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Summary 

•Discovery

•Key Observations

•Model: assumptions, parameters, equations 

•Main results :
 Interpretation of temporal structure of GRBs.
 Relation between inhomogeneities of ISM and temporal variability of light curve.
 Thermal distribution of radiation in comoving system of the expanding plasma. 
 Canonical X-ray afterglow light curve of Swift
 Short burst.

•Application to GRB 991216, GRB 980425, GRB 031203…
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Discovery of GRBs
•GRBs unknown until the end of ‘60 neither predicted by 
astrophysical or cosmological models

•II revolution (BeppoSAX, 1997):   

1. discovery of afterglow X
2. cosmological distance (z  order of 1)

isotropy of spatial distribution

•Discovery by chance by Vela satellite (1973)

•I revolution (BATSE satellite, ‘90):
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Observations

•Irregularity of temporal profile of single 
event and variability of temporal profile 
between different events

•Bimodal distribution of 
duration

•Observed spectrum non-thermal..
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Theoretical model
GRBs originate from the vacuum polarization process á la Heisenberg-Euler-Schwinger in the space-time 

surrounding a non-rotating electromagnetic black hole

PEM pulse

Collision

PEMB pulse

ABM pulse

Ruffini R., Bianco C.L., Chardonnet P., Fraschetti F., Xue S.S., ApJ, 555, L107, 2001
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Assumptions

Parameters of the model

Constant thickness in the laboratory system
Spherical symmetry
“Fully radiative” condition
Temporal variability of light curve due to inhomogeneity of interstellar medium
Thermal distribution of energy in comoving frame 

Edya is the total energy emitted by source
B= MBc2/Edya parametrizes baryonic matter protostellar not 
collapsed
R = Aeff/Atot indicates the porosity of interstellar medium
<nism> is the particle number density of interstellar medium
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Temporal structure of GRB

Increase of opacity of pulse Conversion of internal energy
in kinetic energy

Collision with baryonic remnant

Short GRB Long GRB Edya

Ruffini R., Bianco C.L., Chardonnet P., Fraschetti F., Xue S.S., ApJ, 555, L113, 2001
Fraschetti F., GdA, 31/4, 14-18, 2005 
Fraschetti F., JKPS, 42, S24, 2003
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Emitted luminosity
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Emitted luminosity

Tarris the temperature of radiation emitted by dΣ and observed on the Earth

Thermal distribution of energy in comoving system:
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Temporal substructure of peak

A

B
C D

Ruffini R., Bianco C.L., Chardonnet P.,  Fraschetti F., Xue S.S., ApJ, 555, L113, 2001 
Ruffini R., Bianco C.L., Chardonnet P.,  Fraschetti F., Xue S.S., IJMPD, 13, 5, 843, 2004
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Spectral evolution

GRB 980425, 030329, 031203, 980519, 970228,…

Hard-to-Soft evolution Time integrated 
spectrum

Non-thermal observed spectrum

Bernardini M.G., Bianco C.L., Chardonnet P.,  Fraschetti F., Ruffini R., Xue S.S., ApJ, 634, L29, 2005 
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Swift era
Model verified in a precedently unobserved temporal window 

(102 -104 sec) 
Structure of light curve afterglow simply explained the claimed 
breaks in light curves

GRB050315

Ruffini R., Bernardini M.G., Bianco C.L., 
Chardonnet P., Fraschetti F., Guida R., Xue S.S., 
ApJ, 645, L109, 2006 
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Light curve and spectrum of P-GRB

No internal shock

Soft-to-HardEvolution of sub slab to transparency

Broader than thermal

Ruffini R., Fraschetti F., Vitaglaino L., Xue S.S., IJMPD, 14, 1, 131,  2005
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Conclusions

•The model presented builds the whole temporal evolution of the GRB, from 
the progenitor to the non-relativistic phase of the afterglow.

•Interpretation of temporal structure of GRB: P-GRB e E-APE.

•The condition “fully radiative” agrees with observations. 

•The temporal variability of light curve traces the inhomogeneities of ISM.

•Observations are compatible with thermal spectrum in pulse comoving 
system.

•Agreement with Swift observations over a time interval of 106 sec.

•Spectral predictions for short bursts.


