Federico Fraschetti

CEA/Saclay, DSM/Dapnia/Service d'Astrophysique and Physics Department, University of Rome 'La Sapienza'

R. Ruffini, C.L.Bianco, P.Chardonnet, M.G.Bernardini, R. Guida, S.S. Xue

Federico Fraschetti

CEA/Saclay, DSM/Dapnia/Service d'Astrophysique and Physics Department, University of Rome 'La Sapienza'

R. Ruffini, C.L.Bianco, P.Chardonnet, M.G.Bernardini, R. Guida, S.S. Xue

Federico Fraschetti

CEA/Saclay, DSM/Dapnia/Service d'Astrophysique and Physics Department, University of Rome 'La Sapienza'

R. Ruffini, C.L.Bianco, P.Chardonnet, M.G.Bernardini, R. Guida, S.S. Xue

Federico Fraschetti

CEA/Saclay, DSM/Dapnia/Service d'Astrophysique and Physics Department, University of Rome 'La Sapienza'

R. Ruffini, C.L.Bianco, P.Chardonnet, M.G.Bernardini, R. Guida, S.S. Xue

•Discovery

2

- •Discovery
- Key Observations

- •Discovery
- Key Observations

•Model: assumptions, parameters, equations

- •Discovery
- Key Observations
- •Model: assumptions, parameters, equations
- •Application to GRB 991216, GRB 980425, GRB 031203...

- •Discovery
- Key Observations
- •Model: assumptions, parameters, equations
- •Application to GRB 991216, GRB 980425, GRB 031203...
- •Main results :
 - Interpretation of temporal structure of GRBs.
 - Relation between inhomogeneities of ISM and temporal variability of light curve. Thermal distribution of radiation in comoving system of the expanding plasma. Canonical X-ray afterglow light curve of Swift Short burst.

•GRBs unknown until the end of '60 neither predicted by astrophysical or cosmological models

•GRBs unknown until the end of '60 neither predicted by astrophysical or cosmological models

•Discovery by chance by *Vela* satellite (1973)

•GRBs unknown until the end of '60 neither predicted by astrophysical or cosmological models

•Discovery by chance by *Vela* satellite (1973)

•I revolution (*BATSE* satellite, '90):

isotropy of spatial distribution

•GRBs unknown until the end of '60 neither predicted by astrophysical or cosmological models

•Discovery by chance by *Vela* satellite (1973)

•I revolution (*BATSE* satellite, '90):

isotropy of spatial distribution

•II revolution (BeppoSAX, 1997):

- 1. discovery of afterglow X
- 2. cosmological distance (z order of 1)

Observations

• Irregularity of temporal profile of single event and variability of temporal profile between different events

Observations

•Irregularity of temporal profile of single event and variability of temporal profile between different events

•**Bimodal** distribution of duration

4

Observations

•Irregularity of temporal profile of single event and variability of temporal profile between different events

•**Bimodal** distribution of duration

•Observed spectrum non-thermal..

GRBs originate from the vacuum polarization process *á la* Heisenberg-Euler-Schwinger in the space-time surrounding a non-rotating electromagnetic black hole

5

GRBs originate from the vacuum polarization process *á la* Heisenberg-Euler-Schwinger in the space-time surrounding a non-rotating electromagnetic black hole

