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MCMC and cosmological parameters

Experimental data: Cosmological model:
CMB, LSS, SN, Lensing, Ly—a, ... Oy, Q., Hy, 7, Ag, ns, 7, . ...

From probability distribution of data to likelihood over model parameters:
Pr(Xdata) — L<917 927 c e oy Qn‘Xdata)
Gaussian case:

L = €_X2/2 9 X2 — Z [X(H)model - Xdata]2 9 0 = 6)17 927 O 7‘9n

data
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From probability distribution of data to likelihood over model parameters:
Pr(Xdata) — L<017 027 c e oy Hn‘Xdata)

Gaussian case:
2 2
L=e¢ X/27 X2:Z[X(9)model_Xdata] ) 0:917927-"7971
data

MCMC are sets of parameters distributed according to L, produced with an
acceptance/rejection one-step algorithm (e.g. Metropolis)
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Experimental data: Cosmological model:
CMB, LSS, SN, Lensing, Ly—«, ... Oy, Q., Hy, 7, Ag, ns, 7, . ...

From probability distribution of data to likelihood over model parameters:
Pr(Xdata) — L<917 027 c e oy Hn‘Xdata)

Gaussian case:
2 2
L=e¢ X/27 X2:Z[X(9)model_Xdata] ) 0:917927"'79n
data

MCMC are sets of parameters distributed according to L, produced with an
acceptance/rejection one-step algorithm (e.g. Metropolis)

. L(0n+1) 9(0n+1,0,) }
wWi(0,+1,0,) = g(0,,+1,0,) min < 1,
( +1 ) g( +1 ) { L(Qn) g(HTM Hn—l—l)

L includes COSMIC VARIANCE | (in primordial fluctuations, £ < 300)
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WMAP 3-years (http://lambda.gsfc.nasa.gov)

Angular Scale
2° 0.5°

100
Multipole moment 1
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WMAP 3-years (http://lambda.gsfc.nasa.gov)

Angular Scale
2° 0.5°

100
Multipole moment 1

Spergel et al. 2006

param 1OOQbh2 Qm h2 Ho T Ns gs
best fit 2.22 0.127 | 73.2 | 0.091 | 0.954 | 0.756
JAN 0.073 0.008 3.2 0.03 | 0.016 | 0.049
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The COSMOMC program

* http://cosmologist.info/cosmomc/

* Developped and mantained by Antony Lewis (Cambridge)

* Publicly available F90 open source code

* Comes with CMB and LSS data (except WMAP)

* Interfaces directly with the WMAP likelihood software

* Theoretical calculations with CAMB (derived from CMBFAST)

* Quite accurate, easy to use, fairly well documented

* Comes with tool for analyzing results and useful MATLAB scripts

* Not very fast, but runs well on clusters
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CMB, LSS and the FlatAC' D M +r model

Datasets: WMAP3, ACBAR, CBI2, BOOMERANGO3, SDSS
MCMC parameters: wy, we, 7, O (slow), Ag, ng, r (fast)
Context: €2, =0, ... ;standard priors, no SZ, no lensing, linear mpk, . . .
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CMB, LSS and the FlatAC D M +r model

Datasets: WMAP3, ACBAR, CBI2, BOOMERANGO3, SDSS
MCMC parameters: wy, we, 7, O (slow), Ag, ng, r (fast)

Context: €2, =0, ... ;standard priors, no SZ, no lensing, linear mpk, . . .
param best fit
1009, 72 2.232
), 2 0.128
T 0.956
Hy 73.03
os 0.771

log[10194,] |  0.303

13.2 13.4 13.6 13.8 14

Age/GYr

N 0.956

r 0.016

—log(L) | 2714.038
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The marginalized ns — r probability
CL: 12%, 27%, 45%, 68% and 95%
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EFT of inflation (a la Boyanowski-De Vega—Sanchez)

