Monte Carlo Markov Chain Analysis of CMB + LSS experimental data within the Effective Field Theory of Inflation

Claudio Destri

claudio.destri@mib.infn.it

Dipartimento di Fisica – Università Milano-Bicocca

C.D., H.J. de Vega, N. Sanchez, astro-ph/0703417

• Monte Carlo Markov Chains and cosmological parameters

- Monte Carlo Markov Chains and cosmological parameters
- The COSMOMC program

- Monte Carlo Markov Chains and cosmological parameters
- The COSMOMC program
- Current CMB and LSS data and ΛCDM model

- Monte Carlo Markov Chains and cosmological parameters
- The COSMOMC program
- Current CMB and LSS data and ΛCDM model
- Effective Field Theory of Inflation

- Monte Carlo Markov Chains and cosmological parameters
- The COSMOMC program
- Current CMB and LSS data and ΛCDM model
- Effective Field Theory of Inflation
- Trinomial new inflation

- Monte Carlo Markov Chains and cosmological parameters
- The COSMOMC program
- Current CMB and LSS data and ΛCDM model
- Effective Field Theory of Inflation
- Trinomial new inflation
- Trinomial chaotic inflation

- Monte Carlo Markov Chains and cosmological parameters
- The COSMOMC program
- Current CMB and LSS data and ΛCDM model
- Effective Field Theory of Inflation
- Trinomial new inflation
- Trinomial chaotic inflation
- Summary and conclusions

Experimental data:

CMB, LSS, SN, Lensing, Ly $-\alpha$, ...

Cosmological model: $\Omega_b, \Omega_c, H_0, \tau, A_s, n_s, r, \dots$

Experimental data: CMB, LSS, SN, Lensing, Ly- α ,... \longleftrightarrow Cosmological model: $\Omega_b, \Omega_c, H_0, \tau, A_s, n_s, r, ...$ Experimental data:

From probability distribution of data to likelihood over model parameters:

$$\Pr(X_{\text{data}}) \longrightarrow L(\theta_1, \theta_2, \dots, \theta_n | X_{\text{data}})$$

Gaussian case:

$$L = e^{-\chi^2/2}$$
, $\chi^2 = \sum_{\text{data}} \left[X(\boldsymbol{\theta})_{\text{model}} - X_{\text{data}} \right]^2$, $\boldsymbol{\theta} = \theta_1, \theta_2, \dots, \theta_n$

Experimental data: CMB, LSS, SN, Lensing, Ly- α ,... \longleftrightarrow Cosmological model: $\Omega_b, \Omega_c, H_0, \tau, A_s, n_s, r, ...$ Experimental data:

From probability distribution of data to likelihood over model parameters:

$$\Pr(X_{\text{data}}) \longrightarrow L(\theta_1, \theta_2, \dots, \theta_n | X_{\text{data}})$$

Gaussian case:

$$L = e^{-\chi^2/2}, \quad \chi^2 = \sum_{\text{data}} \left[X(\boldsymbol{\theta})_{\text{model}} - X_{\text{data}} \right]^2, \quad \boldsymbol{\theta} = \theta_1, \theta_2, \dots, \theta_n$$

MCMC are sets of parameters distributed according to L, produced with an acceptance/rejection one-step algorithm (*e.g.* Metropolis)

$$W(\boldsymbol{\theta}_{n+1}, \boldsymbol{\theta}_n) = g(\boldsymbol{\theta}_{n+1}, \boldsymbol{\theta}_n) \min\left\{1, \frac{L(\boldsymbol{\theta}_{n+1}) g(\boldsymbol{\theta}_{n+1}, \boldsymbol{\theta}_n)}{L(\boldsymbol{\theta}_n) g(\boldsymbol{\theta}_n, \boldsymbol{\theta}_{n+1})}\right\}$$

Experimental data: Experimental data: CMB, LSS, SN, Lensing, Ly- α , ... \longleftrightarrow Cosmological model: $\Omega_b, \Omega_c, H_0, \tau, A_s, n_s, r, ...$

L includes COSMIC VARIANCE

From probability distribution of data to likelihood over model parameters:

$$\Pr(X_{\text{data}}) \longrightarrow L(\theta_1, \theta_2, \dots, \theta_n | X_{\text{data}})$$

Gaussian case:

$$L = e^{-\chi^2/2}, \quad \chi^2 = \sum_{\text{data}} \left[X(\boldsymbol{\theta})_{\text{model}} - X_{\text{data}} \right]^2, \quad \boldsymbol{\theta} = \theta_1, \theta_2, \dots, \theta_n$$

