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Introduction

The Universe is homogeneous and isotropic at large scales
o (CMB) but it displays intricate structures at small scales:
T e galaxies, clusters, filaments, voids,..

A path-integral formalism

Direct steepest-descent method

In usual scenarios, these highly non-linear density fluctuations
have formed through the amplification by gravitational

Using the high-& behavior of . vy . . . .

theresponse funcion I Instability of small primordial density fluctuations, generated for

Gonglision Instance during an inflationary phase. Besides, in the simplest

cases these initial fluctuations are Gaussian and their

amplitude increases at smaller scales. Therefore, smaller

scales turn non-linear first and small objects merge to build

increasingly large objects (galaxies, clusters of galaxies,...),

following a hierarchical scenario.

2P| effective action approach

In addition, a large fraction of the matter content of the
Universe is made of collisionless dark matter particles

(Qam/Q ~ 7).
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Introduction

On large scales collisional effects can be neglected and at
: :
o scales much smaller than the horizon (and for small potentials)
erturbative expansion . - . . .
the Newtonian approximation is valid.

A path-integral formalism

Directsteepest-descent method However, the Newtonian gravitational dynamics of collisionless

2P effctive action approach particles in an expanding background is still a difficult problem:

Usiog s - shavro out-of-equilibrium dynamics.

the response function

SoE; = Linear regime: study of the linear growing (and decaying)
modes.

= Quasi-linear regime: perturbative expansion over powers of
the small initial fluctuations. Pb: the expansion is not
well-behaved.

= N-body simulations. Pb: computational cost, physical insight.

= Phenomenological descriptions: Halo model, hierarchical
models. Pb: not accurate enough for precision cosmology.
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Introduction

A good description of weakly non-linear scales is becoming of

I great practical interest as it can be a limiting factor for the
accuracy of cosmological probes used to constrain the

cosmological parameters. For instance, it is required to study:

A path-integral formalism

Direct steepest-descent method

2P efectiv action approach = Baryon acoustic oscillations
Sang e Ngh K beheorcl = Weak gravitational lensing distortions of distant galaxies.
Gonchusion = Transition linear/non-linear: can be used to constrain

cosmological parameters through the dependence on the
growth factor.
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The vertical axis is the shear top-hat variance multiplied by the
angular scale in arcminutes. The horizontal axis is the radius of
the smoothing window. [Munshi et al. (2006)]
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Linear regime

At large scales or at early times the fluctuations with respect to
the homogeneous Hubble flow are small and we can linearize

Perturbative expansion . .
the equations of motion.

e Perturbative expansion

Introduction

A path-integral formalism (
P +6=0
Direct steepest-descent method 9 — VV dt
00 3 2¢ i — _
2P effective action approach < E _|_ H9 —1_ §QmH 5 _ O Wlth T a :
5 w=V XV
Using the high-k behavior of X a—w + HW — O
T

the response function R

Conclusion

This yields a growing and a decaying mode, with a potential
velocity field:

or(x,7) = Dy (7)A(x) + D-(7)B(x),

d’D dD 3 5
—— = ZQu.H’D.
dr2 +H dr 2 R

For the Einstein-de Sitter Universe, 0, = 1,Q, = 0, we have:

D+ :a,oct2/3, D_=a**xct™.
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Perturbative expansion

| Of course, it is possible to go beyond the linear regime by
d | performing a perturbative expansion. In this case, it is actually
t an expansion over powers of the linear growing mode. For the
EEEEEE Einstein-de Sitter Universe each order can be factorized as:

A path-integral formalism

Direct steepest-descent method

2P effective action approach

(x,7) =) a"bn(x)

Using the high-k behavior of
the response function R

Conclusion 6(X7 T) — _H Z a’nen (X)
n=1

with:
O (X) :/dxl..dann(X;Xl,..,Xn)5L0(x1)..5L0(xn).

In the case of more general cosmologies, we can again obtain
separable solutions with:

1 dD.

~ 1.
HD_|_ dT

CL—>D_|_, |f f:
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Perturbative expansion

In practice, it is convenient to work in Fourier space. Thus we

Introduction

define:
e Linear regime '
5(x) = / dk e**5(k),  (5(k1)6(ka)) = 6 (ks + ko) P(k1)
A path-integral formalism
P s e where P(k) is the matter power-spectrum. Next, taking the
e R average over the Gaussian linear growing mode one obtains
e an expansion for the non-linear power-spectrum P(k) over

powers of the linear power-spectrum Prq(k).

Conclusion

However, this perturbative expansion is not very well behaved.

= Small-scale divergences.