-							"Superluminal"						
Point	r(cm)	$\tau(s)$	t(s)	$t_u(s)$	$t_a^a(s)$	γ	$v \equiv \frac{1}{t_a^d}$						
The Interfere Disease													
1	2.354×10^{8}	0.0	0.0	0.0	0.0	1.000	0						
	1.871×10^{9}	1.550×10^{-2}	5.886×10^{-2}	4.312×10^{-3}	8.625×10^{-3}	10.08	7.23c						
	4.486×10^{9}	2.141×10^{-2}	1.463×10^{-1}	4.523×10^{-4}	9.046×10^{-3}	20.26	16.5c						
	7.080×10^{9}	2.485×10^{-2}	2.329×10^{-1}	4.594×10^{-3}	9.187×10^{-3}	30.46	25.7c						
	9.533×10^{9}	2.715×10^{-2}	3.148×10^{-1}	4.627×10^{-3}	9.253×10^{-3}	40.74	34 4c						
	1.162×10^{10}	2.868×10^{-2}	3.845×10^{-1}	4.644×10^{-3}	9.288×10^{-3}	49.70	41.7c						
	11102 / 10	21000 / 10	01010710	1011/10	012007/10	10110	11110						
2	1.162×10^{10}	2.868×10^{-2}	3.845×10^{-1}	4.644×10^{-3}	9.288×10^{-3}	49.70	41.7c						
	1.186×10^{10}	2.889×10^{-2}	3.923×10^{-1}	4.646×10^{-3}	9.292×10^{-3}	38.06	42.6c						
i	1.234×10^{10}	2.949×10^{-2}	4.083×10^{-1}	4.655×10^{-3}	9.311×10^{-3}	24.21	44.2c						
	1.335×10^{10}	3.144×10^{-2}	4.423×10^{-1}	4.706×10^{-3}	9.413×10^{-3}	15.14	47.3c						
1	$1.389 imes 10^{10}$	3.279×10^{-2}	4.603×10^{-1}	4.753×10^{-3}	9.506×10^{-3}	12.94	48.7c						
3	1.389×10^{10}	3.279×10^{-2}	4.603×10^{-1}	4.753×10^{-3}	9.506×10^{-3}	12.94	48.7c						
	$2.326 imes 10^{10}$	5.208×10^{-2}	7.733×10^{-1}	5.369×10^{-3}	1.074×10^{-2}	20.09	72.2c						
i	$6.913 imes10^{10}$	9.694×10^{-2}	2.304	6.086×10^{-3}	1.217×10^{-2}	50.66	$1.89 \times 10^{2} c$						
	1.861×10^{11}	1.486×10^{-1}	6.206	6.446×10^{-3}	1.289×10^{-2}	100.1	$4.82 \times 10^{2} c$						
	$9.629 imes10^{11}$	3.112×10^{-1}	32.12	6.978×10^{-3}	1.396×10^{-2}	200.3	$2.30 \times 10^{3} c$						
	3.205×10^{13}	3.958	1.069×10^{3}	1.343×10^{-2}	2.685×10^{-2}	300.1	$3.98 \times 10^4 c$						
	1.943×10^{14}	21.57	6.481×10^{3}	4.206×10^{-2}	8.413×10^{-2}	310.1	$7.70 \times 10^{4} c$						
	The Beam-Target Phase												
4	1.043×10^{14}	21.57	6.481×10^{3}	4.206×10^{-2}	8 413 \to 10^{-2}	310.1	7.70×10^{4}						
-	6.663×10^{15}	7.982×10^2	6.481×10^3	1.164	2 328	310.0	9.55×10^{4}						
	2.863×10^{16}	3.114×10^3	0.540×10^5	5.057	10.11	300.0	9.45×10^{4}						
	2.803×10^{16} 4.602×10^{16}	5.114×10^{3}	3.545×10^{6}	8.775	17.55	270.0	9.40×10^{2} 8.02×10^{4}						
D.	4.032×10^{16}	5.241×10	1.303×10^{6}	0.022	10.87	210.0	8.92×10^{-2}						
