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MCMC and cosmological parameters
Experimental data:
CMB, LSS, SN, Lensing, Ly−α , . . .

←→ Cosmological model:
Ωb, Ωc, H0, τ , As, ns, r, . . .
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MCMC and cosmological parameters
Experimental data:
CMB, LSS, SN, Lensing, Ly−α , . . .

←→ Cosmological model:
Ωb, Ωc, H0, τ , As, ns, r, . . .

From probability distribution of data to likelihood over model parameters:

Pr
(

Xdata

)

−→ L
(

θ1, θ2, . . . , θn|Xdata

)

Gaussian case:

L = e−χ2/2 , χ2 =
∑

data

[

X(θ)model −Xdata

]2
, θ = θ1, θ2, . . . , θn
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Gaussian case:

L = e−χ2/2 , χ2 =
∑

data

[

X(θ)model −Xdata

]2
, θ = θ1, θ2, . . . , θn

MCMC are sets of parameters distributed according to L, produced with an
acceptance/rejection one-step algorithm (e.g. Metropolis)

W (θn+1, θn) = g(θn+1, θn) min

{

1,
L(θn+1) g(θn+1, θn)

L(θn) g(θn, θn+1)

}
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L includes COSMIC VARIANCE (in primordial fluctuations, ` . 300)
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WMAP 3-years (http://lambda.gsfc.nasa.gov)
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WMAP 3-years (http://lambda.gsfc.nasa.gov)

Spergel et al. 2006

param 100Ωbh
2 Ωmh2 H0 τ ns σ8

best fit 2.22 0.127 73.2 0.091 0.954 0.756

∆ 0.073 0.008 3.2 0.03 0.016 0.049
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The COSMOMC program
• http://cosmologist.info/cosmomc/

• Developped and mantained by Antony Lewis (Cambridge)

• Publicly available F90 open source code

• Comes with CMB and LSS data (except WMAP)

• Interfaces directly with the WMAP likelihood software

• Theoretical calculations with CAMB (derived from CMBFAST)

• Quite accurate, easy to use, fairly well documented

• Comes with tool for analyzing results and useful MATLAB scripts

• Not very fast, but runs well on clusters
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CMB, LSS and the FlatΛCDM+r model
Datasets: WMAP3, ACBAR, CBI2, BOOMERANG03, SDSS
MCMC parameters: ωb, ωc, τ , Θ (slow), As, ns, r (fast)
Context: Ων = 0, . . . ; standard priors, no SZ, no lensing, linear mpk, . . .

Paris 17/05/2007 – p. 6/21



CMB, LSS and the FlatΛCDM+r model
Datasets: WMAP3, ACBAR, CBI2, BOOMERANG03, SDSS
MCMC parameters: ωb, ωc, τ , Θ (slow), As, ns, r (fast)
Context: Ων = 0, . . . ; standard priors, no SZ, no lensing, linear mpk, . . .

0.021 0.023 0.025
Ωb h2 0.09 0.1 0.11 0.12

Ωc h
2 1.03 1.035 1.04 1.045 1.05

θ

0.05 0.1 0.15
τ

0.9 0.95 1 1.05
ns

2.9 3 3.1 3.2
log[1010 As]

0 0.1 0.2 0.3
r

0.7 0.75 0.8
ΩΛ

13.2 13.4 13.6 13.8 14
Age/GYr

0.7 0.75 0.8 0.85
σ8

5 10 15
zre

70 75 80
H0

param best fit

100Ωbh
2 2.232

Ωmh2 0.128

τ 0.956

H0 73.03

σ8 0.771

log[1010As] 0.303

ns 0.956

r 0.016

− log(L) 2714.038
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The marginalized ns− r probability
CL: 12%, 27%, 45%, 68% and 95%
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EFT of inflation (à la Boyanowski–De Vega–Sanchez)
Single scalar field φ + quantum fluctuations

H2 =
ρ

3 M2
Pl

=
8πG

3

[

1

2
φ̇2 + V (φ)

]

(Friedmann)

φ̈ + 3 Hφ̇ + V ′(φ) = 0 (condensate dynamics)

units: } = 1, c = 1, MPl = 2.4× 1018 GeV
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EFT of inflation (à la Boyanowski–De Vega–Sanchez)
Single scalar field φ + quantum fluctuations

H2 =
ρ

3 M2
Pl

=
8πG

3

[

1

2
φ̇2 + V (φ)

]

(Friedmann)

φ̈ + 3 Hφ̇ + V ′(φ) = 0 (condensate dynamics)

units: } = 1, c = 1, MPl = 2.4× 1018 GeV
Slow roll: M = energy scale of inflation ∼MGUT ∼ 1016 GeV is fixed by
the amplitude (measured in CMB!) of adiabatic scalar perturbations at some
cosmologically-relevant reference scale kpivot

V (φ) = N M4 w(χ) , χ =
φ√

N MPl

, w(χ) ∼ O(1) , N & 50

where
N = − 1

M2
Pl

∫ φend

φexit

dφ
V (φ)

