The low quadrupole: Theoretical issues and MCMC data analysis

Claudio Destri

claudio.destri@mib.infn.it

Dipartimento di Fisica G. Occhialini Università Milano–Bicocca

Physics of the Standard Model of the Universe: Theory and Observations, Colloquium at the Colegio de España, Cité Internationale Universitaire de Paris, 75014 Paris

Outline

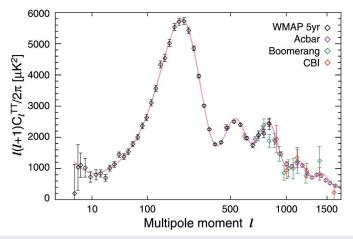
- Is the low CMB TT quadruple too low?
 - Observational data
 - Cosmic variance
 - Independent random variables
- Theoretical setup
 - EFT of Inflation
 - New inflation
 - On the issue of initial conditions
- MCMC analysis
 - Cosmological MCMC
 - MCMC likelihoods
 - Best fit comparisons

Outline

- 1
- Is the low CMB TT quadruple too low?
- Observational data
- Cosmic variance
- Independent random variables
- Theoretical setup
 - EFT of Inflation
 - New inflation
 - On the issue of initial conditions
- MCMC analysis
 - Cosmological MCMC
 - MCMC likelihoods
 - Best fit comparisons

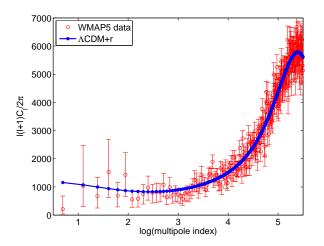
The WMAP+small scale TT multipoles (binned)

from "M. R. Nolta et al.", arXiv:0803.0593 [astro-ph] 5 Mar 2008



 $C_2 = 223~\mu\text{K}^2~\text{(WMAP5 ML value)}~, \qquad C_2 \simeq 1200~\mu\text{K}^2~\text{(ΛCDM)}$

WMAP5 unbinned C_{ℓ} for $\ell \leq 250$



(stat. exp. error)/(cosmic variance) = 20% at $\ell =$ 250

- ...
- P.K. Samal, R. Saha, J. Delabrouille, S. Prunet, P. Jain, T. Souradeep, "CMB Polarization and Temperature Power Spectra Estimation using Linear Combination of WMAP 5-year Maps", arXiv:0903.3634

$$C_2 = 557 \ \mu K^2 \ (\text{WMAP5} + 150\%) \ , \qquad C_3 = 306 \ \mu K^2 \ (\text{WMAP5} - 40\%)$$

$$C_2, C_3, C_4 \to 0$$
, $C_2, C_3, C_4, C_5, C_6 \to (WMAP5-50\%)$

- ...
- Planck?

- ...
- P.K. Samal, R. Saha, J. Delabrouille, S. Prunet, P. Jain, T. Souradeep, "CMB Polarization and Temperature Power Spectra Estimation using Linear Combination of WMAP 5-year Maps", arXiv:0903.3634

$$C_2 = 557 \ \mu K^2 \ (WMAP5 + 150\%) \ , \qquad C_3 = 306 \ \mu K^2 \ (WMAP5 - 40\%)$$

$$C_2, C_3, C_4 \to 0$$
, $C_2, C_3, C_4, C_5, C_6 \to (WMAP5-50\%)$

- ...
- Planck^a

- ..
- P.K. Samal, R. Saha, J. Delabrouille, S. Prunet, P. Jain, T. Souradeep, "CMB Polarization and Temperature Power Spectra Estimation using Linear Combination of WMAP 5-year Maps", arXiv:0903.3634

$$\textit{C}_{2} = 557~\mu\textrm{K}^{2}~\textrm{(WMAP5} + 150\%)~,~\textrm{C}_{3} = 306~\mu\textrm{K}^{2}~\textrm{(WMAP5} - 40\%)$$

- Y. Ayaita, M. Weber, C. Wetterich, "Too few spots in the Cosmic Microwave Background", arXiv:0905.3324
 - $C_2, C_3, C_4 \to 0$, $C_2, C_3, C_4, C_5, C_6 \to (WMAP5-50\%)$
- ...
- Planck?

- ...
- P.K. Samal, R. Saha, J. Delabrouille, S. Prunet, P. Jain, T. Souradeep, "CMB Polarization and Temperature Power Spectra Estimation using Linear Combination of WMAP 5-year Maps", arXiv:0903.3634

$$C_2 = 557~\mu\text{K}^2~\text{(WMAP5} + 150\%)~, \qquad C_3 = 306~\mu\text{K}^2~\text{(WMAP5} - 40\%)$$

$$C_2, C_3, C_4 \rightarrow 0$$
, $C_2, C_3, C_4, C_5, C_6 \rightarrow (WMAP5-50\%)$

- ...
- Planck?

- ...
- P.K. Samal, R. Saha, J. Delabrouille, S. Prunet, P. Jain, T. Souradeep, "CMB Polarization and Temperature Power Spectra Estimation using Linear Combination of WMAP 5-year Maps", arXiv:0903.3634

$$\textit{C}_{2} = 557~\mu\textrm{K}^{2}~\textrm{(WMAP5} + 150\%)~,~\textrm{C}_{3} = 306~\mu\textrm{K}^{2}~\textrm{(WMAP5} - 40\%)$$

$$C_2, C_3, C_4
ightarrow 0$$
 , $C_2, C_3, C_4, C_5, C_6
ightarrow \text{(WMAP5}-50\%)$

- ...
- Planck?

- ..
- P.K. Samal, R. Saha, J. Delabrouille, S. Prunet, P. Jain, T. Souradeep, "CMB Polarization and Temperature Power Spectra Estimation using Linear Combination of WMAP 5-year Maps", arXiv:0903.3634

$$\textit{C}_{2} = 557~\mu\textrm{K}^{2}~\textrm{(WMAP5} + 150\%)~,~\textrm{C}_{3} = 306~\mu\textrm{K}^{2}~\textrm{(WMAP5} - 40\%)$$

$$C_2, C_3, C_4 \rightarrow 0$$
 , $C_2, C_3, C_4, C_5, C_6 \rightarrow (\text{WMAP5}-50\%)$

- ...
- Planck?

- ..
- P.K. Samal, R. Saha, J. Delabrouille, S. Prunet, P. Jain, T. Souradeep, "CMB Polarization and Temperature Power Spectra Estimation using Linear Combination of WMAP 5-year Maps", arXiv:0903.3634

$$\textit{C}_2 = 557~\mu\textrm{K}^2~\text{(WMAP5} + 150\%)~, \qquad \textit{C}_3 = 306~\mu\textrm{K}^2~\text{(WMAP5} - 40\%)$$

$$C_2, C_3, C_4 \rightarrow 0$$
 , $C_2, C_3, C_4, C_5, C_6 \rightarrow (\text{WMAP5}-50\%)$

- ...
- Planck?

Outline

- 1
- Is the low CMB TT quadruple too low?
- Observational data
- Cosmic variance
- Independent random variables
- Theoretical setup
 - EFT of Inflation
 - New inflation
 - On the issue of initial conditions
- MCMC analysis
 - Cosmological MCMC
 - MCMC likelihoods
 - Best fit comparisons

Neglecting all uncertainities but cosmic variance:

Let
$$X_\ell = C_\ell^{(data)}/C_\ell^{(model)}$$
 ; then

 $Pr(X_\ell = x | model) \sim \frac{1}{x} (xe^{-x})^{\ell+1/2}$ (reduced chi-square distribution) is the probability density for $C_\ell^{(data)}$ given the model, with

$$\langle X_{\ell} \rangle = 1$$
 and $(X_{\ell})_{ML} = \frac{2\ell - 1}{2\ell + 1}$

At the same time, if $Y_{\ell} = 1/X_{\ell} = C_{\ell}^{(model)}/C_{\ell}^{(data)}$, then

 $Pr(Y_{\ell} = y | data) \propto \left(e^{-1/y}/y\right)^{\ell+1/2}$ is the probability density for $C_{\ell}^{(model)}$ giver the data (assuming flat priors), with

$$\langle Y_{\ell} \rangle = \frac{2\ell+1}{2\ell-3}$$
 and $(Y_{\ell})_{ML} = 1$

Neglecting all uncertainities but cosmic variance:

Let
$$X_\ell = C_\ell^{(\textit{data})}/C_\ell^{(\textit{model})}$$
 ; then

$$Pr(X_{\ell} = x | model) \propto \frac{1}{x} (xe^{-x})^{\ell+1/2}$$
 (reduced chi-square distribution) is the probability density for $C_{\ell}^{(data)}$ given the model, with

$$\langle X_{\ell} \rangle = 1$$
 and $(X_{\ell})_{ML} = \frac{2\ell - 1}{2\ell + 1}$