MCMC are sets of parameters distributed according to L, produced with an acceptance/rejection one-step algorithm (e.g. Metropolis)

$$W(\boldsymbol{\theta}_{n+1}, \boldsymbol{\theta}_n) = g(\boldsymbol{\theta}_{n+1}, \boldsymbol{\theta}_n) \min\left\{1, \frac{L(\boldsymbol{\theta}_{n+1}) g(\boldsymbol{\theta}_{n+1}, \boldsymbol{\theta}_n)}{L(\boldsymbol{\theta}_n) g(\boldsymbol{\theta}_n, \boldsymbol{\theta}_{n+1})}\right\}$$

(in primordial fluctuations, $\ell \lesssim 300$)

WMAP 3-years (http://lambda.gsfc.nasa.gov)

WMAP 3-years (http://lambda.gsfc.nasa.gov)

Spergel et al. 2006

param	$100\Omega_b h^2$	$\Omega_m h^2$	H_0	au	n_s	σ_8
best fit	2.22	0.127	73.2	0.091	0.954	0.756
Δ	0.073	0.008	3.2	0.03	0.016	0.049

http://cosmologist.info/cosmomc/

- http://cosmologist.info/cosmomc/
- Developped and mantained by Antony Lewis (Cambridge)

- http://cosmologist.info/cosmomc/
- Developped and mantained by Antony Lewis (Cambridge)
- Publicly available F90 open source code

- http://cosmologist.info/cosmomc/
- Developped and mantained by Antony Lewis (Cambridge)
- Publicly available F90 open source code
- Comes with CMB and LSS data (except WMAP)

- http://cosmologist.info/cosmomc/
- Developped and mantained by Antony Lewis (Cambridge)
- Publicly available F90 open source code
- Comes with CMB and LSS data (except WMAP)
- Interfaces directly with the WMAP likelihood software

- http://cosmologist.info/cosmomc/
- Developped and mantained by Antony Lewis (Cambridge)
- Publicly available F90 open source code
- Comes with CMB and LSS data (except WMAP)
- Interfaces directly with the WMAP likelihood software
- Theoretical calculations with CAMB (derived from CMBFAST)

- http://cosmologist.info/cosmomc/
- Developped and mantained by Antony Lewis (Cambridge)
- Publicly available F90 open source code
- Comes with CMB and LSS data (except WMAP)
- Interfaces directly with the WMAP likelihood software
- Theoretical calculations with CAMB (derived from CMBFAST)
- Quite accurate, easy to use, fairly well documented

- http://cosmologist.info/cosmomc/
- Developped and mantained by Antony Lewis (Cambridge)
- Publicly available F90 open source code
- Comes with CMB and LSS data (except WMAP)
- Interfaces directly with the WMAP likelihood software
- Theoretical calculations with CAMB (derived from CMBFAST)
- Quite accurate, easy to use, fairly well documented
- Comes with tool for analyzing results and useful MATLAB scripts

- http://cosmologist.info/cosmomc/
- Developped and mantained by Antony Lewis (Cambridge)
- Publicly available F90 open source code
- Comes with CMB and LSS data (except WMAP)
- Interfaces directly with the WMAP likelihood software
- Theoretical calculations with CAMB (derived from CMBFAST)
- Quite accurate, easy to use, fairly well documented
- Comes with tool for analyzing results and useful MATLAB scripts
- Not very fast, but runs well on clusters

CMB, LSS and the Flat ΛCDM +r **model**

Datasets: WMAP3, ACBAR, CBI2, BOOMERANG03, SDSS MCMC parameters: ω_b , ω_c , τ , Θ (slow), A_s , n_s , r (fast) Context: $\Omega_{\nu} = 0, \ldots$; standard priors, no SZ, no lensing, linear mpk, ...

CMB, LSS and the Flat ΛCDM +r **model**

Datasets: WMAP3, ACBAR, CBI2, BOOMERANG03, SDSS MCMC parameters: ω_b , ω_c , τ , Θ (slow), A_s , n_s , r (fast) Context: $\Omega_{\nu} = 0, \ldots$; standard priors, no SZ, no lensing, linear mpk, \ldots

			param	best fit
0.021 0.023 0.025		1 03 1 035 1 04 1 045 1 05	$100\Omega_b h^2$	2.232
$\Omega_{\rm b} h^2$	$\Omega_c h^2$		$\Omega_m h^2$	0.128
			au	0.956
0.05 0.1 0.15 τ	0.9 0.95 1 1.05 n _s	2.9 3 3.1 3.2 log[10 ¹⁰ A _s]	H_0	73.03
			σ_8	0.771
0 0.1 0.2 0.3	0.7 0.75 0.8	13.2 13.4 13.6 13.8 14	$\log[10^{10}A_s]$	0.303
r		Age/GYr	n_s	0.956
			r	0.016
70 75 80 H ₀	0.7 0.75 0.8 0.85 σ ₈	5 10 15 Z _{re}	$-\log(L)$	2714.038

