm b} h^2 = 0.024$ [fits D/H]
- $\sigma_8 = 0.9$ (0.84 for running model) [fits lensing, clusters, etc]
- Age of the Universe 13.7 \pm 0.2 Gyr [fits stellar evolution]
- Fits LSS and Ly-a data

The numbers are consistent with a host of astronomical observations at different redshifts and scales.

Future observational prospects

- Go to small scales! Much better measurements of the primordial power spectrum shape.
 - Planck /~3000 (k~0.2/Mpc)
 - ACT /~10000 (k~0.7/Mpc) [secondary effects]
 - Galaxies *k*~1/Mpc [non-linearity & bias]
 - Lyman alpha k~5/Mpc [gas phys. & radiation feedback]
 - Reionization *k*~50/Mpc [much is unknown]
- Detecting gravitational waves
 - QUEST, QuAD, BICEP, PolarBear, EBEX, CLOVER, QUIET, Planck, CMBpol, Inflation Probe etc... [See G. Smoot Talk]
- Detecting non-Gaussianity from 2nd order gravity
 - Can we detect $f_{NL} \sim 1$?

Theoretical directions

- More detailed predictions from a specific, physically motivated model
 - More accurate reheating scenario is necessary!!
 - No slow-roll approximations
 - Test (constrain) models one by one