Single scalar field ¢ + quantum fluctuations

87G |1 .
H? = 3]\'042 — WT [§q§2 + V(gb)] (Friedmann)
Pl
d+3Ho+V'(p)=0 (condensate dynamics)

units: h=1,c =1, Mp; = 2.4 x 10'® GeV
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Single scalar field ¢ + quantum fluctuations

87G |1 .
H? = 3]\'042 — WT [§gb2 + V(gb)] (Friedmann)
Pl
d+3Ho+V'(¢)=0 (condensate dynamics)

units: h=1,c =1, Mp; = 2.4 x 10'® GeV
Slow roll: M = energy scale of inflation ~ MayTt ~ 10'° GeV is fixed by
the amplitude (measured in CMB!) of adiabatic scalar perturbations at some

cosmologically-relevant reference scale kp;yot

0
V(p) = N M* Cox = : ~0O(), N 50
(¢) w(x), X T Mo w(x) (1)
where 1 fPed VY (¢) Xend  4(y)
M1:2)1 /exit ¢ V/(¢) Xexit X w/(X)
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87G |1 .
H? = 3]\'042 — WT [§gb2 + V(gb)] (Friedmann)
Pl
d+3Ho+V'(¢)=0 (condensate dynamics)

units: h=1,c =1, Mp; = 2.4 x 10'® GeV
Slow roll: M = energy scale of inflation ~ MayTt ~ 10'° GeV is fixed by
the amplitude (measured in CMB!) of adiabatic scalar perturbations at some

cosmologically-relevant reference scale kp;yot

0
V(p) = N M* Cox = : ~0O(), N 50
(¢) w(x), X T Mo w(x) (1)
where 1 fPed VY (¢) Xend  4(y)
M1:2)1 /exit ¢ V/(¢) Xexit X w/(X)

is the number of efolds from kvt horizon exit to the end of inflation

Wide separation of scales «— EFT + slow-roll
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EFT of inflation (a la Boyanowski-De Vega—Sanchez)

Single scalar field ¢ + quantum fluctuations

1.
H? = 3]\'04%1 — ? [§gb2 + V(gb)] (Friedmann)
d+3Ho+V'(¢)=0 (condensate dynamics)

units: h=1,c =1, Mp; = 2.4 x 10'® GeV
Slow roll: M = energy scale of inflation ~ Mgyt ~ 101 GeV is fixed by
the amplitude (measured in CMB!) of adiabatic scalar perturbations at some

cosmologically-relevant reference scale kp;yot

0
V(p) = N M* Cox = : ~0O(), N 50
(¢) w(x), X T Mo w(x) (1)
where 1 fPed VY (¢) Xend  4(y)
M1:2)1 /exit ¢ V/(¢) Xexit X w/(X)

is the number of efolds from kvt horizon exit to the end of inflation

Understanding start and end of inflation — N
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H?2 1
and =
M2, N

quantum loops = double expansion in

H < M < Mp slow roll = expansion in %

0 . 2
graviton corrections suppressed by -+

2
Mg,
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quantum loops = double expansion in e and
1

H < M < Mp slow roll = expansion in +
graviton corrections suppressed by -+ ;
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See—saw—like inflaton mass and slow-roll Hubble parameter

2

M
m = —— ~ 245 1013GeV, H=VNmH~ 10" GeV
Pl

Paric 17/05/2007 — o 9/21



. . H?2 1
quantum loops = double expansion in e and
H < M < Mp slow roll = expansion in %
0 . 2
graviton corrections suppressed by ]\IZQ
Pl

See—saw—like inflaton mass and slow-roll Hubble parameter

2

M
m = —— ~ 245 1013GeV, H=VNmH~ 10" GeV
Pl

1| 1 [dy)’ t M?
2 _ —
H =3 [2N (m) +w(")] T Mo VN
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H2