Paris

- n

The marginalized *ns* – *r* probability CL: 12%, 27%, 45%, 68% and 95%

EFT of inflation (à la Boyanowski–De Vega–Sanchez)

Single scalar field $\phi + quantum fluctuations$

$$H^{2} = \frac{\rho}{3M_{\rm Pl}^{2}} = \frac{8\pi G}{3} \left[\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right] \qquad \text{(Friedmann)}$$
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0 \qquad \text{(condensate dynamics)}$$

units: $\hbar = 1, c = 1, M_{\rm Pl} = 2.4 \times 10^{18} \text{ GeV}$

W

EFT of inflation (à la Boyanowski–De Vega–Sanchez)

Single scalar field $\phi + quantum fluctuations$

$$H^{2} = \frac{\rho}{3M_{\rm Pl}^{2}} = \frac{8\pi G}{3} \left[\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right] \qquad \text{(Friedmann)}$$
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0 \qquad \text{(condensate dynamics)}$$

units: $\hbar = 1, c = 1, M_{\rm Pl} = 2.4 \times 10^{18} \,\text{GeV}$ Slow roll: M = energy scale of inflation $\sim M_{\rm GUT} \sim 10^{16} \,\text{GeV}$ is fixed by the amplitude (measured in CMB!) of adiabatic scalar perturbations at some cosmologically-relevant reference scale $k_{\rm pivot}$

$$V(\phi) = N M^4 w(\chi) , \quad \chi = \frac{\phi}{\sqrt{N} M_{\text{Pl}}} , \quad w(\chi) \sim \mathcal{O}(1) , \quad N \gtrsim 50$$

here
$$N = -\frac{1}{M_{\rm Pl}^2} \int_{\phi_{\rm exit}}^{\phi_{\rm end}} d\phi \, \frac{V(\phi)}{V'(\phi)} = -N \int_{\chi_{\rm exit}}^{\chi_{\rm end}} d\chi \, \frac{w(\chi)}{w'(\chi)}$$

is the number of efolds from k_{pivot} horizon exit to the end of inflation

wh

EFT of inflation (à la Boyanowski-De Vega-Sanchez)

Single scalar field ϕ + quantum fluctuations

$$H^{2} = \frac{\rho}{3M_{\rm Pl}^{2}} = \frac{8\pi G}{3} \left[\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right] \qquad \text{(Friedmann)}$$
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0 \qquad \text{(condensate dynamics)}$$

units: $\hbar = 1, c = 1, M_{\rm Pl} = 2.4 \times 10^{18} \,\text{GeV}$ Slow roll: M = energy scale of inflation $\sim M_{\rm GUT} \sim 10^{16} \,\text{GeV}$ is fixed by the amplitude (measured in CMB!) of adiabatic scalar perturbations at some cosmologically-relevant reference scale $k_{\rm pivot}$

$$V(\phi) = N M^4 w(\chi) , \quad \chi = \frac{\phi}{\sqrt{N} M_{\text{Pl}}} , \quad w(\chi) \sim \mathcal{O}(1) , \quad N \gtrsim 50$$

ere
$$N = -\frac{1}{M_{\rm Pl}^2} \int_{\phi_{\rm exit}}^{\phi_{\rm end}} d\phi \, \frac{V(\phi)}{V'(\phi)} = -N \int_{\chi_{\rm exit}}^{\chi_{\rm end}} d\chi \, \frac{w(\chi)}{w'(\chi)}$$

is the number of efolds from k_{pivot} horizon exit to the end of inflation

Wide separation of scales \longleftrightarrow EFT + slow-roll

EFT of inflation (à la Boyanowski-De Vega-Sanchez)

Single scalar field $\phi + quantum fluctuations$

$$H^{2} = \frac{\rho}{3M_{\rm Pl}^{2}} = \frac{8\pi G}{3} \left[\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right] \qquad \text{(Friedmann)}$$
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0 \qquad \text{(condensate dynamics)}$$

units: $\hbar = 1, c = 1, M_{\rm Pl} = 2.4 \times 10^{18} \,\text{GeV}$ Slow roll: M = energy scale of inflation $\sim M_{\rm GUT} \sim 10^{16} \,\text{GeV}$ is fixed by the amplitude (measured in CMB!) of adiabatic scalar perturbations at some cosmologically-relevant reference scale $k_{\rm pivot}$

$$V(\phi) = N M^4 w(\chi) , \quad \chi = \frac{\phi}{\sqrt{N} M_{\text{Pl}}} , \quad w(\chi) \sim \mathcal{O}(1) , \quad N \gtrsim 50$$