= The higher-order terms are increasingly large and the series
does not converge well:

P(k;a) = D3 Pro(k) + DL PP (k) + DS PP (k) + ...
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Perturbative expansion

In the Zeldovich approximation one obtains:

P = [ G

| 2
with I(k,x) = /dqezq'x%PL(q), oo = I(Z’QO)

o, 1S the variance of the displacement field (and also the
one-dimensional velocity dispersion in linear theory).

Pk) = / (Qdﬂ’_‘)?)e@'k-x > (=1)" Koo — Ik, x)]" = P (k)

n!
Crocce & Scoccimarro (2006) noticed that one can reorganize
the perturbative expansion to obtain a well-behaved series:

P() = [ gomge™ et 30 O = 37 P i)

D5 (k) N
Do (k)

Y

ik.x [ — k202 —I(k,x)] 1}

) = D exp(—k’0,/2)
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Perturbative expansion

Introduction
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Comparison between PT (left) and RPT (right) expansions in
the Zel'dovich approximation. Dashed lines denote negative
values. [Crocce & Scoccimarro 2006]
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A path-integral formalism
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Equations of motion

We can first rewrite the equations of motion in a more concise
form in Fourier space by using the Poisson eq. into the Euler

Introduction

Perturbative expansion

A path-integral formalism q )

onsof otin
2y & —aégk’ 7—) —|—6<k, 7‘) = — / dkidks dp (kl ‘|‘k2_k)a(k17 k2)9<k13 7)5(k27 7_)
T

e Large-N-expansions

Direct steepest-descent method

2P effective action approach ae 3
Using the high-& behavior of E+H9+§QmH25 - _/dkldk2 5D (k1+k2_k>ﬁ(k17 k2)9(k17 T)H(k277_)
the response function R
S—— with the mode-coupling vertices:
ki +ko).k ki + ko|? (ki .k
a(ky, ko) = (k1 + 22) 1’ B(ky, k) = k1 2L (2 1.k2)
2 202 k2

Next, it is convenient to define the two-component field v;:

e [(0em ) [ st ) D)

2 (k, ) —0(k,n)/Hf Dio
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Equations of motion

Then, the equations of motion can be written as:
O(x,z')(a") = Kau(a;z1, w2) p(x1)d(22) with o = (k,n,4).
The matrix O reads:

9 —1
op(k —k')op(n—n')

o 3Qm
on T 278 — 1

whereas the symmetric vertex K (z;z1,x2) = Ks(x; 22, 71)
writes:

Ks(x;21,22) = dp(ki + ko — k)op(n1 — )0 (N2 — 1)Viiy,ip (K1, k2)

with:

Cv(kg, k1)
2

Oé(kl, k2)
9 ’

Vi51,2(K1, Ka) = , Y21k, ke) =

V5.2.2(k1,k2) = B(k1,ks), and zero otherwise .

PHYSICS OF THE UNIVERSE CONFRONTS OBSERVATIONS, 17-18 May 2007 - p. 18




Introduction

Perturbative expansion

A path-integral formalism
e Equations of motion

e Action S[v), A]

e Large-N-expansions

Direct steepest-descent method

2P| effective action approach

Using the high-k behavior of

the response function R

Conclusion

Patrick Valageas — 2007

Action S{y, A]

Since we are only interested in the statistical properties of the
system it is convenient to apply a path-integral formalism. To
do so, we can write:

O = Kspp+p; with  pi(x) = p(n —ni)e” dro(k)

and ¢ = 0 for n < n;. The source p; provides the initial
conditions, eventually we let n; — —oc.

Then, we define the generating functional Z|;]:
70 = (@) = [lau] evd=hmeas e

with  (ui) =0, (ui(z1)pi(r2)) = Az, v2).

This also reads:

71j) = [[1anlfay] |det M) p(s — 0.+ Ko e
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Action S{y, A]

Writing the Dirac functional as an integral we obtain:
Z[j] _ /[dw][d)\] ej-w+>\-(—0-w+Ks-¢¢)+%>\-Afi->\
Therefore, the system is described by the action S[y, Al:
S[i, A = M(O.p — K, ah)) — %A.Am.