V ′(φ)
= −N

∫ χend

χexit

dχ
w(χ)

w′(χ)

is the number of efolds from kpivot horizon exit to the end of inflation
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Single scalar field φ + quantum fluctuations

H2 =
ρ

3 M2
Pl

=
8πG

3

[

1

2
φ̇2 + V (φ)

]

(Friedmann)

φ̈ + 3 Hφ̇ + V ′(φ) = 0 (condensate dynamics)

units: } = 1, c = 1, MPl = 2.4× 1018 GeV
Slow roll: M = energy scale of inflation ∼MGUT ∼ 1016 GeV is fixed by
the amplitude (measured in CMB!) of adiabatic scalar perturbations at some
cosmologically-relevant reference scale kpivot

V (φ) = N M4 w(χ) , χ =
φ√

N MPl

, w(χ) ∼ O(1) , N & 50

where
N = − 1

M2
Pl

∫ φend

φexit

dφ
V (φ)

V ′(φ)
= −N

∫ χend

χexit

dχ
w(χ)

w′(χ)

is the number of efolds from kpivot horizon exit to the end of inflation

Wide separation of scales←→ EFT + slow-roll
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ρ

3 M2
Pl

=
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3
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(Friedmann)

φ̈ + 3 Hφ̇ + V ′(φ) = 0 (condensate dynamics)

units: } = 1, c = 1, MPl = 2.4× 1018 GeV
Slow roll: M = energy scale of inflation ∼MGUT ∼ 1016 GeV is fixed by
the amplitude (measured in CMB!) of adiabatic scalar perturbations at some
cosmologically-relevant reference scale kpivot

V (φ) = N M4 w(χ) , χ =
φ√

N MPl

, w(χ) ∼ O(1) , N & 50

where
N = − 1

M2
Pl

∫ φend

φexit

dφ
V (φ)

V ′(φ)
= −N

∫ χend

χexit

dχ
w(χ)

w′(χ)

is the number of efolds from kpivot horizon exit to the end of inflation

Understanding start and end of inflation −→ N

Paris 17/05/2007 – p. 8/21



H �M �MPl −→
quantum loops = double expansion in H2

M2

Pl

and 1
N

slow roll = expansion in 1
N

graviton corrections suppressed by H2

M2

Pl
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quantum loops = double expansion in H2
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and 1
N

slow roll = expansion in 1
N

graviton corrections suppressed by H2

M2

Pl

See–saw–like inflaton mass and slow-roll Hubble parameter

m =
M2

MPl
∼ 2.45× 1013 GeV , H =

√
N mH ∼ 1014 GeV
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Pl

and 1
N

slow roll = expansion in 1
N

graviton corrections suppressed by H2

M2

Pl

See–saw–like inflaton mass and slow-roll Hubble parameter

m =
M2

MPl
∼ 2.45× 1013 GeV , H =

√
N mH ∼ 1014 GeV

H2 =
1

3

[

1

2 N

(

dχ

dτ

)2

+ w(χ)

]

, τ =
t M2

MPl

√
N
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quantum loops = double expansion in H2

M2

Pl

and 1
N

slow roll = expansion in 1
N

graviton corrections suppressed by H2

M2

Pl

See–saw–like inflaton mass and slow-roll Hubble parameter

m =
M2

MPl
∼ 2.45× 1013 GeV , H =

√
N mH ∼ 1014 GeV

H2 =
1

3

[

1

2 N

(

dχ

dτ

)2

+ w(χ)

]

, τ =
t M2

MPl

√
N

To first order, with χ ≡ χexit for brevity:

ns = 1− 1

N

{

3

[

w′(χ)

w(χ)

]2

− 2
w′′(χ)

w(χ)

}

,
dns

d ln k
= O

(

1

N2

)

r =
8

N

[

w′(χ)

w(χ)

]2

, |∆(S)
ad |2 =

N2

12π2

(

M

MPl

)4
w3(χ)

w′2(χ)
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Trinomial realization: V (φ) = V0 ± 1
2m2φ2 − 1

3mgφ3 + 1
4λφ4
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Trinomial new (= small field) inflation

w(χ) = −1

2
χ2 − 1

3
h

√

y

2
χ3 +

1

32
yχ4 +

2

y
F (h)

Paris 17/05/2007 – p. 10/21



Trinomial new (= small field) inflation

w(χ) = −1

2
χ2 − 1

3
h

√

y

2
χ3 +

1

32
yχ4 +

2

y
F (h)

g = −h

√

y

2 N

(

M

MPl

)2

, λ =
y

8 N

(

M

MPl

)4

,
2

y
F (h) =

V0

NM4
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w(χ) = −1

2
χ2 − 1

3
h

√

y

2
χ3 +

1

32
yχ4 +

2

y
F (h)
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√

y

2 N
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M
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)2

, λ =
y

8 N

(

M
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)4

,
2

y
F (h) =

V0

NM4

∆ =
√

h2 + 1 , h ≥ 0 −→ absolute minimum = χend =

√

8

y
(∆+h) > 0

F (h) =
8

3
h4 + 4h2 + 1 +

8

3
h∆3 −→ w(χend) = w′(χend) = 0
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Trinomial new (= small field) inflation

w(χ) = −1

2
χ2 − 1

3
h

√

y

2
χ3 +

1

32
yχ4 +

2

y
F (h)

g = −h

√

y

2 N

(

M

MPl

)2

, λ =
y

8 N

(

M

MPl

)4

,
2

y
F (h) =

V0

NM4

∆ =
√

h2 + 1 , h ≥ 0 −→ absolute minimum = χend =

√

8

y
(∆+h) > 0

F (h) =
8

3
h4 + 4h2 + 1 +

8

3
h∆3 −→ w(χend) = w′(χend) = 0

fixing N −→

y = z − 2h2 − 1− 2h∆ +
4

3
h(h + ∆−

√
z)

