The Pierre Auger Observatory: updated results

F. Arqueros *for the Pierre Auger collaboration* Universidad Complutense de Madrid Madrid Spain

PHYSICS OF THE STANDARD MODEL OF THE UNIVERSE Colegio de España, Cité Internationale Universitaire de Paris 4 - 5 June 2009

OUTLINE

- Ultra high energy cosmic rays. Scientific interest. Measurement techniques
- ► The Pierre Auger Observatory. The hybrid design concept
- Updated results:
 - The energy spectrum Composition Upper limits on photon flux (>10¹⁸ eV) Correlation with nearby extragalactic objects
- ► The future: Auger North, low energy extensions

Scientific interest of UHECR (E > 5×10¹⁸ eV)

• John Linsley detects for the first time in 1962 (Volcano Ranch) an extensive air shower initiated by a cosmic ray of energy $\approx 10^{20}$ eV.

• Greisen, and Zatsepin and Kuz'min (1966): Cosmic background radiation (CMBR) makes the Universe opaque for UHECRs.

 $\gamma p \rightarrow \Delta^+ \rightarrow \pi^0 p$

Attenuation length < 50 Mpc for $E_p > 10^{20} \text{ eV}$

Implications:

a) Universal origin of UHECRs \Rightarrow GZK cut expected in the energy spectrum at E \approx 5×10¹⁹ eV.

b) UHECRs with E > E_{GZK} would come from (cosmologically) nearby sources \Rightarrow Magnetic fields not sufficient for a significant angular deviation \Rightarrow UHECRs sources could be located \Rightarrow

UHECR Astronomy ?

The sources

Bottom-up:

- Astrophysical scenarios

Top-down:

- Super heavy dark matter
- Topological defects
- Z-bursts
- Avoid the GZK cut
- Predict an intense flux of UHE photons

Bottom-up theories: Astrophysical scenarios

The Hillas plot

Objects below the diagonal lines cannot accelerate particles to 10²⁰ eV

Measurement techniques

Principle:

Reconstruction of the extensive air shower initiated by the cosmic ray

Techniques:

- ► Arrays of surface detectors for the registration of the shower tail
 - AGASA
 - Pierre Auger Observatory
- Fluorescence telescopes for the registration of the longitudinal development of the air shower.
 - HiRes
 - Pierre Auger Observatory

The cosmic ray develops an atmospheric shower which can be registered by a ground detector

AGASA vs HiRes

Controversial results

Experiment	Technique	Results
AGASA	Surface detector	Super-GZK events Excess near the galactic center
HiRes	Fluorescence telescopes	Spectrum compatible with GZK cut Isotropy

Very low statistics but also

different techniques subjected to different systematic uncertainties

Pierre Auger Observatory:

- Hybrid detector
- Much larger aperture \Rightarrow Much larger statistics

The Pierre Auger Observatory

Auger North Colorado (USA) Advanced state of development

Auger South Mendoza (Argentina) Complete and fully operative

The South Observatory

The surface detector

Sampling of the shower tail at ground using electron/muon detectors

- Arrival times \rightarrow Reconstruction of the shower front \rightarrow incidence direction
- Radial distribution of the particle density → primary energy

Energy determination with the surface detector

- Signal intensity at 1000 m S(1000) is a good energy estimator; i.e. small fluctuations
- Strongly dependent on the hadronic interaction model and mass composition

PΤ

The SD station

Information on muonic and EM component

Detection of air showers using the fluorescence technique

Fluorescence telescopes "see" the UV light emitted by N_2 molecules excited by shower electrons

Fluorescence Telescope

- 440 PMT per camera, each 1.5°
- 13% duty cycle
- 100 ns sampling intervals

Fluorescence Telescope

Fluorescence Station

The South Observatory

Southern Observatory (Argentina)

Auger - Loma Amarilla Fluorescence Telescope

Coihueco Fluorescence Telescope

Auger - Los Morados Fluoreso

Auger - Los Leones Fluorescence Telescope

Image © 2006 TerraMetrics © 2006 Europa Technologies

Collado Villalba

Torrejon de Ardoz

AGASA

S km

Pozuelo de Alarcon

Ó

Alcorcón Móstoles Leganés Getafe Flienlabrada

0

e.