We are interested in the two-point correlation G(x1, x2) and
response function R(xq,x2) defined as:

5¢($1) > o
5¢(x2) "~

G(z1,72) = (Y(21)Y(22)), R(T1,72) = (

and R(5131,£132) X 8(’)71—772), m — N2 : R(CBl,aj‘z) — 5D(k1_k2)5z’1,z’2-

Moreover, the auxiliary field A\ allows us to obtain R through:

R(z1,22) = (Y(z1)A(z2)), (X) =0, (AX) =0.
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Large-N-expansions

In order to evaluate this path-integral it is possible to
Investigate large-/N expansions:

Znj, h] = /[d¢][dA] N +hA=S[y,A]]

|. Direct steepest-descent method: This yields for auxiliary
correlation and response functions GGy and Ry:

O(ZE,Z).Go(Z,y) =0, O(QS‘,Z)Ro(Z,y) :5D($_y),
whereas the actual correlation and response functions obey:
O(z,2).G(z,y) = 3(x,2).G(z,y) + (z, 2).R" (2,9)

O(x,2).R(z,y) =dp(x —y) + X(x, 2).R(z,y)

We took the limit n; — —oo so that terms involving A; vanish.
We can see that the auxiliary matrices GGy and R, are actually
equal to their linear counterparts: Go = G, Ry = Ry,.
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Large-N-expansions

The self-energy terms > and II are given at one-loop order by:

Introduction

Perturbative expansion E(x7 y) — 4K$ (CB, xl’ fUQ)KS(Z, y7 Z2>RO<CE1, Z)GO(CEQ, ZQ)

e Equations of motion
- et S[, Al (z,y) = 2Ks(x;x1,22) Ks(y; y1, y2)Go(x1, y1)Go (2, y2)

Direct steepest-descent method

The expansion over powers of 1/N only enters the expression
of the self-energy.

2P| effective action approach

2 T e lI. 2PI effective action method: This yields the same equations
where GGy and R, are replaced by the non-linear two-point
functions GG and R in the self-energy.

Conclusion

Thus, the the direct steepest-descent method yields a series of
linear equations which can be solved directly whereas the 2Pl
effective action method gives a system of non-linear equations
which must usually be solved numerically by an iterative
scheme. However, thanks to the Heaviside factors appearing in
the response R and the self-energy X these equations can be
solved directly by integrating forward over time ;.
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General properties

Agreement with the standard perturbative analysis over
powers of Prq(k) up to the order used for the self-energy. As
compared with the standard perturbative approach, the two
schemes described above also include two different infinite
partial resummations.

The equations obtained for the hydrodynamical system are
simpler than for the collisionless system described by the
Vlasov-Poisson system.

The correlation G can also be written as:

G(iCl,CEQ) = R X Go(ni) X RT -+ RHRT

Using a diagrammatic technique Crocce & Scoccimarro
(2006) derived these Schwinger-Dyson equations in an
integral form.
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Response function

The evolution equations for the response function R read:

Introduction

OR

Perturbative expansion ! —_ R2 p— Eo;ll-Rl —I— 20;12_R2

| _ om
A path-integral formalism
. OR> 3 1
° espone unc |n anl 2 2
e Correlation function
2P| effective action approach Where (Rl, R2> — (Rl]_, RQl) Or (R]_Q, R22> Taklng advantage
Using the high-Fs behavior o of the simple dependence on time of the r.h.s. it is possible to

the response function R

eliminate the time-integrals to obtain two coupled differential
equations for R, and Rs. In the small-scale limit
35| ~ k% — oo we obtain the asymptotic solution:

Conclusion

R(x1,x2) = Rp(z1,x2)cos|w(ar — az2)] + O(1/w) with w = ko,

Thus the direct steepest-descent method has given rise to a
“UV cutoff” in the form of fast oscillations. The usual 1-loop
result would be in the same small-scale limit:

1
Ri_100p(x1,22) = Rr(x1,22) |1 — §w2(&1 —az)’
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Response function

7,=3, M,=—1.4
10 1+z, 1t 10 1+z, 1

Introduction
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Using the high-k behavior of -1
the response function R

Conclusion _9 L k=1 h/MpC ]
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M, n, k [h Mpc~t]

\
2
\
—_
o H
\
23
\
—_
o

The response function R; ;. (k;n1,12)

The non-linear response exhibits oscillations ~ cos(wa) with a
frequency w ~ k£ and an amplitude which follows the linear
response R;. Thus there is no true damping at this order,
except after integration over time. Nevertheless, this is already
an improvement over the standard perturbative expansion.
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Correlation function

FT T T T T 1T \‘ \\ T 171 = T T 177 T 1T T 14
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100; Afioop 10
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2 i S F
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<1 1 < B
B 0.1 =
0.1 E C
:\ | \‘\ \\\‘ B

k [h M[}é)c*l]
The power A?(k; 21, 22).
Az(k; N, n2) = 47rk3G11(/<3; m,n2)

G(Clil,a?g) = R X GO(U@') X RT -+ RHRT

The correlation GG is better behaved in the highly non-linear
regime than for the standard 1-loop result.