At the same time, if
$$\, \mathsf{Y}_{\ell} = \mathsf{1}/\mathsf{X}_{\ell} = C_{\ell}^{(model)}/C_{\ell}^{(\mathit{data})}$$
 , then

$$Pr(Y_{\ell} = y | data) \propto \left(e^{-1/y}/y\right)^{\ell+1/2}$$
 is the probability density for $C_{\ell}^{(model)}$ giver the data (assuming flat priors), with

$$\langle Y_{\ell} \rangle = \frac{2\ell+1}{2\ell-3}$$
 and $(Y_{\ell})_{ML} = 1$

Neglecting all uncertainities but cosmic variance:

Let
$$X_\ell = C_\ell^{(\textit{data})}/C_\ell^{(\textit{model})}$$
 ; then

 $Pr(X_{\ell} = x | model) \propto \frac{1}{x} (xe^{-x})^{\ell+1/2}$ (reduced chi-square distribution) is the probability density for $C_{\ell}^{(data)}$ given the model, with

$$\langle X_{\ell} \rangle = 1$$
 and $(X_{\ell})_{ML} = \frac{2\ell - 1}{2\ell + 1}$

At the same time, if $Y_\ell = 1/X_\ell = C_\ell^{(model)}/C_\ell^{(data)}$, then

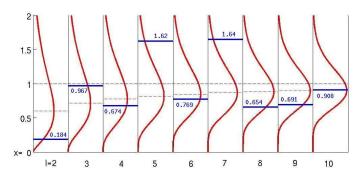
 $Pr(Y_{\ell} = y | data) \propto \left(e^{-1/y}/y\right)^{\ell+1/2}$ is the probability density for $C_{\ell}^{(model)}$ given the data (assuming flat priors), with

$$\langle\,Y_\ell\rangle=rac{2\ell+1}{2\ell-3}$$
 and $(\,Y_\ell)_{ML}=1$

An example: lowest 9 TT multipoles

An example: lowest 9 TT multipoles

probability curves from best fit ΛCDM WMAP5 data



$$\text{Prob}[\textit{C}_{2}^{(\textit{data})} < 0.184\,\textit{C}_{2}^{(\textit{model})}] \simeq 0.031\dots$$

Outline

- 1
- Is the low CMB TT quadruple too low?
- Observational data
- Cosmic variance
- Independent random variables
- 2 Theoretical setup
 - EFT of Inflation
 - New inflation
 - On the issue of initial conditions
- MCMC analysis
 - Cosmological MCMC
 - MCMC likelihoods
 - Best fit comparisons

Let
$$p_\ell = Pr(X_\ell \le x | model)$$
 (recall $X_\ell = C_\ell^{(data)}/C_\ell^{(model)}$), then

 $Pr[\text{there are } k \text{ of the first } n p_{\ell} \text{ in } (0,p)] = {n \choose k} p^k (1-p)^{n-k}$

$$\langle k \rangle = p n$$
 $(\Delta k)^2 = p(1-p)n$

In the first 250 multipoles we expect (to 1σ) up to $15~C_{\ell}^{(oata)}$ so low w.r.t. $C_{\ell}^{(model)}$ to have a probability less than 0.031

 $p_{\ell} < 0.031$

2 22 48 54 72 84 98 105 113 114 120 124 149 181 195 209 228 234 249

 $p_{\ell} > 1 - 0.031$

Let
$$p_\ell = Pr(X_\ell \le x | model)$$
 (recall $X_\ell = C_\ell^{(data)}/C_\ell^{(model)}$), then

$$Pr[\text{there are } k \text{ of the first } n p_{\ell} \text{ in } (0,p)] = {n \choose k} p^k (1-p)^{n-k}$$

$$\langle k \rangle = p n$$
 $(\Delta k)^2 = p(1-p)n$

In the first 250 multipoles we expect (to 1 σ) up to 15 $C_{\ell}^{(odd)}$ so low w.r.t. $C_{\ell}^{(model)}$ to have a probability less than 0.031

$p_{\ell} < 0.031$

2 22 48 54 72 84 98 105 113 114 120 124 149 181 195 209 228 234 249

$$p_{\ell} > 1 - 0.031$$

Let
$$p_\ell = Pr(X_\ell \le x | model)$$
 (recall $X_\ell = C_\ell^{(data)}/C_\ell^{(model)}$), then

$$Pr[\text{there are } k \text{ of the first } n p_{\ell} \text{ in } (0,p)] = {n \choose k} p^k (1-p)^{n-k}$$

$$\langle k \rangle = p n \qquad (\Delta k)^2 = p(1-p)n$$

In the first 250 multipoles we expect (to 1 σ) up to 15 $C_{\ell}^{(data)}$ so low w.r.t. $C_{\ell}^{(model)}$ to have a probability less than 0.031

$p_{\ell} < 0.031$

2 22 48 54 72 84 98 105 113 114 120 124 149 181 195 209 228 234 249

$$p_{\ell} > 1 - 0.031$$

Let
$$p_\ell = Pr(X_\ell \le x | model)$$
 (recall $X_\ell = C_\ell^{(data)}/C_\ell^{(model)}$), then

$$Pr[\text{there are } k \text{ of the first } n p_{\ell} \text{ in } (0,p)] = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\langle k \rangle = p n \qquad (\Delta k)^2 = p(1-p)n$$

In the first 250 multipoles we expect (to 1σ) up to 15 $C_{\ell}^{(data)}$ so low w.r.t. $C_{\ell}^{(model)}$ to have a probability less than 0.031

$p_{\ell} < 0.031$

2 22 48 54 72 84 98 105 113 114 120 124 149 181 195 209 228 234 249

 $p_{\ell} > 1 - 0.031$

Let
$$p_\ell = Pr(X_\ell \le x | model)$$
 (recall $X_\ell = C_\ell^{(data)}/C_\ell^{(model)}$), then

$$Pr[\text{there are } k \text{ of the first } n p_{\ell} \text{ in } (0,p)] = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\langle k \rangle = p n \qquad (\Delta k)^2 = p(1-p)n$$

In the first 250 multipoles we expect (to 1σ) up to 15 $C_{\ell}^{(data)}$ so low w.r.t. $C_{\ell}^{(model)}$ to have a probability less than 0.031

$p_{\ell} < 0.031$

2 22 48 54 72 84 98 105 113 114 120 124 149 181 195 209 228 234 249

$$p_{\ell} > 1 - 0.031$$

Let
$$p_\ell = Pr(X_\ell \le x | model)$$
 (recall $X_\ell = C_\ell^{(data)}/C_\ell^{(model)}$), then

$$Pr[\text{there are } k \text{ of the first } n p_{\ell} \text{ in } (0,p)] = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\langle k \rangle = p n \qquad (\Delta k)^2 = p(1-p)n$$

In the first 250 multipoles we expect (to 1σ) up to 15 $C_{\ell}^{(data)}$ so low w.r.t. $C_{\ell}^{(model)}$ to have a probability less than 0.031

$p_{\ell} < 0.031$

2 22 48 54 72 84 98 105 113 114 120 124 149 181 195 209 228 234 249

$$p_{\ell} > 1 - 0.031$$

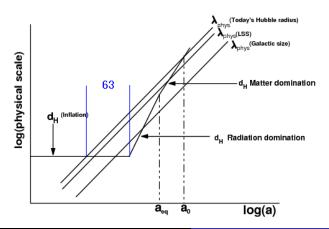
Outline

- Is the low CMB TT quadruple too low?
 - Observational data
 - Cosmic variance
 - Independent random variables
- 2 Theoretical setup
 - EFT of Inflation
 - New inflation
 - On the issue of initial conditions
- MCMC analysis
 - Cosmological MCMC
 - MCMC likelihoods
 - Best fit comparisons

Inflation essentials

Early accelerated expansion of the Universe

$$ds^2 = dt^2 - a(t)dx^2$$
 , $\ddot{a} > 0$



EFT of (single field) inflation à la Ginsburg-Landau

D. Boyanowski, C.D., H.J. de Vega, N. Sanchez, arXiv:0901.0549, to appear on IJMP

Inflaton potential (
$$\hbar = 1$$
, $c = 1$, $M_{PL} = 2.4 \times 10^{18}$ GeV)

$$V(\varphi) = M^4 V(\phi) , \quad \phi = \frac{\varphi}{M_{PL}}$$

Energy scale of inflation and inflaton mass

$$M \simeq 0.57 \times 10^{16} \text{ GeV} \sim M_{\text{GUT}}, \ \ m = M^2/M_{PL} \sim 1.3 \times 10^{13} \text{ GeV}$$

Hubble parameter and quantum corrections

$$H \sim 7 \, m \ll M_{PL} \,, \quad \text{loops} \to (H/M_{PL})^2 \sim 10^{-9} \,$$

Number of inflation efolds since horizon exit

$$N = \log \frac{a(t_{end})}{a(t_{exit})}$$
, $V(\phi_{end}) = V'(\phi_{end}) = 0$

 t_{exit} : the mode with comoving k_0 becomes superhorizon ($\rightarrow N = N(k_0)$)