where
$$N = -\frac{1}{M_{\rm Pl}^2} \int_{\phi_{\rm exit}}^{\phi_{\rm end}} d\phi \, \frac{V(\phi)}{V'(\phi)} = -N \int_{\chi_{\rm exit}}^{\chi_{\rm end}} d\chi \, \frac{w(\chi)}{w'(\chi)}$$

is the number of efolds from k_{pivot} horizon exit to the end of inflation

Understanding start and end of inflation $\longrightarrow N$

$$H \ll M \ll M_{\rm Pl}$$
 –

quantum loops = double expansion in $\frac{H^2}{M_{Pl}^2}$ and $\frac{1}{N}$ slow roll = expansion in $\frac{1}{N}$ graviton corrections suppressed by $\frac{H^2}{M_{Pl}^2}$

$$H \ll M \ll M_{\rm Pl}$$
 –

quantum loops = double expansion in
$$\frac{H^2}{M_{Pl}^2}$$
 and $\frac{1}{N}$
slow roll = expansion in $\frac{1}{N}$
graviton corrections suppressed by $\frac{H^2}{M_{Pl}^2}$

$$m = \frac{M^2}{M_{\rm Pl}} \sim 2.45 \times 10^{13} \,{\rm GeV} \;, \quad H = \sqrt{N} \, m \, \mathcal{H} \sim 10^{14} \,{\rm GeV}$$

$$H \ll M \ll M_{\rm Pl}$$
 –

quantum loops = double expansion in
$$\frac{H^2}{M_{Pl}^2}$$
 and $\frac{1}{N}$
slow roll = expansion in $\frac{1}{N}$
graviton corrections suppressed by $\frac{H^2}{M_{Pl}^2}$

$$n = \frac{M^2}{M_{\rm Pl}} \sim 2.45 \times 10^{13} \,\text{GeV} , \quad H = \sqrt{N} \,m \,\mathcal{H} \sim 10^{14} \,\text{GeV}$$
$$\mathcal{H}^2 = \frac{1}{3} \left[\frac{1}{2N} \left(\frac{d\chi}{d\tau} \right)^2 + w(\chi) \right] , \quad \tau = \frac{t \,M^2}{M_{\rm Pl} \sqrt{N}}$$

quantum loops = double expansion in
$$\frac{H^2}{M_{Pl}^2}$$
 and $\frac{1}{N}$
slow roll = expansion in $\frac{1}{N}$
graviton corrections suppressed by $\frac{H^2}{M_{Pl}^2}$

$$m = \frac{M^2}{M_{\rm Pl}} \sim 2.45 \times 10^{13} \,\mathrm{GeV} \,, \quad H = \sqrt{N} \, m \, \mathcal{H} \sim 10^{14} \,\mathrm{GeV} \,,$$

 $\mathcal{H}^2 = \frac{1}{3} \left[\frac{1}{2N} \left(\frac{d\chi}{d\tau} \right)^2 + w(\chi) \right] \,, \quad \tau = \frac{t \, M^2}{M_{\rm Pl} \sqrt{N}}$

To first order, with $\chi \equiv \chi_{\text{exit}}$ for brevity:

$$n_{s} = 1 - \frac{1}{N} \left\{ 3 \left[\frac{w'(\chi)}{w(\chi)} \right]^{2} - 2 \frac{w''(\chi)}{w(\chi)} \right\}, \qquad \frac{dn_{s}}{d\ln k} = \mathcal{O}\left(\frac{1}{N^{2}}\right)$$
$$r = \frac{8}{N} \left[\frac{w'(\chi)}{w(\chi)} \right]^{2}, \qquad |\Delta_{\mathrm{ad}}^{(S)}|^{2} = \frac{N^{2}}{12\pi^{2}} \left(\frac{M}{M_{\mathrm{Pl}}} \right)^{4} \frac{w^{3}(\chi)}{w'^{2}(\chi)}$$

quantum loops = double expansion in
$$\frac{H^2}{M_{Pl}^2}$$
 and $\frac{1}{N}$
slow roll = expansion in $\frac{1}{N}$
graviton corrections suppressed by $\frac{H^2}{M_{Pl}^2}$

$$m = \frac{M^2}{M_{\rm Pl}} \sim 2.45 \times 10^{13} \,\text{GeV} , \quad H = \sqrt{N} \, m \,\mathcal{H} \sim 10^{14} \,\text{GeV}$$
$$\mathcal{H}^2 = \frac{1}{3} \left[\frac{1}{2N} \left(\frac{d\chi}{d\tau} \right)^2 + w(\chi) \right] , \quad \tau = \frac{t \, M^2}{M_{\rm Pl} \sqrt{N}}$$

