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What is inflation?

• It is a stage of accelerated expansion in the
very early Universe.

• It explains the homogeneity, isotropy and
flatness of the Universe; and the observed
characteristics of the cosmic microwave back-
ground.

FRW space: ds2 = dt2 − a2(t)d~x2

Accelerated expansion, [ä = −(4π/3)(ε+3p)a]

ä > 0 ⇔ p/ε < −1

3
⇔ 2 εkinetic < εpotential

In a quasi-De Sitter space (a ' eH t), the present
homogeneity, isotropy and flatness imply

number of efolds: Ne ≡ ln

(
af

a0

)
> 60



Some open questions in inflation

• Start: How inflation begins?

= Which states lead to inflation?

• During: Is it valid the classical description

of inflation? When?

Which are the effects of the quantum cor-

rections?, and which are their observable

consequences?

• End: How inflation ends?

Transition from inflation to radiation dom-

inated epoch (reheating).





Classical Inflation: perturbations

Metric and field backgrounds classical,

only the perturbations are quantized.

Evolution of coupled metric and field quantum

perturbations in the classical background →
Spectrum of primordial scalar and tensor per-

turbations for classical inflation



Quantum Field Foundations of Inflation

• Give a consistent quantum field treatment

to inflation

• Find an initial state as general as possible

that leads to inflation.

Generalized slow-roll condition

(and beyond).

• When the inflaton can be described by an

effective classical field?

• Which are the effects of the quantum cor-

rections?, and which are their observable

consequences?



The Model

- Inflaton treated as a full quantum field
- Classical gravity with 〈Tµν〉 as source term
(semiclassical gravity).

Large ε ⇒ quantum non-perturbative methods
needed

N scalar fields ~Φ with V (~Φ) = m2

2
~Φ2 + λ

8N
~Φ4

in the large N limit.

Homogeneous expectation value:
. 〈~Φ〉 = (

√
N η(t), ~0)

~Φ(~x, t) = 〈~Φ〉(t) + ~π(~x, t) where

~π(~x, t) =
∫ d3k√

2(2π)3

[
~ak fk(t) ei~k·~x + ~a

†
k f∗k(t) e−i~k·~x

]

fk are the modes of the quantum fluctuations
(they can be large).

Allows the presence of homogeneous ”seas” of
non-zero momentum particles.

FRW space: ds2 = dt2 − a2(t)d~x2





Evolution equations

η̈ + 3H η̇ +M2 η = 0

f̈k + 3H ḟk +

(
k2

a2
+M2

)
fk = 0

(similar to damped oscillators)

with M2 = m2 +
λ

2
η2 +

λ

2

∫
d3k

2(2π)3
|fk|2

H2 =
8π

3M2
Pl

ε

ε

N
=

1

2
η̇2 +

M4 −m4

2λ
+

m4

2λ

1− α

2

+
1

4

∫
d3k

(2π)3

(
|ḟk|2 +

k2

a2
|fk|2

)

α = sign(m2)



Which states gives rise to efficient infla-

tion?

Generalized slow roll condition

η̇2+
∫

d3k

2(2π)3
|ḟk|2 ¿ m2

(
η2 +

∫
d3k

2(2π)3
|fk|2

)

⇒ there is inflation (ä > 0) and it last long.

(Includes the classical one: |η̇| ¿ m|η|)

Example in chaotic inflation: initial state with

η = 0 and energy concentrated in modes with

k ' k0 and

|ḟk0
(0)| ¿ m|fk0

(0)|
with a large total energy density, that makes

the damping dominate (H2 ∝ ε).



The background dynamics

Two inflationary epochs in quantum inflation.

1) The pre-condensate epoch
During this epoch the term

D ≡ 1

4

∫
d3k

(2π)3
k2

a2
|fk|2

gives and important contribution to the energy
density.
Redshift: k/a → 0 (dominant process)
This epoch ends when D becomes negligible.

2) The post-condensate quasi-De Sitter
epoch
The enormous redshift assembles the modes
into a zero mode condensate,

ηeff(t) =

√√√√η2 +
∫

d3k

2(2π)3
|fk|2

η̈ef + 3H η̇ef + m2 ηef +
λ

2
η3
ef = 0



Number of efolds

For fixed initial energy the number of efolds is

less or equal than in classical inflation.

Ex. in chaotic inflation: When the quadratic

term in the potential dominates (V (~Φ) ' m2

2
~Φ2),

Ne ≡ ln

(
af

a0

)
' 4π

M2
Pl m

2

ε0
1 + (k0/m)2

Number of efolds decrease with increasing k0

(for fixed initial energy)

For typical values (ε0 ∼ 10−2M4
Pl, m ∼ 10−4MPl)

we have enough efolds even for hard momen-

tum (k ∼ 80m)



Primordial scalar perturbations in quantum

inflation

Scalar metric perturbations are tightly coupled

to the inflaton perturbations.

In more natural scenarios, the last 60 efolds in

postcondensate epoch

⇒ dynamics of cosmologically relevant pertur-

bations well approximated by that given by the

effective classical inflaton background.

(Recall: form of the effective classical poten-

tial, and of the initial classical state determined

by the underlying quantum field description.)

In this first approximation the classical inflation

results for the spectrum of primordial scalar

perturbations are recovered.

Corrections to this first approximation can be

estimated.



Quantum corrections to the primordial scalar

perturbations

- non-vacuum initial conditions after the pre-

condensate epoch

- corrections to the mass from the modes k >

Λ, and the 1/N corrections

|fk(t)|2
|fcl inf

k (t)|2
k/aÀm

= 1+

ini. cond.︷ ︸︸ ︷
O

(
a2(t) m2

k2

)
+

+

k>Λ contribution︷ ︸︸ ︷
O

(
a2(t)

k2
δM2

Λ(t)

)
+

1/N corrections︷ ︸︸ ︷
O

(
a2(t)

k2
δM2

N(t)

)

when the modes exited the horizon k/a ∼ H

= 1 +O
(

m2

H2

)
+O

(
λ a2(t) m4

H2 Λ2

)
+O

(
m2

N H2

)

50 efolds before the end of inflation m/H ∼ 1/5

= 1+
4%︷ ︸︸ ︷
0.04 +(¿ 10−9)+

4%︷ ︸︸ ︷
0.04 (for N = 1)



Tensor perturbations in quantum inflation

The amplitude of tensor perturbations is deter-

mined only by the background evolution, which

after the condensate formation has an effective

classical description.

This gives a correspondence between the quan-

tum and the classical inflation results for the

spectrum of primordial tensor perturbations.



Conclusions: new answers found

• Start: How inflation begins?
= Which states lead to inflation?

Generalized slow-roll condition (the initial states
can be more general than was thinked before)

• During: Is it valid the classical description of
inflation? When?

Yes, during the the postcondensate epoch

Which are the effects and the observable con-
sequences of the quantum corrections?

They can be up to 4% due to 1/N corrections
to the large N approximation, and also up to
4% due to initial conditions.
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