WMAP:
$$k_0 = 2 \text{ Gpc}^{-1}$$
, $N \simeq 61$
CosmoMC: $k_0 = 50 \text{ Gpc}^{-1}$, $N \simeq 57$

EFT of (single field) inflation à la Ginsburg-Landau

D. Boyanowski, C.D., H.J. de Vega, N. Sanchez, arXiv:0901.0549, to appear on IJMP

Inflaton potential (
$$\hbar = 1$$
, $c = 1$, $M_{PL} = 2.4 \times 10^{18}$ GeV)

$$V(\varphi) = M^4 v(\phi) , \quad \phi = \frac{\varphi}{M_{PL}}$$

Energy scale of inflation and inflaton mass

$$M \simeq 0.57 \times 10^{16} \text{ GeV} \sim M_{GUT}, \ \ m = M^2/M_{PL} \sim 1.3 \times 10^{13} \text{ GeV}$$

Hubble parameter and quantum corrections

$$H \sim 7 \, m \ll M_{PL} \,, \quad \text{loops} \to (H/M_{PL})^2 \sim 10^{-9} \,$$

Number of inflation efolds since horizon exit

$$V = \log rac{a(t_{end})}{a(t_{exit})} \; , \quad V(\phi_{end}) = V'(\phi_{end}) = 0 \; .$$

 t_{exit} : the mode with comoving k_0 becomes superhorizon ($\rightarrow N = N(k_0)$)

WMAP:
$$k_0 = 2 \text{ Gpc}^{-1}$$
, $N \simeq 61$
CosmoMC: $k_0 = 50 \text{ Gpc}^{-1}$, $N \simeq 57$

Solvanowski, O.D., 11.3. de vega, N. Ganericz, arxiv.0001.0040, to appear of folial

Inflaton potential (
$$\hbar = 1$$
, $c = 1$, $M_{PL} = 2.4 \times 10^{18}$ GeV)

$$V(\varphi) = M^4 v(\phi) \; , \quad \phi = \frac{\varphi}{M_{PL}}$$

Energy scale of inflation and inflaton mass

$${\it M} \simeq 0.57 \times 10^{16} \; {\rm GeV} \sim {\it M}_{\rm GUT}, \quad {\it m} = {\it M}^2/{\it M}_{\it PL} \sim 1.3 \times 10^{13} \; {\rm GeV}$$

Hubble parameter and quantum corrections

$$H \sim 7 \, m \ll M_{PL} \,, \quad \text{loops} \to (H/M_{PL})^2 \sim 10^{-9} \,$$

Number of inflation efolds since horizon exit

$$N = \log rac{a(t_{end})}{a(t_{exit})}$$
 , $V(\phi_{end}) = V'(\phi_{end}) = 0$

 t_{exit} : the mode with comoving k_0 becomes superhorizon ($\rightarrow N = N(k_0)$)

WMAP:
$$k_0 = 2 \text{ Gpc}^{-1}$$
, $N \simeq 61$
CosmoMC: $k_0 = 50 \text{ Gpc}^{-1}$, $N \simeq 57$

Inflaton potential ($\hbar = 1$, c = 1, $M_{PL} = 2.4 \times 10^{18}$ GeV)

$$V(\phi) = M^4 \, v(\phi) \; , \quad \phi = rac{\phi}{M_{PL}}$$

Energy scale of inflation and inflaton mass

$$M \simeq 0.57 \times 10^{16} \text{ GeV} \sim M_{GUT}, \quad m = M^2/M_{PL} \sim 1.3 \times 10^{13} \text{ GeV}$$

Hubble parameter and quantum corrections

$$H \sim 7 \, m \ll M_{PL} \,, \quad \text{loops} \to (H/M_{PL})^2 \sim 10^{-9}$$

Number of inflation efolds since horizon exit

$$N = \log rac{a(t_{end})}{a(t_{evit})}$$
, $V(\phi_{end}) = V'(\phi_{end}) = 0$

 t_{exit} : the mode with comoving k_0 becomes superhorizon ($\rightarrow N = N(k_0)$)

WMAP:
$$k_0 = 2 \text{ Gpc}^{-1}$$
, $N \simeq 61$
CosmoMC: $k_0 = 50 \text{ Gpc}^{-1}$, $N \simeq 57$

Inflaton potential ($\hbar = 1$, c = 1, $M_{PL} = 2.4 \times 10^{18}$ GeV)

$$V(\varphi) = M^4 v(\phi) , \quad \phi = \frac{\varphi}{M_{PL}}$$

Energy scale of inflation and inflaton mass

$$M \simeq 0.57 \times 10^{16} \text{ GeV} \sim M_{GUT}, \quad m = M^2/M_{PL} \sim 1.3 \times 10^{13} \text{ GeV}$$

Hubble parameter and quantum corrections

$$H \sim 7 \, m \ll M_{PL} \,, \quad \text{loops} \to (H/M_{PL})^2 \sim 10^{-9}$$

Number of inflation efolds since horizon exit

$$N = \log \frac{a(t_{end})}{a(t_{evit})}$$
, $v(\phi_{end}) = v'(\phi_{end}) = 0$

 \textit{t}_{exit} : the mode with comoving \textit{k}_0 becomes superhorizon ($\rightarrow \textit{N} = \textit{N}(\textit{k}_0)$)

WMAP:
$$k_0 = 2 \text{ Gpc}^{-1}$$
, $N \simeq 61$
CosmoMC: $k_0 = 50 \text{ Gpc}^{-1}$, $N \simeq 57$

Inflaton potential ($\hbar = 1$, c = 1, $M_{PL} = 2.4 \times 10^{18}$ GeV)

$$V(\varphi) = M^4 v(\phi) , \quad \phi = \frac{\varphi}{M_{PL}}$$

Energy scale of inflation and inflaton mass

$$M \simeq 0.57 \times 10^{16} \text{ GeV} \sim M_{GUT}, \quad m = M^2/M_{PL} \sim 1.3 \times 10^{13} \text{ GeV}$$

Hubble parameter and quantum corrections

$$H \sim 7 \, m \ll M_{PL}$$
, loops $\to (H/M_{PL})^2 \sim 10^{-9}$

Number of inflation efolds since horizon exit

$$N = \log \frac{a(t_{end})}{a(t_{evit})}$$
, $v(\phi_{end}) = v'(\phi_{end}) = 0$

 t_{exit} : the mode with comoving k_0 becomes superhorizon ($\rightarrow N = N(k_0)$)

WMAP:
$$k_0 = 2 \text{ Gpc}^{-1}$$
, $N \simeq 61$
CosmoMC: $k_0 = 50 \text{ Gpc}^{-1}$, $N \simeq 57$

The number of efolds N (coarse-grained: constant H, sharp $\Lambda D \rightarrow RD$)

Friedmann's equation right after inflation

$$\frac{H^2}{H_0^2} = \Omega_{\Lambda} + \frac{\Omega_m}{a^3} + \frac{\Omega_r}{a^4} \simeq \frac{\Omega_r}{a^4} \,, \quad \frac{H}{H_0} \simeq 4.2 \times 10^{55} \;, \quad (H \simeq 2.8 \times 10^{-5} M_{Pl})$$

$$\implies \log \frac{1}{a} \simeq \frac{1}{2} \log \frac{H}{H_0 \sqrt{\Omega_r}}$$

Inflation efolds for the quadrupole scale k_Q (today $k_Q = 1.014H_0 = 0.238 \,\mathrm{Gpc^{-1}} = 1.52 \times 10^{-42} \,\mathrm{GeV}$)

$$N_Q \simeq \log \frac{H}{H_0} - \log \frac{1}{a} \simeq \log \frac{H\sqrt{\Omega_r}}{H_0} \simeq 62$$

$$N_Q \simeq 63 + \frac{1}{2} \log \left(\frac{10^{-4} M_{PL}}{H}\right)$$

$$N=N_{\rm Q}-\log{k_0\over k_{\rm Q}}\simeq 57~,~k_0=0.05{
m Mpc^{-1}}$$
 (CosmoMC)

The number of efolds N (coarse-grained: constant H, sharp $\Lambda D \rightarrow RD$)

Friedmann's equation right after inflation

$$\frac{H^2}{H_0^2} = \Omega_{\Lambda} + \frac{\Omega_m}{a^3} + \frac{\Omega_r}{a^4} \simeq \frac{\Omega_r}{a^4} \,, \quad \frac{H}{H_0} \simeq 4.2 \times 10^{55} \;, \quad (H \simeq 2.8 \times 10^{-5} M_{Pl})$$

$$\implies \log \frac{1}{a} \simeq \frac{1}{2} \log \frac{H}{H_0 \sqrt{\Omega_r}}$$

Inflation efolds for the quadrupole scale k_Q (today $k_Q = 1.014H_0 = 0.238 \text{ Gpc}^{-1} = 1.52 \times 10^{-42} \text{ GeV}$)

$$N_{Q} \simeq \log rac{H}{H_{0}} - \log rac{1}{a} \simeq \log rac{H\sqrt{\Omega_{r}}}{H_{0}} \simeq 62$$
 $N_{Q} \simeq 63 + rac{1}{2} \log \left(rac{10^{-4}M_{PL}}{H}
ight)$

$$N=N_{Q}-\log{k_{0}\over k_{Q}}\simeq 57~,~~k_{0}=0.05 {\rm Mpc^{-1}}$$
 (CosmoMC)

Dimensionless setup: t in units of m^{-1} , H = hm

Equations of motion

$$h^2 = \frac{1}{3} \left[\frac{1}{2} \dot{\phi}^2 + V(\phi) \right] , \quad \ddot{\phi} + 3 h \dot{\phi} + V'(\phi) = 0 , \quad \dot{h} = -\frac{1}{2} \dot{\phi}^2$$

Energy density and pressure

$$\varepsilon = M^4 \left[\frac{1}{2} \dot{\phi}^2 + V(\phi) \right] , \quad p = M^4 \left[\frac{1}{2} \dot{\phi}^2 - V(\phi) \right]$$

Fast-roll vs. slow-roll

$$\frac{1}{2}\dot{\phi}^2 \sim V(\phi)$$
, $\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$

which potential $v(\phi)$?