Γ_A	5.177×10	3.333×10^{-6}	1.727×10^{6}	9.935	19.01	200.0	8.09×10^{2}						
	0.070 × 10	0.791×10	$1.901 \times 10^{\circ}$	11.02	20.00	240.0	7.80×10^{-2}						
D	0.380×10	7.811×10	2.195×10	14.03	28.00	220.0	$7.82 \times 10^{\circ}$						
F L	7.025×10	8.300 × 10	$2.343 \times 10^{\circ}$	10.00	31.32	207.0	$7.46 \times 10^{\circ}$						
	$7.262 \times 10^{-0.058} \times 10^{16}$	8.895×10	2.422×10	10.01	33.23	200.0	$7.29 \times 10^{\circ} c$						
	$9.058 \times 10^{-1.100}$	1.236×10	3.021 × 10	20.00	33.32	100.0	$5.67 \times 10^{\circ}$						
	1.136×10^{-1} 1.520×10^{17}	1.300×10^{4}	$3.785 \times 10^{\circ}$	$\frac{52.54}{2.000} \times \frac{10^2}{2}$	1.057×10^{-2}	100.0	3.58×10^{-6}						
	1.339×10^{-1}	$3.819 \times 10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-$	$0.134 \times 10^{\circ}$	2.000 × 10 ⁻	4.000 × 10 ⁻	10.02	1.28×10^{-2}						
	2.801×10^{-1}	$2.622 \times 10^{\circ}$	$9.351 \times 10^{\circ}$	$7.278 \times 10^{\circ}$	1.455×10^{-1}	10.00	$6.42 \times 10^{-2}c$						
	3.624×10^{-1}	$6.702 \times 10^{\circ}$	1.213×10^{-1}	3.860 × 10*	7.719 × 10*	5.001	$1.57 \times 10^{-2}c$						
	4.454×10^{-1}	$1.433 \times 10^{\circ}$	$1.500 \times 10^{\circ}$	1.439×10^{3}	$2.877 \times 10^{\circ}$	2.998	51.6c						
_	4 454 0 1017	1 422 4 105	1 500 ~ 107	1 420 \(105)	9 977 4 105	2 002	E1 6-						
5	4.404×10 4.820×10^{17}	1.433×10 1.038×10^{6}	1.625×10^7	1.409 × 10 9.281 × 10 ⁵	4.769×10^5	2.998	22.80						
	4.000 × 10 5.200 × 1017	1.820 × 10	1.030 × 10	2.001 × 10 4.642 × 10 ⁵	4.702 × 10 0.285 × 10 ⁵	2.500	33.0C						
	3.390×10^{-1}	2.8/3 × 10 ⁻	$1.844 \times 10^{\circ}$	4.043×10^{-1}	9.285 × 10°	2.000	19.40						
	0.422×10^{-1}	3.387×10^{-1}	2.271×10^{7}	1.291×10^{-1}	2.581 × 10 ⁻	1.500	8.3UC						
	1.034×10^{10}	$2.903 \times 10^{\circ}$	$5.002 \times 10^{\circ}$	$1.552 \times 10^{\circ}$	3.103×10^{-10}	1.054	1.11c						
6	1.034×10^{18}	2.903×10^{7}	5.002×10^{7}	1.552×10^{7}	3.103×10^{7}	1.054	1.11c						
	1.004×10 1.202×10^{18}	2.303×10^{7}	7.002×10^{7}	1.332×10^{-107}	6.280×10^7	1.034	6.38×10^{-1}						
	1.202 × 10	4.919 × 10	1.130 X 10	3.140 × 10	0.280 × 10	1.023	0.35 × 10 €						
F	1.248×10^{18}	5.706×10^7	$7.894 imes 10^7$	3.731×10^7	7.461×10^{7}	1.000	5.58×10 ⁻¹						