+
16

3
h(∆ + h)∆2 log

[

1

2

(

1 +

√
z − h

∆

)]

− 2F (h) log
[√

z(∆− h)
]

where z ≡ y
8χ2

exit and z1 = 1− z
(∆+h)2 acts as normalized effective coupling.
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dz

dy
< 0 , 0 ≤ z ≤ (∆ + h)2 , 0 ≤ y <∞
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dz

dy
< 0 , 0 ≤ z ≤ (∆ + h)2 , 0 ≤ y <∞

dz1

dy
> 0 , 0 ≤ z1 ≤ 1 , 0 ≤ y <∞
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dz
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< 0 , 0 ≤ z ≤ (∆ + h)2 , 0 ≤ y <∞
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ns = 1 −
6y

N

z(z + 2h
√

z − 1)2
ˆ

F (h) − 2z + 8

3
hz3/2 + z2

˜

2
+

y

N

3z + 4h
√

z − 1

F (h) − 2z + 8

3
hz3/2 + z2

r =
16y

N

z(z + 2h
√

z − 1)2
ˆ

F (h) − 2z + 8

3
hz3/2 + z2

˜

2
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CMB, LSS and trinomial new inflation
Datasets: WMAP3, ACBAR, CBI2, BOOMERANG03, SDSS
MCMC parameters: ωb, ωc, τ , Θ (slow), As, z1, h (fast)
Context: Ων = 0, . . . ; standard priors, no SZ, no lensing, linear mpk, . . .
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0.021 0.022 0.023
Ωb h2 0.095 0.1 0.105 0.11 0.115

Ωc h
2 1.035 1.04 1.045

θ

0.05 0.1 0.15
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H0

param best fit

100Ωbh
2 2.22

Ωmh2 0.128

τ 0.847

H0 72.9

σ8 0.767

log[1010As] 0.302

z1 0.885

h 0.266

− log(L) 2714.153
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FlatΛCDM+r vs. trinomial new inflation

param best fit 1 best fit 2

100Ωbh
2 2.232 2.22

Ωmh2 0.128 0.128

τ 0.956 0.847

H0 73.03 72.9

σ8 0.771 0.767

log[1010As] 0.303 0.302

ns 0.956 0.9557

r 0.016 0.054

− log(L) 2714.038 2714.153

Paris 17/05/2007 – p. 14/21



The lower bound on r
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CL: r > 0.016 (95%) , r > 0.049 (68%)
ML: r = 0.054 , ML: y = 1.2 , MV: r = 0.077 , MV: y = 2.03
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Trinomial chaotic (= large field) inflation

w(χ) =
1

2
χ2 +

1

3
h

√
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2
χ3 +

1

32
yχ4 , −1 < h ≤ 0
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where z ≡ y
8χ2

exit acts as effective coupling, 0 ≤ y <∞, 0 ≤ z <∞
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Some limiting cases
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Some limiting cases
The flat limit h→ −1+ and then z → 1− :

ns → 1− 4

N
, r → 0 , y ∼ 1

1−√z
→∞ , |∆(S)

ad |2 ∼
(

N M2

MPl

2

y

)2

M
√

y is the true scale of inflation and the theory becomes massless, m→ 0.
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Harrison–Zeldovich limit z = 1, h→ −1

ns → 1 , r → 0 y ∼ (h+1)−1/2 →∞ , |∆(S)
ad |2 ∼

(

M(h + 1)−1/4
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)4

But, even if M ≡M(h + 1)−1/4 is kept fixed:

m ∼ M
2

MPl
(h + 1)1/2 , g ∼ M

2

M2
Pl

(h + 1)1/4 , λ ∼ M
4

M4
Pl

(h + 1)1/2 ,

all vanish yielding a scale–invariant massless free–field.
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The marginalized z − h probability
CL: 12%, 27%, 45%, 68% and 95%
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Summary and conclusions
• Effective FT of inflation is not just phenomenology

• N plays a distingushed role

• Trinomial potentials are adequate

• Trinomial new inflation is
- generically adequate (also when fully symmetric)
- moderately coupled (Ginzburg–Landau safe)
- provides a lower bound for r

• Trinomial chaotic inflation is
- confined to a corner of parameter space
- more strongly coupled
- in tension with the Ginzburg–Landau picture

• Other potentials should be similarly studied (not reconstructed )
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