Dimensionless setup: t in units of m^{-1} , H = hm

Equations of motion

$$\label{eq:h2} \textit{h}^2 = \frac{1}{3} \left[\frac{1}{2} \dot{\phi}^2 + \textit{v}(\phi) \right] \; , \quad \ddot{\phi} + 3 \, \textit{h} \, \dot{\phi} + \textit{v}'(\phi) = 0 \; , \quad \dot{\textit{h}} = -\frac{1}{2} \dot{\phi}^2$$

Energy density and pressure

$$\varepsilon = M^4 \left[\frac{1}{2} \dot{\phi}^2 + v(\phi) \right] \; , \quad p = M^4 \left[\frac{1}{2} \dot{\phi}^2 - v(\phi) \right] \label{epsilon}$$

Fast-roll vs. slow-roll

$$\frac{1}{2}\dot{\phi}^2 \sim V(\phi)$$
, $\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$

which potential $v(\phi)$?

Dimensionless setup: t in units of m^{-1} , H = hm

Equations of motion

$$\label{eq:h2} \textit{h}^2 = \frac{1}{3} \left[\frac{1}{2} \dot{\phi}^2 + \textit{v}(\phi) \right] \; , \quad \ddot{\phi} + 3 \, \textit{h} \, \dot{\phi} + \textit{v}'(\phi) = 0 \; , \quad \dot{h} = -\frac{1}{2} \dot{\phi}^2$$

Energy density and pressure

$$\varepsilon = M^4 \left[\frac{1}{2} \dot{\phi}^2 + v(\phi) \right] \; , \quad \rho = M^4 \left[\frac{1}{2} \dot{\phi}^2 - v(\phi) \right] \label{epsilon}$$

Fast-roll vs. slow-roll

$$\frac{1}{2}\dot{\phi}^2 \sim V(\phi)$$
, $\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$

which potential $v(\phi)$?

Dimensionless setup: t in units of m^{-1} , H = hm

Equations of motion

$$h^2 = \frac{1}{3} \left[\frac{1}{2} \dot{\phi}^2 + v(\phi) \right] \; , \quad \ddot{\phi} + 3 \, h \dot{\phi} + v'(\phi) = 0 \; , \quad \dot{h} = -\frac{1}{2} \dot{\phi}^2 \label{eq:h2}$$

Energy density and pressure

$$\varepsilon = M^4 \left[\frac{1}{2} \dot{\phi}^2 + v(\phi) \right] , \quad p = M^4 \left[\frac{1}{2} \dot{\phi}^2 - v(\phi) \right]$$

Fast-roll vs. slow-roll

$$\frac{1}{2}\dot{\phi}^2 \sim v(\phi) \;, \quad \frac{1}{2}\dot{\phi}^2 \ll v(\phi)$$

which potential $v(\phi)$?

Outline

1

Is the low CMB TT quadruple too low?

- Observational data
- Cosmic variance
- Independent random variables
- 2 Theoretical setup
 - EFT of Inflation
 - New inflation
 - On the issue of initial conditions
- MCMC analysis
 - Cosmological MCMC
 - MCMC likelihoods
 - Best fit comparisons

MCMC analysis of current data plus Ginsburg-Landau stability point to double—well type potentials with the inflaton ϕ rolling from a region of negative curvature near $\phi=0$ (the "false vacuum") toward the true absolute minimum ϕ_{min} of the potential where $v(\phi_{min})=v'(\phi_{min})=0$.

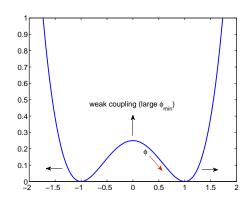
In general

$$v(\phi) = \phi_{min}^2 F(\phi/\phi_{min})$$

with
$$F'(x) \simeq x$$
 as $x \to 0$.

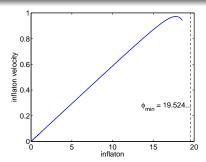
For instance BNI (Binomial New Inflation)

$$F(x) = \frac{1}{4}(x^2 - 1)^2$$



The extreme slow-roll solution (a sort of half de Sitter)

$$\begin{split} \ddot{\phi} + 3h\dot{\phi} + \phi &= 0\\ \phi &\approx \exp(\alpha t)\;,\quad t \to -\infty\\ \alpha &= \frac{1}{2}\left[\left(\sqrt{3v(0) + 4} - \sqrt{3v(0)}\right]\right] \end{split}$$



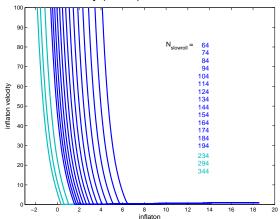
	start	a = 1	end: $\ddot{a} = 0^{+}$
t	-344.9514017	0	17.40482446
φ	10^{-8}	6.7484118	18.5586530
$\dot{\phi}$	$\alpha 10^{-8} = 5.8937108410^{-10}$	0.3973384	0.94150557
log a	-1938.4867948	0	60
h	$(12g)^{-1/2} = 5.6361006$	4.9653973	0.6657449
η	-∞ (f.a.p.p)	-0.2020610	0

$$\phi \simeq \sqrt{2/3} \log \left(\tfrac{t-t_*}{b} \right) \,, \quad \dot{\phi} \simeq \tfrac{\sqrt{2/3}}{t-t_*} \,, \quad h \simeq \tfrac{1}{3(t-t_*)} \,, \quad a \simeq (\,t-t_*)^{1/3} \,, \quad \eta \to \eta_* \label{eq:phi}$$

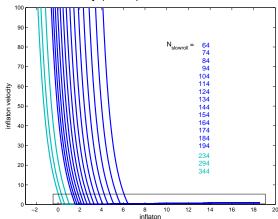
 $\text{Pre-inflationary (\"{a}$<0!)} \longrightarrow \text{fast-roll} \longrightarrow \text{slow-roll}$

Singular solutions as $t \rightarrow t_*^+$

$$\phi \simeq \sqrt{2/3} \log \left(\frac{t-t_*}{b} \right) \,, \quad \dot{\phi} \simeq \frac{\sqrt{2/3}}{t-t_*} \,, \quad h \simeq \frac{1}{3(t-t_*)} \,, \quad a \simeq (t-t_*)^{1/3} \,, \quad \eta \to \eta_*$$

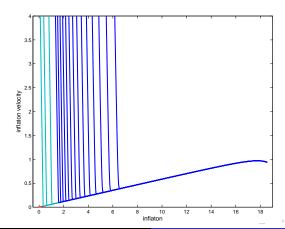


$$\phi \simeq \sqrt{2/3} \log \left(\frac{t - t_*}{b} \right) \,, \quad \dot{\phi} \simeq \frac{\sqrt{2/3}}{t - t_*} \,, \quad h \simeq \frac{1}{3(t - t_*)} \,, \quad a \simeq (t - t_*)^{1/3} \,, \quad \eta \to \eta_*$$

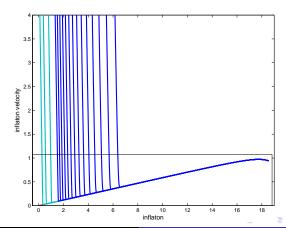


Singular solutions as $t \rightarrow t_*^+$

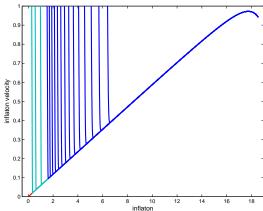
$$\phi \simeq \sqrt{2/3} \log \left(\frac{t - t_*}{b} \right) \,, \quad \dot{\phi} \simeq \frac{\sqrt{2/3}}{t - t_*} \,, \quad h \simeq \frac{1}{3(t - t_*)} \,, \quad a \simeq (t - t_*)^{1/3} \,, \quad \eta \to \eta_*$$