Pinto Valdemoro Ciempozuelos

Coslada

Aranjuez

The Hybrid Design

The measurement of the energy spectrum of UHECRs

Measurement of the energy spectrum with a hybrid detector

Surface Detector

- <u>Acceptance</u>: Geometric
- Energy: Mass and Model dependent
- Duty cycle $\approx 100\%$

Fluorescence Detector

- <u>Acceptance</u>: E, γ, A, M dependent
- Energy: nearly calorimetric
- Duty cycle $\approx 13\%$

Energy reconstruction

Energy reconstruction

Energy reconstruction

Measure of the EM energy of an air-shower using the fluorescence technique

Energy calibration

<u>Systematic uncertainties:</u> 7% (10¹⁹ eV) 15% (10²⁰ eV)

Systematic uncertainties in the FD energy

FD absolute optical calibration	9 %
FD wavelength dependence response	3 %
Absolute Fluorescence Yield	14 %
Quenching effect on F.Y.	5 %
Molecular Attenuation	1 %
Aerosol Attenuation	7 %
Multiple scattering Models	1 %
FD reconstruction method	10 %
Invisible energy	4 %

TOTAL SYST.

Exposure

Trigger efficiency

> 90% (E> 2.5 ×10¹⁸ eV) > 99% (E> 3.0 ×10¹⁸ eV)

Data

01/2004 – 12/2008 ≈ 35000 events (< 60°)

Integrated exposure

12790 (± 3%) km² sr yr growing at about 350 km² sr yr / month

The Auger energy spectrum from SD calibrated with FD

Flux uncertainties:

Systematic \approx 6 % (3% exposure + 5% unfolding) Statistical = error bars

Energy scale uncertainty Systematic $\approx 22\%$

The Auger energy spectrum from SD calibrated with FD

Flux uncertainties:

Systematic \approx 6 % (3% exposure + 5% unfolding) Statistical = error bars

Energy scale uncertainty Systematic $\approx 22\%$

Combined (SD – hybrid) energy spectrum - $E > 10^{18} eV$

Flux systematic uncertainty = 4%

Systematic uncertainty in the Energy scale $\approx 22\%$

Combined (SD – hybrid) energy spectrum - $E > 10^{18} eV$

Flux systematic uncertainty = 4%

Systematic uncertainty in the Energy scale $\approx 22\%$

The Auger combined spectrum vs models

Source flux $\propto E^{\mbox{-}\beta}$

Cosmological evolution of the source luminosity (z+1)^m

The energy spectrum Conclusions

- The energy spectrum of cosmic rays above 10¹⁸ eV has been measured with unprecedented precision.
- The combined spectrum enables a precise measurement on both the ankle and the flux suppression.
- Comparison with astrophysical models can be performed.

Composition

Composition of UHECRs

Interpretation of the features of the energy spectrum

- Flux suppression at the highest energies
- The ankle (transition galactic extragalactic)
- Interpretation of anisotropies
- Hadronic interactions at the highest energies

Measurement of the UHECR composition

Fluorescence detector:

Shower maximum depth X_{max} Proton showers penetrate deeper in the atmosphere and have a wider distribution of X_{max} than heavy nuclei

<X_{max} >
 RMS of X_{max} distribution

Surface detector:

Risetime of the SD signals is correlated with $\mu/\text{EM} \Rightarrow$ primary-mass dependent

- Deviation from a benchmark
- Azimuthal time asymmetry

Shower maximum depth

Elongation rate and composition

<

$$< X_{\text{max}} >= D_p [\ln(E / E_0) - < \ln A >] + c_p$$

E [eV]

Time asymmetry of risetime

- The circular asymmetry in azimuth (shower front) is broken in inclined showers due to the μ/EM ratio. In inclined showers the EM component is absorbed in the late region.
- This asymmetry depends on the primary mass
- Asymmetry is well correlated with X_{max}

Composition

Conclusions

- Experimental results favors a <u>mixed composition</u>
- Both elongation rate and risetime measurements suggest that the mean mass increases with energy.
- Uncertainties in the hadronic interaction models still make any conclusion ambiguous.

Upper limits on UHE photons

Upper limits on UHE photons

<u>Upper limits on photon flux (≥ 10 ¹⁹ eV)</u>

Measurement relies in SD observables sensitive to the longitudinal shower development

- signal risetime
- curvature of the shower front

Astroparticle Physics 29 (2008) 243–256

Upper limits on photon flux at EeV (10¹⁸ eV) energies

Measured from hybrid events

X_{max}

UHE photons - Comparison with predictions

UHE photons Conclusions

These results improve significantly upper bounds from other experiments.

First experimental limits at EeV energies.

They disfavor top-down models.