2
Mg,

quantum loops = double expansion in

H < M < Mp slow roll = expansion in %

0 . 2
graviton corrections suppressed by -+

2
Mg,

See—saw—like inflaton mass and slow-roll Hubble parameter

2

M
m = —— ~ 245 1013GeV, H=VNmH~ 10" GeV
Pl

1| 1 [dy)’ t M?
2__ —_—
H = [2N (dT) +w(x)] .7 T

To first order, with y = eyt for brevity:

e R o)
S b R o e

and L
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H?2 1
and =
M2, N

quantum loops = double expansion in

H < M < Mp slow roll = expansion in %

0 . 2
graviton corrections suppressed by -+

2
Mg,

See—saw—like inflaton mass and slow-roll Hubble parameter

2

M
m = —— ~ 245 1013GeV, H=VNmH~ 10" GeV
Pl

1| 1 [dy)’ t M?
2 _ —
H =3 [2N (m) +w(")] T Mo VN

To first order, with y = eyt for brevity:

e R o)
S b R o e

Trinomial realization:  V(¢) = Vo £ sm?¢? — smge® + 1 Ap?
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Trinomial new (= small field) inflation

1, 1 [y, 1 , 2
— 2 _p /2 il ZF(h
w(x) 5 X 3h\£X + 359X +y (h)
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Trinomial new (= small field) inflation

1, 1 [y, 1 , 2
— 2 _p /2 il ZF(h
w(x) 5 X Sh\ﬁx + 359X +y (h)

2 4
Yy M J M 2 Vo
_ \ = S E(h) =
g 9N (Mp1> ’ SN (Mpl) ) (h)
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Trinomial new (= small field) inflation

1, 1 [y, 1 , 2
— 2 _p /2 il ZF(h
w(x) 5 X Sh\gx + 359X +y (h)

2 4
Y M Y M 2 Vo
= —hy/ b= ZF(h) =
7 ON (MP1> ’ SN (Mp1> - T = N

8
A=+vh?+1, h>0— absolute minimum = Yepnq = \/j(A—Fh) > (
Y

8 8
F(h) — §h4 + 4h2 + 1+ ghAg E— w(Xend) — w/(Xend) =0
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Trinomial new (= small field) inflation

1, 1 [y, 1 , 2
— 2 _p /2 il ZF(h
w(x) 5 X Sh\gx + 359X +y (h)

2 4
Y M Y M 2 Vo
= —hy/ b= ZF(h) =
7 ON (MP1> ’ SN (Mpl) - T = N

8
A=+vh?+1, h>0— absolute minimum = Yepnq = \/j(A—I—h) > (
Y

8 8
F(h) = §h4 + 4h2 + 1+ ghAg E— w(Xend) — w/(Xend) =0

4
y:z—2h2—1—2hA+§h(h+A—\/§)

- 1 | .
fxmg ' — + €6h(A + h)A2log [5 (1 + \fA h)]

— 2F(h)log [v/2(A — h)]

where 2 = %ngit and z; =1 — m acts as normalized effective coupling.

Paric 17/05/2007 — o 10/2.1



0<z<(A+h)*,

0<y <o
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— ]| —

6y 2z = 2h 1)

N [F(h) — 22+ Shz3/2 + 22}2
16y 2(z + 2h\/z — 1)?
N [F(h) — 2z + %hz3/2—|—z2}2

_|_

3z 4+ 4h+/z — 1

Y
N F(h)

— 22 + Sh23/2 4 22
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CMB, LSS and trinomial new inflation

Datasets: WMAP3, ACBAR, CBI2, BOOMERANGO3, SDSS
MCMC parameters: wy, we, 7, O (slow), A, 21, h (fast)
Context: €2, =0, ... ;standard priors, no SZ, no lensing, linear mpk, . . .
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CMB, LSS and trinomial new inflation

Datasets: WMAP3, ACBAR, CBI2, BOOMERANGO3, SDSS
MCMC parameters: wy, we, 7, O (slow), A, 21, h (fast)
Context: €2, =0, ... ;standard priors, no SZ, no lensing, linear mpk, . . .