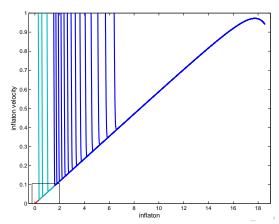
$$\phi \simeq \sqrt{2/3} \log \left(\frac{t - t_*}{b} \right) \,, \quad \dot{\phi} \simeq \frac{\sqrt{2/3}}{t - t_*} \,, \quad h \simeq \frac{1}{3(t - t_*)} \,, \quad a \simeq (t - t_*)^{1/3} \,, \quad \eta \to \eta_*$$



$$\phi \simeq \sqrt{2/3} \log \left(\frac{t - t_*}{b} \right) \,, \quad \dot{\phi} \simeq \frac{\sqrt{2/3}}{t - t_*} \,, \quad h \simeq \frac{1}{3(t - t_*)} \,, \quad a \simeq (t - t_*)^{1/3} \,, \quad \eta \to \eta_*$$

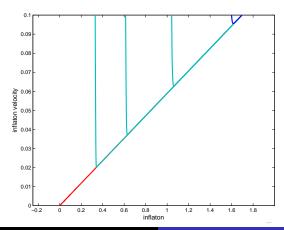


$$\phi \simeq \sqrt{2/3} \log \left(\frac{t - t_*}{b} \right) \,, \quad \dot{\phi} \simeq \frac{\sqrt{2/3}}{t - t_*} \,, \quad h \simeq \frac{1}{3(t - t_*)} \,, \quad a \simeq (t - t_*)^{1/3} \,, \quad \eta \to \eta_*$$



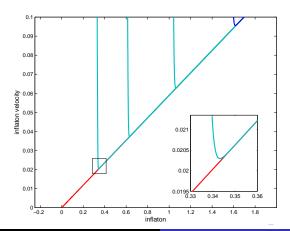
Singular solutions as $t \rightarrow t_*^+$

$$\phi \simeq \sqrt{2/3} \log \left(\frac{t - t_*}{b} \right) \,, \quad \dot{\phi} \simeq \frac{\sqrt{2/3}}{t - t_*} \,, \quad h \simeq \frac{1}{3(t - t_*)} \,, \quad a \simeq (t - t_*)^{1/3} \,, \quad \eta \to \eta_*$$



Singular solutions as $t \rightarrow t_*^+$

$$\phi\simeq\sqrt{2/3}\log\left(rac{t-t_*}{b}
ight)\,,\quad \dot{\phi}\simeqrac{\sqrt{2/3}}{t-t_*}\,,\quad h\simeqrac{1}{3(t-t_*)}\,,\quad a\simeq(\,t-t_*)^{1/3}\,,\quad \eta o\eta_*$$



Scalar fluctuations

Gauge-invariant quantum perturbation field

$$\begin{split} u(x,t) &= -\xi(t)\,R(x,t) = \int \frac{d^3k}{(2\pi)^{3/2}} \left[\alpha_k S_k(\eta) \mathrm{e}^{ik\cdot x} + \alpha_k^\dagger S_k^*(\eta) \mathrm{e}^{-ik\cdot x}\right] \\ &\left[\alpha_k,\alpha_{k'}^\dagger\right] = \delta^{(3)}(k-k')\;,\quad \xi(t) = \frac{a(t)}{H(t)}\,\dot{\phi}(t)\;,\quad \eta = \int \frac{dt}{a(t)} \end{split}$$

Schroedinger-like dynamics

$$\label{eq:second-state$$

$$U(t) = h^2(2 - 7\varepsilon_V + 2\varepsilon_V^2) - 2\dot{\phi} \frac{v'(\phi)}{h} - \eta_V v(\phi) \; , \quad \varepsilon_V = \frac{\dot{\phi}^2}{2h^2} \; , \quad \eta_V = \frac{v''(\phi)}{v(\phi)}$$

Scalar fluctuations

Gauge-invariant quantum perturbation field

$$\begin{split} u(\mathbf{x},t) &= -\xi(t)\,R(\mathbf{x},t) = \textstyle\int \frac{d^3k}{(2\pi)^{3/2}} \left[\alpha_k S_k(\eta) e^{ik\cdot \mathbf{x}} + \alpha_k^\dagger S_k^*(\eta) e^{-ik\cdot \mathbf{x}}\right] \\ &\left[\alpha_k,\alpha_{k'}^\dagger\right] = \delta^{(3)}(k-k')\,,\quad \xi(t) = \frac{a(t)}{H(t)}\,\dot{\phi}(t)\,,\quad \eta = \textstyle\int \frac{dt}{a(t)} \,dt \,dt \,dt \end{split}$$

Schroedinger-like dynamics

$$\label{eq:special_special} \begin{split} \left[\frac{d^2}{d\eta^2} + k^2 - W(\eta) \right] S_k &= 0 \;, \quad W(\eta) = \frac{1}{\xi} \frac{d^2 \xi}{d\eta^2} \\ & \left[\frac{d^2}{dt^2} + h \frac{d}{dt} + \frac{k^2}{a^2} - U(t) \right] S_k = 0 \end{split}$$

$$U(t) = h^2(2 - 7\varepsilon_V + 2\varepsilon_V^2) - 2\dot{\phi} \, \frac{v'(\phi)}{h} - \eta_V \, v(\phi) \; , \quad \varepsilon_V = \frac{\dot{\phi}^2}{2 \, h^2} \; , \quad \eta_V = \frac{v''(\phi)}{v(\phi)} \; . \label{eq:U}$$

Gauge-invariant quantum perturbation field

$$\begin{split} u(\mathbf{x},t) &= -\xi(t)\,R(\mathbf{x},t) = \textstyle\int \frac{d^3k}{(2\pi)^{3/2}} \left[\alpha_k S_k(\eta) e^{ik\cdot \mathbf{x}} + \alpha_k^\dagger S_k^*(\eta) e^{-ik\cdot \mathbf{x}}\right] \\ &\left[\alpha_k,\alpha_{k'}^\dagger\right] = \delta^{(3)}(k-k')\,,\quad \xi(t) = \frac{a(t)}{H(t)}\,\dot{\phi}(t)\,,\quad \eta = \textstyle\int \frac{dt}{a(t)} \,dt \,dt \,dt \end{split}$$

Schroedinger-like dynamics

$$\begin{split} \left[\frac{d^2}{d\eta^2} + k^2 - W(\eta) \right] S_k &= 0 \;, \quad W(\eta) = \frac{1}{\xi} \frac{d^2 \xi}{d\eta^2} \\ \left[\frac{d^2}{dt^2} + h \frac{d}{dt} + \frac{k^2}{a^2} - U(t) \right] S_k &= 0 \end{split}$$

$$U(t) = h^2(2 - 7\varepsilon_V + 2\varepsilon_V^2) - 2\dot{\phi} \frac{v'(\phi)}{h} - \eta_V v(\phi) \; , \quad \varepsilon_V = \frac{\dot{\phi}^2}{2 \, h^2} \; , \quad \eta_V = \frac{v''(\phi)}{v(\phi)} \; . \label{eq:U}$$

Scalar fluctuations

Gauge-invariant quantum perturbation field

$$\begin{split} u(\mathbf{x},t) &= -\xi(t)\,R(\mathbf{x},t) = \int \frac{d^3k}{(2\pi)^{3/2}} \left[\alpha_k S_k(\eta) e^{ik\cdot \mathbf{x}} + \alpha_k^\dagger S_k^*(\eta) e^{-ik\cdot \mathbf{x}} \right] \\ & \left[\alpha_k, \alpha_{k'}^\dagger \right] = \delta^{(3)}(k-k') \;, \quad \xi(t) = \frac{a(t)}{H(t)}\,\dot{\phi}(t) \;, \quad \eta = \int \frac{dt}{a(t)} \,dt \;. \end{split}$$

Schroedinger-like dynamics

$$\label{eq:special_special} \begin{split} \left[\frac{d^2}{d\eta^2} + k^2 - W(\eta) \right] S_k &= 0 \;, \quad W(\eta) = \frac{1}{\xi} \frac{d^2 \xi}{d\eta^2} \\ & \left[\frac{d^2}{dt^2} + h \frac{d}{dt} + \frac{k^2}{a^2} - U(t) \right] S_k = 0 \end{split}$$

$$U(t) = h^2(2 - 7\varepsilon_V + 2\varepsilon_V^2) - 2\dot{\phi} \frac{v'(\phi)}{h} - \eta_V v(\phi) , \quad \varepsilon_V = \frac{\dot{\phi}^2}{2h^2} , \quad \eta_V = \frac{v''(\phi)}{v(\phi)}$$

$$\epsilon_{\text{V}} \simeq \frac{1}{2} \left[\frac{\nu'(\phi_{\text{exit}})}{\nu(\phi_{\text{exit}})} \right]^2 \; , \quad \eta_{\text{V}} \simeq \frac{\nu''(\phi_{\text{exit}})}{\nu(\phi_{\text{exit}})} \; , \quad W(\eta) = \frac{\nu^2 - 1/4}{\eta^2} \; , \quad \nu = \frac{3}{2} + 3\epsilon_{\text{V}} - \eta_{\text{V}}$$