The search for correlations with nearby extragalactic objects

Sources of UHECR

- Cosmic rays with E > 6 x 10^{19} eV \Rightarrow sources < about 200 Mpc (GZK)
- Extra-galactic nearby objects identified as possible candidates (Hillas plot)
- Nearby sources not uniformly distributed anisotropic.
- Angular windows (few deg.) around AGNs (< 100 Mpc) cover a (not big) fraction of the sky</p>

The Sources

<u>Véron-Cetty / Véron</u> Catalogue (12th edition, 2006):

- Large collection of quasars, BL Lacs and active galaxies
- Not an unbiased statistical sample because it's incomplete around the galactic plane and for objects distances >> 100 Mpc

Not an obstacle to demonstrate anisotropy although affects our sensitivity to identify sources unambiguously.

Search method

Scan over

 $\begin{array}{lll} \psi & \mbox{angular distance CR} - AGN \\ \textbf{D}_{max} & \mbox{maximum distance of the source} \\ \textbf{E}_{th} & \mbox{minimum CR energy} \end{array}$

Cumulative binomial probability P for k/N correlations with individual chance probability $p_{iso} (\psi, D_{max})$; i.e. probability for a CR from an isotropic flux to arrive within ψ deg. around an AGN with D < D_{max}

$$P = \sum_{j=k}^{N} {N \choose j} p_{iso}^{j} (1 - p_{iso})^{N-j}$$

exposure-weighted fraction of the sky accessible to the Pierre Auger Observatory $p_{iso} = 0.21$

Data set

I) <u>Exploratory period</u>
1 January 2004 – 26 May 2006
Exposure = 4390 km² sr yr

II) 27 May 2006 – 31 August 2007 Exposure = 4500 km² sr yr

Science 318 (2007) 938

III) 1 September 2007 – 31 March 2009 Exposure = 8150 km² sr yr

Angular resolution

 $AR \approx 0.9^{\circ}$ (68 %)

Energy

Systematic uncertainty $\approx 22\%$ Resolution $\approx 17\%$

Prescription

- $E_{th} = 55 \text{ EeV}$, $D_{max} = 75 \text{ Mpc}$ ($z_{max} = 0.018$), $\psi = 3.1^{\circ}$ (from exploratory scan)
- Data set independent from exploratory scan (from 27 May 2006)
- α =1% \rightarrow probability to incorrectly reject isotropy
- $\beta\text{=}5\% \rightarrow$ probability to incorrectly reject correlation

The prescription was fulfilled on May 25th 2007

CL = 99%; P = 1.7× 10⁻³

Numerical summary of results for events $E \ge 55 \text{ EeV}$

Period	Exposure km² sr yr	GP	N Total # events	k Correlated events	k _{iso} Expected from isotropy	P Cumulative binomial P
Ι	4390	UM M	14 10	9 8	2.9 2.5	
II	4500	UM M	13 11	9 9	2.7 2.8	2×10 ⁻⁴ 2×10 ⁻⁴
III	8150	UM M	31 24	8 8	6.5 6.0	0.33 0.32
II+III	12650	UM M	44 35	17 17	9.2 8.8	6×10⁻³ 2×10 ⁻³
I+II	8890	UM M	27 21	18 17	5.7 5.3	
I+II+II	17040	UM M	58 45	26 25	12.2 11.3	

M masked (12° from the galactic plane; |b| < 12°) UM umasked

Correlations with nearby extragalactic objects Conclusions

- Evidence for anisotropy has not strengthened since the analysis published in Science. Departure from isotropy remains at the 1% level.
- The degree of correlations with objects of the VCV catalog appears to be weaker than suggested by the earliest data.
- Excess of events in the Cen A region. It warrants further study.
- More statistics is needed.

The Future

Enhancements of Auger South: HEAT

A system of tilted telescopes allows enlarging upwards the observation height of the fluorescence detector.

It provides access to a lower energy range.

High Elevation Auger Telescopes

HEAT

Enhancements of Auger South: HEAT

High Elevation Auger Telescopes

A system of tilted telescopes allows enlarging upwards the observation height of the fluorescence detector.

It provides access to a lower energy range.

Enhancements of Auger South: AMIGA

Auger Muons and Infill for the Ground Array

85 pairs of water-Cherenkov detector plus muon counter.

It aims at a detailed study of the $10^{17} - 10^{19} \,\text{eV}$ region

Auger North

- Much larger acceptance necessary to achieve enough statistics at energies above a few times 10¹⁹ eV.
- The plan for Auger North is to cover an area greater than 20,000 km²

The Future

In summary

- Energy spectrum with unprecedented accuracy confirms GZK feature.
- Composition on UHECRs still under study with some indications that CRs become heavier at higher energies.
- Limits on the flux of UHE photons impose more strict restrictions to exotic models.
- Correlations with extragalactic sources weaker than suggested by the earliest data although evidence of anisotropy remains.
- Much more statistics needed. Auger North.

THANKS