To first order, with $\chi \equiv \chi_{\text{exit}}$ for brevity:

$$n_{s} = 1 - \frac{1}{N} \left\{ 3 \left[\frac{w'(\chi)}{w(\chi)} \right]^{2} - 2 \frac{w''(\chi)}{w(\chi)} \right\}, \qquad \frac{dn_{s}}{d\ln k} = \mathcal{O}\left(\frac{1}{N^{2}}\right)$$
$$r = \frac{8}{N} \left[\frac{w'(\chi)}{w(\chi)} \right]^{2}, \qquad |\Delta_{ad}^{(S)}|^{2} = \frac{N^{2}}{12\pi^{2}} \left(\frac{M}{M_{\text{Pl}}} \right)^{4} \frac{w^{3}(\chi)}{w'^{2}(\chi)}$$

Trinomial realization:

$$V(\phi) = V_0 \pm \frac{1}{2}m^2\phi^2 - \frac{1}{3}mg\phi^3 + \frac{1}{4}\lambda\phi^4$$

Trinomial new (= small field) inflation

$$w(\chi) = -\frac{1}{2}\chi^2 - \frac{1}{3}h\sqrt{\frac{y}{2}}\chi^3 + \frac{1}{32}y\chi^4 + \frac{2}{y}F(h)$$
Trinomial new (= small field) inflation

$$w(\chi) = -\frac{1}{2}\chi^2 - \frac{1}{3}h\sqrt{\frac{y}{2}}\chi^3 + \frac{1}{32}y\chi^4 + \frac{2}{y}F(h)$$
$$g = -h\sqrt{\frac{y}{2N}}\left(\frac{M}{M_{\rm Pl}}\right)^2, \quad \lambda = \frac{y}{8N}\left(\frac{M}{M_{\rm Pl}}\right)^4, \quad \frac{2}{y}F(h) = \frac{V_0}{NM^4}$$

Trinomial new (= small field) inflation

$$\begin{split} w(\chi) &= -\frac{1}{2}\chi^2 - \frac{1}{3}h\sqrt{\frac{y}{2}}\chi^3 + \frac{1}{32}y\chi^4 + \frac{2}{y}F(h) \\ g &= -h\sqrt{\frac{y}{2N}} \left(\frac{M}{M_{\rm Pl}}\right)^2, \quad \lambda = \frac{y}{8N} \left(\frac{M}{M_{\rm Pl}}\right)^4, \quad \frac{2}{y}F(h) = \frac{V_0}{NM^4} \\ \Delta &= \sqrt{h^2 + 1}, \quad h \ge 0 \longrightarrow \text{absolute minimum} = \chi_{\rm end} = \sqrt{\frac{8}{y}}(\Delta + h) > 0 \\ F(h) &= \frac{8}{3}h^4 + 4h^2 + 1 + \frac{8}{3}h\Delta^3 \longrightarrow w(\chi_{\rm end}) = w'(\chi_{\rm end}) = 0 \end{split}$$

Trinomial new (= small field) inflation

$$\begin{split} w(\chi) &= -\frac{1}{2}\chi^2 - \frac{1}{3}h\sqrt{\frac{y}{2}}\chi^3 + \frac{1}{32}y\chi^4 + \frac{2}{y}F(h) \\ g &= -h\sqrt{\frac{y}{2N}} \left(\frac{M}{M_{\rm Pl}}\right)^2, \quad \lambda = \frac{y}{8N} \left(\frac{M}{M_{\rm Pl}}\right)^4, \quad \frac{2}{y}F(h) = \frac{V_0}{NM^4} \\ \Delta &= \sqrt{h^2 + 1}, \quad h \ge 0 \longrightarrow \text{absolute minimum} = \chi_{\rm end} = \sqrt{\frac{8}{y}}(\Delta + h) > 0 \\ F(h) &= \frac{8}{3}h^4 + 4h^2 + 1 + \frac{8}{3}h\Delta^3 \longrightarrow w(\chi_{\rm end}) = w'(\chi_{\rm end}) = 0 \\ \end{split}$$
fixing $N \longrightarrow \qquad \begin{cases} y = z - 2h^2 - 1 - 2h\Delta + \frac{4}{3}h(h + \Delta - \sqrt{z}) \\ &+ \frac{16}{3}h(\Delta + h)\Delta^2 \log\left[\frac{1}{2}\left(1 + \frac{\sqrt{z} - h}{\Delta}\right)\right] \\ &- 2F(h)\log\left[\sqrt{z}(\Delta - h)\right] \end{cases}$

where $z \equiv \frac{y}{8} \chi_{\text{exit}}^2$ and $z_1 = 1 - \frac{z}{(\Delta+h)^2}$ acts as normalized *effective coupling*.