Power spectrum

$$P(k) = \lim_{\eta \to 0} \left(\frac{m}{M_{PL}}\right)^2 \frac{k^3}{2\pi^2} \left|\frac{S_k \eta}{\xi(\eta)}\right|^2$$

Bunch–Davies vacuum at $t \to -\infty$ in extreme slow–roll

$$S_{k}(\eta\rightarrow-\infty)=\frac{\mathrm{e}^{i\,k\eta}}{\sqrt{2\,k}}\;,\quad P_{\infty}=A_{S}\left(\frac{k}{k_{0}}\right)^{n_{S}-1}\;,\quad A_{S}=\left(\frac{m}{M_{PL}}\right)^{2}\frac{N^{2}}{12\pi^{2}}\mathscr{O}(1)$$

$$\epsilon_{\text{V}} \simeq \frac{1}{2} \left[\frac{\nu'(\phi_{\text{exit}})}{\nu(\phi_{\text{exit}})} \right]^2 \; , \quad \eta_{\text{V}} \simeq \frac{\nu''(\phi_{\text{exit}})}{\nu(\phi_{\text{exit}})} \; , \quad W(\eta) = \frac{\nu^2 - 1/4}{\eta^2} \; , \quad \nu = \frac{3}{2} + 3\epsilon_{\text{V}} - \eta_{\text{V}}$$

Power spectrum

$$P(k) = \lim_{\eta \to 0} \left(\frac{m}{M_{PL}} \right)^2 \frac{k^3}{2 \pi^2} \left| \frac{S_k \eta}{\xi(\eta)} \right|^2$$

Bunch–Davies vacuum at $t \to -\infty$ in extreme slow–roll

$$S_{K}(\eta\rightarrow-\infty)=\frac{\mathrm{e}^{i\,k\eta}}{\sqrt{2\,k}}\;,\quad P_{\infty}=A_{S}\left(\frac{k}{k_{0}}\right)^{n_{S}-1}\;,\quad A_{S}=\left(\frac{m}{M_{PL}}\right)^{2}\frac{N^{2}}{12\pi^{2}}\mathscr{O}(1)$$

$$\epsilon_{\text{V}} \simeq \frac{1}{2} \left[\frac{\nu'(\phi_{\text{exit}})}{\nu(\phi_{\text{exit}})} \right]^2 \; , \quad \eta_{\text{V}} \simeq \frac{\nu''(\phi_{\text{exit}})}{\nu(\phi_{\text{exit}})} \; , \quad W(\eta) = \frac{\nu^2 - 1/4}{\eta^2} \; , \quad \nu = \frac{3}{2} + 3\epsilon_{\text{V}} - \eta_{\text{V}}$$

Power spectrum

$$P(k) = \lim_{\eta \to 0} \left(\frac{m}{M_{PL}} \right)^2 \frac{k^3}{2\pi^2} \left| \frac{S_k \eta}{\xi(\eta)} \right|^2$$

Bunch–Davies vacuum at $t \to -\infty$ in extreme slow–roll

$$S_k(\eta\to-\infty)=\frac{e^{i\,k\eta}}{\sqrt{2\,k}}\;,\quad P_\infty=A_S\left(\frac{k}{k_0}\right)^{n_S-1}\;,\quad A_S=\left(\frac{m}{M_{PL}}\right)^2\frac{N^2}{12\pi^2}\mathscr{O}(1)$$

$$\epsilon_{\text{V}} \simeq \frac{1}{2} \left[\frac{\nu'(\phi_{\text{exit}})}{\nu(\phi_{\text{exit}})} \right]^2 \; , \quad \eta_{\text{V}} \simeq \frac{\nu''(\phi_{\text{exit}})}{\nu(\phi_{\text{exit}})} \; , \quad W(\eta) = \frac{\nu^2 - 1/4}{\eta^2} \; , \quad \nu = \frac{3}{2} + 3\epsilon_{\text{V}} - \eta_{\text{V}}$$

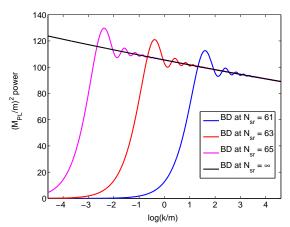
Power spectrum

$$P(k) = \lim_{\eta \to 0} \left(\frac{m}{M_{PL}} \right)^2 \frac{k^3}{2\pi^2} \left| \frac{S_k \eta}{\xi(\eta)} \right|^2$$

Bunch–Davies vacuum at $t \to -\infty$ in extreme slow–roll

$$S_k(\eta \to -\infty) = \frac{e^{ik\eta}}{\sqrt{2k}}, \quad P_\infty = A_s \left(\frac{k}{k_0}\right)^{n_s - 1}, \quad A_s = \left(\frac{m}{M_{PL}}\right)^2 \frac{N^2}{12\pi^2} \mathscr{O}(1)$$

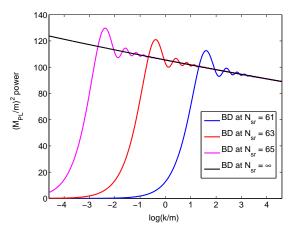
Bunch-Davies vacuum at finite times



Compare the small k- behavior of BD and quasi-De Sitter modes

$$S_{k}(\eta) = \frac{e^{ik\eta}}{\sqrt{2k}}, \quad g_{v}(k;\eta) = \frac{1}{2}i^{v+\frac{1}{2}}\sqrt{-\pi\eta}H_{v}^{(1)}(-k\eta) \simeq \frac{\Gamma(v)}{\sqrt{2\pi k}}\left(\frac{2}{ik\eta}\right)^{v-\frac{1}{2}}$$

Bunch-Davies vacuum at finite times



Compare the small k- behavior of BD and quasi-De Sitter modes

$$\mathcal{S}_k(\eta) = \frac{e^{ik\eta}}{\sqrt{2k}}, \quad g_v(k;\eta) = \frac{1}{2}i^{v+\frac{1}{2}}\sqrt{-\pi\eta}H_v^{(1)}(-k\eta) \simeq \frac{\Gamma(v)}{\sqrt{2\pi k}}\left(\frac{2}{ik\eta}\right)^{v-\frac{1}{2}}$$

The transfer function of initial conditions

$$P(k) = P_{\infty}(k) \left[1 + D(k) \right]$$

more formally ..

Effect on quadratic observables of linear combinations of the solutions of linear differential equations of second order, or Bogoliubov transformations on creation—annihilation operators.

The transfer function of initial conditions

$$P(k) = P_{\infty}(k) \left[1 + D(k) \right]$$

more formally ...

Effect on quadratic observables of linear combinations of the solutions of linear differential equations of second order, or Bogoliubov transformations on creation—annihilation operators.

The transfer function of initial conditions

$$P(k) = P_{\infty}(k) \left[1 + D(k) \right]$$

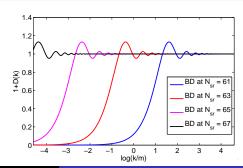
more formally ...

Effect on quadratic observables of linear combinations of the solutions of linear differential equations of second order, or Bogoliubov transformations on creation—annihilation operators.

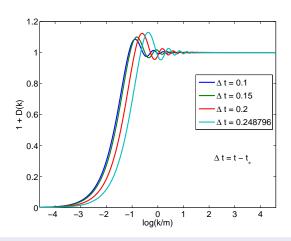
$$D(k) \simeq D(k\eta_0)$$

$$D(k) \sim k^{-2}$$
, $k \to \infty$

to have a negligible back–reaction on the metric

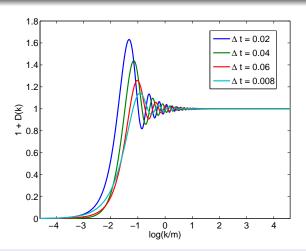


Transfer function for fast–roll trajectories C.D., H.J. de Vega and N. Sanchez, in preparation



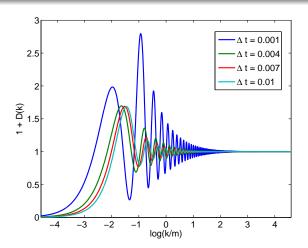
depression of lowest multipoles

Transfer function for fast–roll trajectories C.D., H.J. de Vega and N. Sanchez, in preparation



up and down with little change on average

Transfer function for fast–roll trajectories C.D., H.J. de Vega and N. Sanchez, in preparation



up and down with net overall enhancement

Outline

- Is the low CMB TT quadruple too low?
 - Observational data
 - Cosmic variance
 - Independent random variables
- 2 Theoretical setup
 - EFT of Inflation
 - New inflation
 - On the issue of initial conditions
- MCMC analysis
 - Cosmological MCMC
 - MCMC likelihoods
 - Best fit comparisons