PHYSICS OF THE UNIVERSE CONFRONTS OBSERVATIONS, 17-18 May 2007 - p. 27




Introduction

Perturbative expansion

A path-integral formalism

Direct steepest-descent method

2P| effective action approach

e Response function

2P| effective action approach

Using the high-k behavior of
the response function R

Conclusion

Patrick Valageas — 2007 PHYSICS OF THE UNIVERSE CONFRONTS OBSERVATIONS, 17-18 May 2007 - p. 28




Response function
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The response function R; ;. (k;n1,12).

The non-linear response exhibits damped oscillations in the
non-linear regime.
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Response function

The behavior of the response function can be understood from
the following simple model:

Introduction

Perturbative expansion

A path-integral formalism ni
path-integral formal OR _ O'/ d"? em+nR(771777)R(777772)-
n

Direct steepest-descent method 8771
2

2P| effective action approach
The parameter o < 0 represents the amplitude of the
self-energy X at the wavenumber of interest.

Using the high-k behavior of
the response function R

Conclusion

= Linearregime: 0 =0, Rp(ni,n2) =1.

= Steepest-descent method: R(n1,n7) — Rr(n1,n) . This linear
equation yields:

O°R

9a2 oR, R(ni,n2) = cosfw(ar —az)] with w=+—0.
1

= 2P| effective action: The non-linear equation reads:

al _
OR :a/ da R(a1,a)R(a,a2), RMmi,n2) = i w(a CLQ)].

day , w(ar — az)
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Correlation function

i AZ a B " |
100 A2 z,=0 5
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< F /s 1 &
= - /o7 sd 1 = e
4 L 2N 2 i = r
p A & F
< 1 = g — =1 r
- Ve 5 1 0.1
Ai C
:\ | ‘ | I T ‘ | I \: L \ \i\ \ \T
0.1 1 10 0.1 10
k [h Mpc1]

The power A%(k; zq, 22).

The power A? keep growing at small scales for identical times
but it is damped for unequal times.
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Correlation function
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S 1= - — r b
- r - & - : 7
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?/ : » : < d ;\: E ) a 37 1 O h/MP C
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0.1 b I m i
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L N LR

The power A%(k;n:,n2) and the self-energy II as a function of
time 7.

The power peaks at equal times n; = 5. There is a qualitative
Improvement over the standard perturbative expansion.
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Using the high-£ Gaussian decay

In the large-k limit Crocce & Scoccimarro (2006) managed to
resum a subset of diagrams using the property:

k
%‘9;7;1,1‘2((1, k)w/;,z-l = 2_q COS(k-Q)5z‘,i2

Then, resumming all diagrams of the form:

they obtained:

R(xth) = R, 6_k2012;(a1—a2)2/2.
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Using the high-£ Gaussian decay
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k [h Mpc-1]

0.8

0.2

0.05 0.1 0.5 1
k [h Mpc-1]

The response functions for the density and velocity divergence.
The three cases correspond (from left to right in each panel) to

z =0,2,5. [Crocce & Scoccimarro (2006)].

Matching the 1-loop results obtained from standard
perturbation theory to the high-k asymptotics provides a good
fit to results from numerical simulations.
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Nonlinear evolution of the acoustic oscillations in the dark
matter power spectrum.. [Crocce & Scoccimarro (2007)].

One also obtains a good agreement with results from
numerical simulations for the dark matter power-spectrum.
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Conclusion

e = Thus we have seen that the standard perturbative analysis of

PG gravitational clustering in the expanding Universe can be

A pathintegral ormalism improved by reorganizing the perturbative expansion. This

Dl e can be performed in various ways:

SR SR AReee 0 Using a path-integral method and expansion schemes

T such as large- NV expansions .

0 Resumming subsets of diagrams by looking at the high-k

limit and to use the best model for the non-linear response
function.

0 Looking at the evolution of the system as we take into
account smaller scales.

= The result is better behaved than the standard perturbative
expansion and the partial resummations give rise to a
damping factor in the highly non-linear regime (instead of
Increasingly large powers).
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Conclusion

= As checked by a comparison with numerical simulations, this
provides better predictions over weakly non-linear scales. In
particular, this is more reliable than phenomenological
models such as the halo model. Note that these procedure
apply to any cosmological models (including dynamical dark
energy models).
This can be used for baryon acoustic oscillations,
weak-lensing studies..

= Some work still needs to be done:
0 Using more systematic procedures in some steps.
0 Going to higher orders than 1-loop diagrams.
0 Higher-order correlation functions such as the 3-point
correlation (bispectrum).
0 Extension to the highly non-linear regime beyond the
single-stream approximation.
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