ffini R., Bianco C.L., Chardonnet P., Fraschetti F., Xue S.S., ApJ, 555, L107, 2001

Assumptions

Parameters of the model

Assumptions

Constant thickness in the laboratory system Spherical symmetry "Fully radiative" condition Temporal variability of light curve due to inhomogeneity of interstellar medium Thermal distribution of energy in comoving frame

Parameters of the model

Assumptions

Constant thickness in the laboratory system Spherical symmetry "Fully radiative" condition Temporal variability of light curve due to inhomogeneity of interstellar medium Thermal distribution of energy in comoving frame

Parameters of the model

 E_{dya} is the total energy emitted by source $B = M_B c^2 / E_{dya}$ parametrizes baryonic matter protostellar not collapsed $R = A_{eff} / A_{tot}$ indicates the porosity of interstellar medium $< n_{ism} >$ is the particle number density of interstellar medium

Collision with baryonic remnant

Collision with baryonic remnant

Increase of opacity of pulse

Collision with baryonic remnant

Increase of opacity of pulse

Collision with baryonic remnant

Increase of opacity of pulse

Collision with baryonic remnant

Increase of opacity of pulse

Collision with baryonic remnant

Increase of opacity of pulse

Collision with baryonic remnant

Increase of opacity of pulse

Collision with baryonic remnant

Increase of opacity of pulse

Ruffini R., Bianco C.L., Chardonnet P., **Fraschetti F.**, Xue S.S., ApJ, 555, L113, 2001 Fraschetti F., GdA, 31/4, 14-18, 2005 Fraschetti F., JKPS, 42, S24, 2003

$$\begin{cases} \rho_{B_{1}} \gamma_{1}^{2} V_{1} + \Delta M_{ism} c^{2} = \left(\rho_{B_{1}} \frac{V_{1}}{V_{2}} + \frac{\Delta M_{ism} c^{2}}{V_{2}} + \Delta \varepsilon \frac{1}{2} \gamma_{2}^{2} V_{2} \right) \\ \rho_{B_{1}} \gamma_{1} U_{r_{1}} V_{1} = \left(\rho_{B_{1}} \frac{V_{1}}{V_{2}} + \frac{\Delta M_{ism} c^{2}}{V_{2}} + \Delta \varepsilon \frac{1}{2} \gamma_{2} U_{r_{2}} V_{2} \right) \end{cases}$$

$$\begin{cases} \rho_{B_{1}}\gamma_{1}^{2}V_{1} + \Delta M_{ism}c^{2} = \left(\rho_{B_{1}}\frac{V_{1}}{V_{2}} + \frac{\Delta M_{ism}c^{2}}{V_{2}} + \Delta\varepsilon\right) \frac{1}{2}\gamma_{2}^{2}V_{2} \text{ with } \begin{cases} \rho_{B} = \frac{(M_{B} + M_{ism})c^{2}}{V}\\ M_{ism}(r) = m_{p}n_{ism}\frac{4\pi}{3}(r^{3} - r_{0}^{3}) \\ U_{r} = \sqrt{\gamma^{2} - 1} \end{cases}$$

In the laboratory system

$$\begin{cases} \rho_{B_{1}}\gamma_{1}^{2}V_{1} + \Delta M_{ism}c^{2} = \left(\rho_{B_{1}}\frac{V_{1}}{V_{2}} + \frac{\Delta M_{ism}c^{2}}{V_{2}} + \Delta\varepsilon\right) + \Delta\varepsilon + \frac{1}{2}\gamma_{2}^{2}V_{2} \\ V_{2} \end{pmatrix} \text{ with } \begin{cases} \rho_{B} = \frac{\left(M_{B} + M_{ism}\right)c^{2}}{V} \\ M_{ism}(r) = m_{p}n_{ism}\frac{4\pi}{3}\left(r^{3} - r_{0}^{3}\right) \\ U_{r} = \sqrt{\gamma^{2} - 1} \end{cases}$$

$$\begin{cases} \Delta \varepsilon = \rho_{B_{1}} \frac{V_{1}}{V_{2}} \sqrt{1 + 2\gamma_{1} \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}} + \left(\frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}\right)^{2} - \rho_{B_{1}} \frac{V_{1}}{V_{2}} \left(1 + \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}\right)^{2} + \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}} + \frac{\Delta M_$$

8

$$\Delta \varepsilon = \rho_{B_{1}} \frac{V_{1}}{V_{2}} \sqrt{1 + 2\gamma_{1} \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}} + \left(\frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}\right)^{2} - \rho_{B_{1}} \frac{V_{1}}{V_{2}} \left(1 + \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}\right)^{2}}{\gamma_{1} + \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}}$$

$$\gamma_{2} = \frac{\Delta M_{ism}c^{2}}{\sqrt{1 + 2\gamma_{1} \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}} + \left(\frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}\right)^{2}}}{\sqrt{1 + 2\gamma_{1} \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}} + \left(\frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}\right)^{2}}}$$