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical ($H \ll M_{PL}$ at any time)
- Con:
 - It's unique
 - All quantum modes were once trans-planckian

Fast-roll scenario

- Pro
- a life nomediae

 - o Provides a simple
- Con:

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical ($H \ll M_{PL}$ at any time)
- Con:
 - It's unique
 - All quantum modes were once trans-planckian

Fast-roll scenario

- Pro
 - . 100-
- Con:

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical ($H \ll M_{PL}$ at any time)
- Con:
 - It's unique
 - All quantum modes were once trans-planckian

Fast-roll scenario

- Pro:
- Con:

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical ($H \ll M_{PL}$ at any time)
- Con:

Fast-roll scenario

Pro:

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical (H

 ≪ M_{PL} at any time)
- Con:
 - It's unique
 - All quantum modes were once trans-planckian

Fast-roll scenario

Pro:

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical (H

 ≪ M_{PL} at any time)
- Con:
 - It's unique
 - All quantum modes were once trans-planckian

Fast-roll scenario

Pro:

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical (H

 ≪ M_{PL} at any time)
- Con:
 - It's unique
 - All quantum modes were once trans–planckian

Fast-roll scenario

Pro:

Con:

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical (H

 ≪ M_{PL} at any time)
- Con:
 - It's unique
 - All quantum modes were once trans–planckian

Fast-roll scenario

Pro:

Con:

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical (H

 ≪ M_{PL} at any time)
- Con:
 - It's unique
 - All quantum modes were once trans–planckian

- Pro:
 - It's generic
 - CMB-relevant quantum modes need not be trans-planckian
 - Provides a simple mechanism for suppression of low multipoles if $N_{slowroll}=63$
- Con
 - No "natural" initial conditions for quantum amplitudes
 - Nee

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical (H

 ≪ M_{PL} at any time)
- Con:
 - It's unique
 - All quantum modes were once trans–planckian

- Pro:
 - It's generic
 - CMB-relevant quantum modes need not be trans-planckian
 - Provides a simple mechanism for suppression of low multipoles if $N_{slowroll}=63$
- Con:
 - No "natural" initial conditions for quantum amplitudes
 Needs quantum gravity when t = t
 - C. Destri

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical (H

 ≪ M_{PL} at any time)
- Con:
 - It's unique
 - All quantum modes were once trans–planckian

- Pro:
 - It's generic
 - CMB-relevant quantum modes need not be trans-planckian
 - Provides a simple mechanism for suppression of low multipoles if $N_{slowroll} = 63$
- Con
 - No "natural" initial conditions for quantum amplitudes
 Needs quantum gravity when t t.

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical (H

 ≪ M_{PL} at any time)
- Con:
 - It's unique
 - All quantum modes were once trans–planckian

- Pro:
 - It's generic
 - CMB-relevant quantum modes need not be trans-planckian
 - Provides a simple mechanism for suppression of low multipoles if $N_{slowroll} = 63$
- Con:

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical (H

 ≪ M_{PL} at any time)
- Con:
 - It's unique
 - All quantum modes were once trans-planckian

- Pro:
 - It's generic
 - CMB-relevant quantum modes need not be trans-planckian
 - Provides a simple mechanism for suppression of low multipoles if N_{s/owroll} = 63
- Con:
 - No "natural" initial conditions for quantum amplitudes
 - Needs quantum gravity when $t o t_{
 m s}$

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical (H

 ≪ M_{PL} at any time)
- Con:
 - It's unique
 - All quantum modes were once trans–planckian

- Pro:
 - It's generic
 - CMB-relevant quantum modes need not be trans-planckian
 - Provides a simple mechanism for suppression of low multipoles if N_{slowroll} = 63
- Con:
 - No "natural" initial conditions for quantum amplitudes
 - Needs

- Pro:
 - It's unique
 - Allows adiabatic Bunch–Davies vacuum of de Sitter spacetime
 - Gravity always semiclassical ($H \ll M_{PL}$ at any time)
- Con:
 - It's unique
 - All quantum modes were once trans-planckian

- Pro:
 - It's generic
 - CMB-relevant quantum modes need not be trans-planckian
 - Provides a simple mechanism for suppression of low multipoles if N_{slowroll} = 63
- Con:
 - No "natural" initial conditions for quantum amplitudes
 - Needs quantum gravity when t → t_{*}

in the matter dominated era there was a very low quadrupole that would later (now) become a very low $\ell=22$ multipole.

The argument based on fastroll to explain such a low quadrupole would have given $N_{slowroll} = 54$ but would have been proven wrong when more superhorizon modes reentered. Except that ...

The entropy lower bound

$$N_{slowroll} \ge 62.4 - \frac{1}{2} \log \left(\frac{10^{-4} M_{PL}}{H} \right) - \frac{1}{12} \log \frac{g_{th}}{1000} \simeq 62$$

Yet another cosmic coincidence

We live when the homogeneity and entropy lower bounds almost coincide

in the matter dominated era there was a very low quadrupole that would later (now) become a very low $\ell=22$ multipole.

The argument based on fastroll to explain such a low quadrupole would have given $N_{slowroll} = 54$ but would have been proven wrong when more superhorizon modes reentered. Except that ...

The entropy lower bound

$$N_{slowroll} \ge 62.4 - \frac{1}{2} \log \left(\frac{10^{-4} M_{PL}}{H} \right) - \frac{1}{12} \log \frac{g_{th}}{1000} \simeq 62$$

Yet another cosmic coincidence

We live when the homogeneity and entropy lower bounds almost coincide

in the matter dominated era there was a very low quadrupole that would later (now) become a very low $\ell=22$ multipole.

The argument based on fastroll to explain such a low quadrupole would have given $N_{slowroll} = 54$ but would have been proven wrong when more superhorizon modes reentered. Except that ...

The entropy lower bound

$$N_{slowroll} \ge 62.4 - \frac{1}{2} \log \left(\frac{10^{-4} M_{PL}}{H} \right) - \frac{1}{12} \log \frac{g_{rh}}{1000} \simeq 62$$

Yet another cosmic coincidence

We live when the homogeneity and entropy lower bounds almost coincide!

in the matter dominated era there was a very low quadrupole that would later (now) become a very low $\ell=22$ multipole.

The argument based on fastroll to explain such a low quadrupole would have given $N_{slowroll} = 54$ but would have been proven wrong when more superhorizon modes reentered. Except that ...

The entropy lower bound

$$N_{slowroll} \ge 62.4 - \frac{1}{2} \log \left(\frac{10^{-4} M_{PL}}{H} \right) - \frac{1}{12} \log \frac{g_{rh}}{1000} \simeq 62$$

Yet another cosmic coincidence

We live when the homogeneity and entropy lower bounds almost coincide!

Outline

- - Is the low CMB TT quadruple too low?
 - Observational data
 - Cosmic variance
 - Independent random variables
- 2 Theoretical setu
 - EFT of Inflation
 - New inflation
 - On the issue of initial conditions
- MCMC analysis
 - Cosmological MCMC
 - MCMC likelihoods
 - Best fit comparisons

- Observational CMB data \Longrightarrow likelihood on $C_{\ell}^{(model)}$;
- Model with cosmological parameters $\lambda = \{\lambda_1, \lambda_2, \dots \lambda_n\} \Longrightarrow C_\ell^{(model)}(\lambda)$ (CMBFAST, CAMB,...);

$$\implies$$
 likelihood $L(\lambda) = \exp[-\chi^2(\lambda)/2]$

The MCMC method produces sequences distributed as $L(\lambda)$ (× the **prior probability**), through an acceptance/rejection one-step algorithm (*e.g.* **Metropolis**)

$$W(\lambda^{(k+1)}, \lambda^{(k)}) = g(\lambda^{(k+1)}, \lambda^{(k)}) \min \left\{ 1, \frac{L(\lambda^{(k+1)}) g(\lambda^{(k+1)}, \lambda^{(k)})}{L(\lambda^{(k)}) g(\lambda^{(k)}, \lambda^{(k+1)})} \right\}$$

- Observational CMB data \Longrightarrow likelihood on $C_{\ell}^{(model)}$;
- Model with cosmological parameters $\lambda = \{\lambda_1, \lambda_2, \dots \lambda_n\} \Longrightarrow C_\ell^{(model)}(\lambda)$ (CMBFAST, CAMB,...);

$$\implies$$
 likelihood $L(\lambda) = \exp[-\chi^2(\lambda)/2]$

The MCMC method produces sequences distributed as $L(\lambda)$ (× the **prior probability**), through an acceptance/rejection one-step algorithm (*e.g.* **Metropolis**)

$$W(\lambda^{(k+1)}, \lambda^{(k)}) = g(\lambda^{(k+1)}, \lambda^{(k)}) \min \left\{ 1, \frac{L(\lambda^{(k+1)}) g(\lambda^{(k+1)}, \lambda^{(k)})}{L(\lambda^{(k)}) g(\lambda^{(k)}, \lambda^{(k+1)})} \right\}$$