 $\frac{dz}{dy} < 0 , \quad 0 \le z \le (\Delta + h)^2 , \quad 0 \le y < \infty$

 $\frac{dz}{dy} < 0 , \quad 0 \le z \le (\Delta + h)^2 , \quad 0 \le y < \infty$ $\frac{dz_1}{dy} > 0 , \quad 0 \le z_1 \le 1 , \quad 0 \le y < \infty$

 $\frac{dz}{dy} < 0 , \quad 0 \le z \le (\Delta + h)^2 , \quad 0 \le y < \infty$ $rac{dz_1}{dy} > 0 \;, \quad 0 \le z_1 \le 1 \;, \quad 0 \le y < \infty$

$$n_{s} = 1 - \frac{6y}{N} \frac{z(z+2h\sqrt{z}-1)^{2}}{\left[F(h)-2z+\frac{8}{3}hz^{3/2}+z^{2}\right]^{2}} + \frac{y}{N} \frac{3z+4h\sqrt{z}-1}{F(h)-2z+\frac{8}{3}hz^{3/2}+z^{2}}$$
$$r = \frac{16y}{N} \frac{z(z+2h\sqrt{z}-1)^{2}}{\left[F(h)-2z+\frac{8}{3}hz^{3/2}+z^{2}\right]^{2}}$$

$$n_{s} = 1 - \frac{6y}{N} \frac{z(z+2h\sqrt{z}-1)^{2}}{\left[F(h)-2z+\frac{8}{3}hz^{3/2}+z^{2}\right]^{2}} + \frac{y}{N} \frac{3z+4h\sqrt{z}-1}{F(h)-2z+\frac{8}{3}hz^{3/2}+z^{2}}$$
$$r = \frac{16y}{N} \frac{z(z+2h\sqrt{z}-1)^{2}}{\left[F(h)-2z+\frac{8}{3}hz^{3/2}+z^{2}\right]^{2}}$$

$$n_{s} = 1 - \frac{6y}{N} \frac{z(z+2h\sqrt{z}-1)^{2}}{\left[F(h)-2z+\frac{8}{3}hz^{3/2}+z^{2}\right]^{2}} + \frac{y}{N} \frac{3z+4h\sqrt{z}-1}{F(h)-2z+\frac{8}{3}hz^{3/2}+z^{2}}$$
$$r = \frac{16y}{N} \frac{z(z+2h\sqrt{z}-1)^{2}}{\left[F(h)-2z+\frac{8}{3}hz^{3/2}+z^{2}\right]^{2}}$$

CMB, LSS and trinomial new inflation

Datasets: WMAP3, ACBAR, CBI2, BOOMERANG03, SDSS MCMC parameters: ω_b , ω_c , τ , Θ (slow), A_s , z_1 , h (fast) Context: $\Omega_{\nu} = 0, \ldots$; standard priors, no SZ, no lensing, linear mpk, \ldots

CMB, LSS and trinomial new inflation

Datasets: WMAP3, ACBAR, CBI2, BOOMERANG03, SDSS MCMC parameters: ω_b , ω_c , τ , Θ (slow), A_s , z_1 , h (fast) Context: $\Omega_{\nu} = 0, \ldots$; standard priors, no SZ, no lensing, linear mpk, \ldots

			param	best fit
0.021 0.022 0.023	0.095 0.1 0.105 0.11 0.115	1.035 1.04 1.045	$100\Omega_b h^2$	2.22
$\Omega_{\rm b} {\rm h}^2$	0.033 0.1 0.103 0.1 0.113 Ω _c h ²	θ	$\Omega_m h^2$	0.128
	(1 7) ^{1/2}		au	0.847
0.05 0.1 0.15 τ	0.2 0.4 0.6 0.8	2.9 3 3.1 log[10 ¹⁰ A _s]	H_0	72.9
			σ_8	0.767
h/(1+h)	07 075 08	134 136 138 14	$\log[10^{10}A_s]$	0.302
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ω_{Λ} 0.0 0.7 0.75 0.8 0.85 σ_{8}	Age/GYr 5 10 15 z _{re}	z_1	0.885
			h	0.266
			$-\log(L)$	2714.153

Flat ΛCDM +r vs. trinomial new inflation

param	best fit 1	best fit 2	
$100\Omega_b h^2$	2.232	2.22	
$\Omega_m h^2$	0.128	0.128	
au	0.956	0.847	
H_0	73.03	72.9	
σ_8	0.771	0.767	
$\log[10^{10}A_s]$	0.303	0.302	
n_s	0.956	0.9557	
r	0.016	0.054	
$-\log(L)$	2714.038	2714.153	

The lower bound on *r*

The lower bound on *r*

CL: r > 0.016 (95%) , r > 0.049 (68%) ML: r = 0.054 , ML: y = 1.2 , MV: r = 0.077 , MV: y = 2.03