$$\begin{cases} \rho_{B_{1}}\gamma_{1}^{2}V_{1} + \Delta M_{ism}c^{2} = \left(\rho_{B_{1}}\frac{V_{1}}{V_{2}} + \frac{\Delta M_{ism}c^{2}}{V_{2}} + \Delta\varepsilon\right) + \Delta\varepsilon + \frac{1}{2}\gamma_{2}^{2}V_{2} \\ V_{2} \end{pmatrix} \text{ with } \begin{cases} \rho_{B} = \frac{(M_{B} + M_{ism})c^{2}}{V} \\ M_{ism}(r) = m_{p}n_{ism}\frac{4\pi}{3}\left(r^{3} - r_{0}^{3}\right) \\ U_{r} = \sqrt{\gamma^{2} - 1} \end{cases}$$

$$\Delta \varepsilon = \rho_{B_{1}} \frac{V_{1}}{V_{2}} \sqrt{1 + 2\gamma_{1} \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}} + \left(\frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}\frac{1}{\dot{f}} - \rho_{B_{1}} \frac{V_{1}}{V_{2}} \left(1 + \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}\frac{1}{\dot{f}}\right) + \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}} + \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}\frac{1}{\dot{f}} - \rho_{B_{1}} \frac{V_{1}}{V_{2}} \left(1 + \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}\frac{1}{\dot{f}}\right) + \frac{\Delta M_{ism}c^{2}}{\rho_{B_{1}}V_{1}}\frac{1}{\dot{f}} + \frac{\Delta M_{ism}c^{2}$$

$$\begin{cases} \frac{dE}{dt_a^d d\Omega} = \int_{EQTS} \frac{\Delta \varepsilon}{4\pi} v \Lambda^4 \cos \vartheta \frac{dt}{dt_a^d} W(v_1, v_2, T_{arr}) d\Sigma \\ t_a^d = (1+z) \left(t - \frac{\int_0^t v(t') dt' + r_{ds}}{c} \cos \vartheta + \frac{r_{ds}}{c} \frac{1}{\dot{j}} \right) \end{cases}$$

$$\begin{cases} \frac{dE}{dt_a^d d\Omega} = \int_{EQTS} \frac{\Delta \varepsilon}{4\pi} v \Lambda^4 \cos \vartheta \frac{dt}{dt_a^d} W(v_1, v_2, T_{arr}) d\Sigma \\ t_a^d = (1+z) \left(t - \frac{\int_0^t v(t') dt' + r_{ds}}{c} \cos \vartheta + \frac{r_{ds}}{c} \frac{1}{\dot{j}} \right) \end{cases}$$

$$\begin{cases} \frac{dE}{dt_a^d d\Omega} = \int_{EQTS} \frac{\Delta \varepsilon}{4\pi} v \Lambda^{-4} \cos \vartheta \frac{dt}{dt_a^d} W(v_1, v_2, T_{arr}) d\Sigma \\ t_a^d = (1+z) \left(t - \frac{\int_0^t v(t') dt' + r_{ds}}{c} \cos \vartheta + \frac{r_{ds}}{c} \frac{1}{\dot{j}} \right) \end{cases}$$

$$W(v_{1},v_{2},T_{arr}) = \frac{2}{aT_{arr}^{4}} \int_{v_{1}}^{v_{2}} \frac{hv}{e^{hv/(kT_{arr})} - 1} d\left(\frac{hv}{c}\right)^{3}$$

Thermal distribution of energy in comoving system:

$$\begin{cases} \frac{dE}{dt_a^d d\Omega} = \int_{EQTS} \frac{\Delta \varepsilon}{4\pi} v \Lambda^{-4} \cos \vartheta \frac{dt}{dt_a^d} W(v_1, v_2, T_{arr}) d\Sigma \\ t_a^d = (1+z) \left(t - \frac{\int_0^t v(t') dt' + r_{ds}}{c} \cos \vartheta + \frac{r_{ds}}{c} \frac{1}{\dot{\zeta}} \right) \\ \end{cases}$$

$$W(\mathbf{v}_{1},\mathbf{v}_{2},T_{arr}) = \frac{2}{aT_{arr}^{4}h^{3}} \int_{\mathbf{v}_{1}}^{\mathbf{v}_{2}} \frac{h\mathbf{v}}{e^{h\mathbf{v}/(kT_{arr})} - 1} d\left(\frac{h\mathbf{v}}{c}\right)$$