0.021 0.02% 0.023 1.035 1.04 1.045

2.9 310 3.1
log[10 AS]

h/(1+h)

02 04 06 0.8 . . . 13.4 13.6 13.8 14
Age/GYr

68 70 72 74 76 78

param best fit
10092, h? 2.22
0, h? 0.128
T 0.847
Hy 72.9
os 0.767
log[1019A,] 0.302
21 0.885
h 0.266
—log(L) 2714.153
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FlatAC' DM +r vs. trinomial new inflation

param best fit 1 | best fit 2
1002, h* 2.232 2.22
Q,h? 0.128 0.128
T 0.956 0.847
Hy 73.03 72.9
o 0.771 0.767
log[1019A,] 0.303 0.302
N 0.956 0.9557
r 0.016 0.054
—log(L) 2714.038 | 2714.153
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The lower bound on r

0.96
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The lower bound on r

0.96

CL:r > 0.016 (95%) , r > 0.049 (68%)
ML:r=0.04 , ML:y=12, MV:r=0.077 , MV:y=2.03
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Trinomial chaotic (= large field) inflation

1 1 1
w(x) = §X2 + gh\/gx?’ + 3—2yx4 , —1<h<0
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Trinomial chaotic (= large field) inflation

1 1 1
w(x) = sx° + gh\/gxg +—yx*, —-1<h<0

2 32
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Trinomial chaotic (= large field) inflation

1, 1. [y 4 1

w(X):—XQJrgh 5)( +3—2yx4, —1<h<0

fixing N —

Yy

where z = 4

2

4 4
y:z+§h\/2+<1—§h2> 10g(1—|—2h\/2—|—z)

4h h h
— — ? — 2h? ) |arctan + vz — arctan | —
RYANRNDY JAN JAN

ngit acts as effective coupling,) < y < 00,0 < z < o0

Paric 17/05/2007 — o 16/21



y_ |, (14 2hyZz+2)°  1+4hyz+32
2Nz (1—|—%h\/5—|—%z)2 1—|—%hﬁ—|—%z
1y (142hy/z+2)°
r = >
N2z (14 4hy/z + 22)

My = 1L —
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1+ 4hy/z + 32

5 (1 + 2h/Z + 2)°
2
(14 $hvz + 32)

_1+%h\/5—|—%z
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Some limiting cases
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Some limiting cases

The flat limit h — —17 and then 2 — 1~ :

9 2
nsﬁl_ﬁa fr_>07 le_\/EHOO7 ‘Aad’ N<]\4Ply

M ,/y 1s the true scale of inflation and the theory becomes massless, m — 0.
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Some limiting cases

The flat limit h — —17 and then 2 — 1~ :

9 2
nsﬁl_ﬁa fr_>07 le_\/ZHOO7 ‘Aad’ N<]\4Ply

M ,/y 1s the true scale of inflation and the theory becomes massless, m — 0.

The flat limit ~ — —1% when z > 1 is meaningless since ns — 1 and r
diverge.

Harrison—Zeldovich limit z = 1, h — —1
4

M(h+1)—1/4)

ne—1, r—20 y~(h+1)_1/2—>oo, |Ag§)]2w( —
Pl
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Some limiting cases

The flat limit h — —17 and then 2 — 1~ :

9 2
nsﬁl_ﬁa fr_>07 le_\/z—>OO, ‘Aad’ N<]\4Ply

M ,/y 1s the true scale of inflation and the theory becomes massless, m — 0.

The flat limit ~ — —1% when z > 1 is meaningless since ns — 1 and r

diverge.

Harrison—Zeldovich limit z = 1, h — —1
4

M(h+1)~1/4
ne—1, r—20 yw(h+1)_1/2—>oo, |Ag§)]2~( (]\_2) )
Pl

But, even if M = M (h + 1)~'/4 is kept fixed:

— 9 — 7 —A

M
me~—h+1)"V?, g0 —(h+ 1)V, A~ (b 4+ 1),
Mp

all vanish yielding a scale—invariant
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The marginalized z — h probability
CL: 12%, 27%, 45%, 68% and 95%
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ML:y=4.2 , MV:y=3.1
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ML:y=4.2 , MV:y=3.1
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Summary and conclusions

* Effective FT of inflation is not just phenomenology
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