Trinomial chaotic (= large field) inflation

$$w(\chi) = \frac{1}{2}\chi^2 + \frac{1}{3}h\sqrt{\frac{y}{2}}\chi^3 + \frac{1}{32}y\chi^4 , \quad -1 < h \le 0$$

Trinomial chaotic (= large field) inflation

$$w(\chi) = \frac{1}{2}\chi^2 + \frac{1}{3}h\sqrt{\frac{y}{2}}\chi^3 + \frac{1}{32}y\chi^4$$
, $-1 < h \le 0$

Trinomial chaotic (= large field) inflation

$$w(\chi) = \frac{1}{2}\chi^2 + \frac{1}{3}h\sqrt{\frac{y}{2}}\chi^3 + \frac{1}{32}y\chi^4 , \quad -1 < h \le 0$$

fixing
$$N \longrightarrow \begin{cases} y = z + \frac{4}{3}h\sqrt{z} + \left(1 - \frac{4}{3}h^2\right)\log\left(1 + 2h\sqrt{z} + z\right) \\ -\frac{4h}{3\Delta}\left(\frac{5}{2} - 2h^2\right)\left[\arctan\left(\frac{h + \sqrt{z}}{\Delta}\right) - \arctan\left(\frac{h}{\Delta}\right)\right] \end{cases}$$

where $z \equiv \frac{y}{8}\chi^2_{\text{exit}}$ acts as effective coupling, $0 \le y < \infty, 0 \le z < \infty$

$$n_{s} = 1 - \frac{y}{2Nz} \left[3 \frac{\left(1 + 2h\sqrt{z} + z\right)^{2}}{\left(1 + \frac{4}{3}h\sqrt{z} + \frac{1}{2}z\right)^{2}} - \frac{1 + 4h\sqrt{z} + 3z}{1 + \frac{4}{3}h\sqrt{z} + \frac{1}{2}z} \right]$$
$$r = \frac{4y}{Nz} \frac{\left(1 + 2h\sqrt{z} + z\right)^{2}}{\left(1 + \frac{4}{3}h\sqrt{z} + \frac{1}{2}z\right)^{2}}$$

$$n_{s} = 1 - \frac{y}{2Nz} \left[3 \frac{\left(1 + 2h\sqrt{z} + z\right)^{2}}{\left(1 + \frac{4}{3}h\sqrt{z} + \frac{1}{2}z\right)^{2}} - \frac{1 + 4h\sqrt{z} + 3z}{1 + \frac{4}{3}h\sqrt{z} + \frac{1}{2}z} \right]$$
$$r = \frac{4y}{Nz} \frac{\left(1 + 2h\sqrt{z} + z\right)^{2}}{\left(1 + \frac{4}{3}h\sqrt{z} + \frac{1}{2}z\right)^{2}}$$

The flat limit $h \to -1^+$ and then $z \to 1^-$:

$$n_s \to 1 - \frac{4}{N}$$
, $r \to 0$, $y \sim \frac{1}{1 - \sqrt{z}} \to \infty$, $|\Delta_{ad}^{(S)}|^2 \sim \left(\frac{N M^2}{M_{\rm Pl}}^2 y\right)^2$

 $M\sqrt{y}$ is the true scale of inflation and the theory becomes massless, $m \to 0$.

The flat limit $h \to -1^+$ and then $z \to 1^-$:

$$n_s \to 1 - \frac{4}{N}$$
, $r \to 0$, $y \sim \frac{1}{1 - \sqrt{z}} \to \infty$, $|\Delta_{ad}^{(S)}|^2 \sim \left(\frac{N M^2}{M_{\rm Pl}}^2 y\right)^2$

 $M\sqrt{y}$ is the true scale of inflation and the theory becomes massless, $m \to 0$. The flat limit $h \to -1^+$ when z > 1 is meaningless since $n_s - 1$ and r diverge.

The flat limit $h \to -1^+$ and then $z \to 1^-$:

$$n_s \to 1 - \frac{4}{N} , \quad r \to 0 , \quad y \sim \frac{1}{1 - \sqrt{z}} \to \infty , \quad |\Delta_{ad}^{(S)}|^2 \sim \left(\frac{N M^2}{M_{\rm Pl}}^2 y\right)^2$$

 $M\sqrt{y}$ is the true scale of inflation and the theory becomes massless, $m \to 0$. The flat limit $h \to -1^+$ when z > 1 is meaningless since $n_s - 1$ and rdiverge. Harrison–Zeldovich limit $z = 1, h \to -1$ $n_s \to 1, \quad r \to 0 \quad y \sim (h+1)^{-1/2} \to \infty, \quad |\Delta_{ad}^{(S)}|^2 \sim \left(\frac{M(h+1)^{-1/4}}{M_{\rm Pl}}\right)^4$