 T_{arr} is the temperature of radiation emitted by d Σ and observed on the Earth

-	Peak	$r \ (\mathrm{cm})$	au (s)	t (s)	t_a (s)	t_a^d (s)	Δt_a^d (s)	γ	"Superluminal" $v \equiv rac{r}{t_a^d}$
	A B	4.50×10^{16} 5.20 × 10^{16}	4.88×10^{3} 5 74 × 10 ³	1.50×10^{6} 1.73×10^{6}	7.90 9.50	15.8	0.400 0.622	303.8	$9.5 \times 10^4 c$ $9.1 \times 10^4 c$
	C	5.70×10^{16}	6.54×10^{3}	1.90×10^{6}	11.4	22.9	1.13	200.4 200.5	$8.3 imes 10^4 c$
	$_{ m E}^{ m D}$	$6.20 imes 10^{16}$ $6.50 imes 10^{16}$	7.64×10^{3} 9.22×10^{3}	2.07×10^{6} 2.17×10^{6}	$\begin{array}{c} 15.0 \\ 27.9 \end{array}$	$30.1 \\ 55.9$	$5.16 \\ 10.2$	$139.9 \\ 57.23$	${6.9 imes 10^4 c} \ {3.9 imes 10^4 c}$
	F	$6.80 imes 10^{16}$	$1.10 imes 10^4$	2.27×10^6	43.7	87.4	10.6	56.24	$2.6 imes 10^4 c$

Peak

Α

В

 \mathbf{C}

D

Ε

 \mathbf{F}

r (cm)

 4.50×10^{16}

 $5.20 imes 10^{16}$

 $5.70 imes 10^{16}$

 $6.20 imes 10^{16}$

 6.50×10^{16}

 6.80×10^{16}

Ruffini R., Bianco C.L., Chardonnet P., Fraschetti F., Xue S.S., ApJ, 555, L113, 2001 Ruffini R., Bianco C.L., Chardonnet P., Fraschetti F., Xue S.S., IJMPD, 13, 5, 843, 2004

Hard-to-Soft evolution

Hard-to-Soft evolution

Time integrated spectrum

Hard-to-Soft evolution Time integrate spectrum Non-thermal observed spectrum

Hard-to-Soft evolution Time integrat spectrum Non-thermal observed spectrum

GRB 980425, 030329, 031203, 980519, 970228,...

Bernardini M.G., Bianco C.L., Chardonnet P., Fraschetti F., Ruffini R., Xue S.S., ApJ, 634, L29, 2005

Swift era

Model verified in a precedently unobserved temporal window (10²-10⁴ sec)

Structure of light curve afterglow simply explained the claimed breaks in light curves

Swift era

Model verified in a precedently unobserved temporal window (10²-10⁴ sec)

Structure of light curve afterglow simply explained the claimed breaks in light curves

GRB050315

Ruffini R., Bernardini M.G., Bianco C.L., Chardonnet P., **Fraschetti F.**, Guida R., Xue S.S., ApJ, 645, L109, 2006

Evolution of sub slab to transparency

No internal shock

Evolution of sub slab to transparency

13

Evolution of sub slab to transparency

13

Evolution of sub slab to transparency

Soft-to-Hard

Evolution of sub slab to transparency

Soft-to-Hard

Ruffini R., Fraschetti F., Vitaglaino L., Xue S.S., IJMPD, 14, 1, 131, 2005

Conclusions

- •The model presented builds the whole temporal evolution of the GRB, from the progenitor to the non-relativistic phase of the afterglow.
- •Interpretation of temporal structure of GRB: P-GRB e E-APE.
- •The condition "fully radiative" agrees with observations.
- •The temporal variability of light curve traces the inhomogeneities of ISM.
- •Observations are compatible with thermal spectrum in pulse comoving system.
- •Agreement with Swift observations over a time interval of 10⁶ sec.
- Spectral predictions for short bursts.