The flat limit $h \to -1^+$ and then $z \to 1^-$:

$$n_s \to 1 - \frac{4}{N} , \quad r \to 0 , \quad y \sim \frac{1}{1 - \sqrt{z}} \to \infty , \quad |\Delta_{ad}^{(S)}|^2 \sim \left(\frac{N M^2}{M_{\rm Pl}}^2 y\right)^2$$

 $M\sqrt{y}$ is the true scale of inflation and the theory becomes massless, $m \to 0$. The flat limit $h \to -1^+$ when z > 1 is meaningless since $n_s - 1$ and rdiverge. Harrison–Zeldovich limit $z = 1, h \to -1$ $n_s \to 1, \quad r \to 0 \quad y \sim (h+1)^{-1/2} \to \infty, \quad |\Delta_{ad}^{(S)}|^2 \sim \left(\frac{M(h+1)^{-1/4}}{M_{\rm Pl}}\right)^4$

But, even if $\overline{M} \equiv M(h+1)^{-1/4}$ is kept fixed:

$$m \sim \frac{\overline{M}^2}{M_{\rm Pl}} (h+1)^{1/2} , \quad g \sim \frac{\overline{M}^2}{M_{\rm Pl}^2} (h+1)^{1/4} , \quad \lambda \sim \frac{\overline{M}^4}{M_{\rm Pl}^4} (h+1)^{1/2} ,$$

all vanish yielding a scale-invariant massless free-field.

The marginalized z - h probability CL: 12%, 27%, 45%, 68% and 95%

The marginalized z - h probability CL: 12%, 27%, 45%, 68% and 95%

ML: y = 4.2, MV: y = 3.1

ML: y = 4.2, MV: y = 3.1

• Effective FT of inflation is not just phenomenology

- Effective FT of inflation is not just phenomenology
- N plays a distingushed role

- Effective FT of inflation is not just phenomenology
- *N* plays a distingushed role
- Trinomial potentials are adequate

- Effective FT of inflation is not just phenomenology
- *N* plays a distingushed role
- Trinomial potentials are adequate
- Trinomial new inflation is
 - generically adequate (also when fully symmetric)
 - moderately coupled (Ginzburg–Landau safe)
 - provides a lower bound for r

- Effective FT of inflation is not just phenomenology
- N plays a distingushed role
- Trinomial potentials are adequate
- Trinomial new inflation is
 - generically adequate (also when fully symmetric)
 - moderately coupled (Ginzburg–Landau safe)
 - provides a lower bound for *r*
- Trinomial chaotic inflation is
 - confined to a corner of parameter space
 - more strongly coupled
 - in tension with the Ginzburg–Landau picture

- Effective FT of inflation is not just phenomenology
- *N* plays a distingushed role
- Trinomial potentials are adequate
- Trinomial new inflation is
 - generically adequate (also when fully symmetric)
 - moderately coupled (Ginzburg–Landau safe)
 - provides a lower bound for *r*
- Trinomial chaotic inflation is
 - confined to a corner of parameter space
 - more strongly coupled
 - in tension with the Ginzburg–Landau picture
- Other potentials should be similarly studied (not *reconstructed*)

- Effective FT of inflation is not just phenomenology
- *N* plays a distingushed role
- Trinomial potentials are adequate
- Trinomial new inflation is
 - generically adequate (also when fully symmetric)
 - moderately coupled (Ginzburg–Landau safe)
 - provides a lower bound for *r*
- Trinomial chaotic inflation is
 - confined to a corner of parameter space
 - more strongly coupled
 - in tension with the Ginzburg–Landau picture
- Other potentials should be similarly studied (not *reconstructed*)

- Effective FT of inflation is not just phenomenology
- *N* plays a distingushed role
- Trinomial potentials are adequate
- Trinomial new inflation is
 - generically adequate (also when fully symmetric)
 - moderately coupled (Ginzburg–Landau safe)
 - provides a lower bound for *r*
- Trinomial chaotic inflation is
 - confined to a corner of parameter space
 - more strongly coupled
 - in tension with the Ginzburg–Landau picture
- Other potentials should be similarly studied (not *reconstructed*)
Summary and conclusions

- Effective FT of inflation is not just phenomenology
- N plays a distingushed role
- Trinomial potentials are adequate
- Trinomial new inflation is
 - generically adequate (also when fully symmetric)
 - moderately coupled (Ginzburg–Landau safe)
 - provides a lower bound for *r*
- Trinomial chaotic inflation is
 - confined to a corner of parameter space
 - more strongly coupled
 - in tension with the Ginzburg–Landau picture
- Other potentials should be similarly studied (not *reconstructed*)

Paris 17/05/2007 – p. 21/21