- Observational CMB data \Longrightarrow likelihood on $C_{\ell}^{(model)}$;
- Model with cosmological parameters $\lambda = \{\lambda_1, \lambda_2, \dots \lambda_n\} \Longrightarrow C_\ell^{(model)}(\lambda)$ (CMBFAST, CAMB,...);

$$\implies$$
 likelihood $L(\lambda) = \exp[-\chi^2(\lambda)/2]$

The MCMC method produces sequences distributed as $L(\lambda)$ (× the **prior probability**), through an acceptance/rejection one-step algorithm (*e.g.* **Metropolis**)

$$W(\lambda^{(k+1)}, \lambda^{(k)}) = g(\lambda^{(k+1)}, \lambda^{(k)}) \min \left\{ 1, \frac{L(\lambda^{(k+1)}) g(\lambda^{(k+1)}, \lambda^{(k)})}{L(\lambda^{(k)}) g(\lambda^{(k)}, \lambda^{(k+1)})} \right\}$$

- Observational CMB data \Longrightarrow likelihood on $C_{\ell}^{(model)}$;
- Model with cosmological parameters $\lambda = \{\lambda_1, \lambda_2, \dots \lambda_n\} \Longrightarrow C_\ell^{(model)}(\lambda)$ (CMBFAST, CAMB,...);

$$\implies$$
 likelihood $L(\lambda) = \exp[-\chi^2(\lambda)/2]$

The MCMC method produces sequences distributed as $L(\lambda)$ (× the **prior probability**), through an acceptance/rejection one-step algorithm (*e.g.* **Metropolis**)

$$W(\lambda^{(k+1)}, \lambda^{(k)}) = g(\lambda^{(k+1)}, \lambda^{(k)}) \min \left\{ 1, \frac{L(\lambda^{(k+1)}) g(\lambda^{(k+1)}, \lambda^{(k)})}{L(\lambda^{(k)}) g(\lambda^{(k)}, \lambda^{(k+1)})} \right\}$$

- Observational CMB data \Longrightarrow likelihood on $C_{\ell}^{(model)}$;
- Model with cosmological parameters $\lambda = \{\lambda_1, \lambda_2, \dots \lambda_n\} \Longrightarrow C_\ell^{(model)}(\lambda)$ (CMBFAST, CAMB,...);

$$\implies$$
 likelihood $L(\lambda) = \exp[-\chi^2(\lambda)/2]$

The **MCMC** method produces sequences distributed as $L(\lambda)$ (× the **prior probability**), through an acceptance/rejection one-step algorithm (e.g. **Metropolis**)

$$W(\lambda^{(k+1)}, \lambda^{(k)}) = g(\lambda^{(k+1)}, \lambda^{(k)}) \min \left\{ 1, \frac{L(\lambda^{(k+1)}) g(\lambda^{(k+1)}, \lambda^{(k)})}{L(\lambda^{(k)}) g(\lambda^{(k)}, \lambda^{(k+1)})} \right\}$$

- Observational CMB data \Longrightarrow likelihood on $C_{\ell}^{(model)}$;
- Model with cosmological parameters $\lambda = \{\lambda_1, \lambda_2, \dots \lambda_n\} \Longrightarrow C_\ell^{(model)}(\lambda)$ (CMBFAST, CAMB,...);

$$\implies$$
 likelihood $L(\lambda) = \exp[-\chi^2(\lambda)/2]$

The **MCMC** method produces sequences distributed as $L(\lambda)$ (× the **prior probability**), through an acceptance/rejection one-step algorithm (e.g. **Metropolis**)

$$W(\lambda^{(k+1)}, \lambda^{(k)}) = g(\lambda^{(k+1)}, \lambda^{(k)}) \min \left\{ 1, \frac{L(\lambda^{(k+1)}) g(\lambda^{(k+1)}, \lambda^{(k)})}{L(\lambda^{(k)}) g(\lambda^{(k)}, \lambda^{(k+1)})} \right\}$$

Binomial New Inflation with sharpcut or (simplified) fastroll C.D., H.J. de Vega, N. Sanchez, Phys. Rev. D78

Simplification

- Born's approximation for k not too small.
- $k_{tran} = -1/\eta_0$ is the comoving wavenumber that exits the horizon when fast-roll ends and slow-roll starts.

Binomial New Inflation with sharpcut or (simplified) fastroll C.D., H.J. de Vega, N. Sanchez, Phys. Rev. D78

Simplification

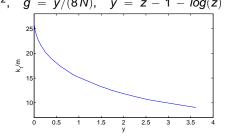
- Born's approximation for k not too small.
- $k_{tran} = -1/\eta_0$ is the comoving wavenumber that exits the horizon when fast-roll ends and slow-roll starts.

For BNI,
$$v(\phi) = \frac{1}{4}g(\phi^2 - 1/g)^2$$
, $g = y/(8N)$, $y = z - 1 - log(z)$

0.5

-0.895
-0.0579
0.382
-0.248
-0.092
0.048
-0.092
0.048
-0.021
-0.005
0.05
11
15
2 25
3 35
4

k/m



Outline

- Is the low CMB TT quadruple too low?
 - Observational data
 - Cosmic variance
 - Independent random variables
- Theoretical setup
 - EFT of Inflation
 - New inflation
 - On the issue of initial conditions
- MCMC analysis
 - Cosmological MCMC
 - MCMC likelihoods
 - Best fit comparisons

BNI+sharpcut vs. BNI+fastroll

MCMC parameters: ω_b , ω_c , θ , τ , (slow), A_s , z, k_{tran} (fast)

Context: $N = 60, \Omega_V = 0, \dots$; standard priors,

no SZ, lensed CMB, linear mpk, ...

Datasets: WMAP5, SDSS, ACBAR08

BNI+sharpcut vs. BNI+fastroll

MCMC parameters:

Context:

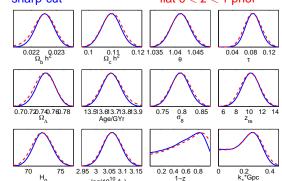
Datasets:

ram best fit $\Omega_b h^2$ 2.256	
2.256	
0.110	
1.041	
8.83	
71.82	
0.803	
0.307	
0.162	
0.260	
1253.96	

 ω_b , ω_c , θ , τ , (slow), A_s , z, k_{tran} (fast) $N = 60, \Omega_{\nu} = 0, \dots$; standard priors, no SZ, lensed CMB, linear mpk, ... WMAP5, SDSS, ACBAR08

sharp-cut

flat 0 < z < 1 prior



1-z

log(10¹⁰ A_a)

BNI+sharpcut vs. BNI+fastroll

MCMC parameters:

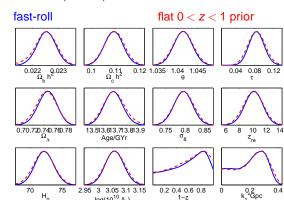
Context:

Datasets:

$N=60, \Omega_{V}=0, \ldots$	
no SZ, lensed CME	3, linear mpk,
WMAP5, SDSS, AC	CBAR08

 ω_b , ω_c , θ , τ , (slow), A_s , Z, k_{trap} (fast)

param	best fit	
$100\Omega_b h^2$	2.253	
$\Omega_{\mathcal{C}}h^2$	0.109	
θ	1.041	
100τ	8.42	
H_0	72.00	
σ_8	0.794	
$\log[10^{10}A_{s}]$	0.306	
Z	0.102	
<i>k</i> ₁	0.284	
$-\log(L)$	1253.82	



1-z

log(10¹⁰ A_e)

Outline

- - Is the low CMB TT quadruple too low?
 - Observational data
 - Cosmic variance
 - Independent random variables
- 2 Theoretical setup
 - EFT of Inflation
 - New inflation
 - On the issue of initial conditions
- MCMC analysis
 - Cosmological MCMC
 - MCMC likelihoods
 - Best fit comparisons

$\Delta \chi^2$ w.r.t. Λ CDM+r

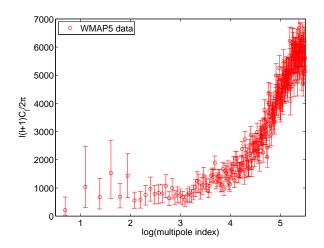
	WMAP5	+SDSS+ACBAR08	+SDSS+SN
BNI+sharpcut	-1.07	-0.71	-1.02
BNI+fastroll	-1.15	-0.99	-1.45

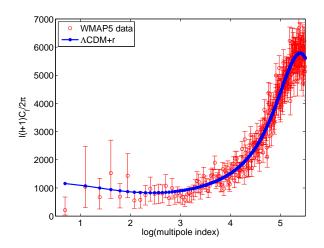
95% lower bound on r

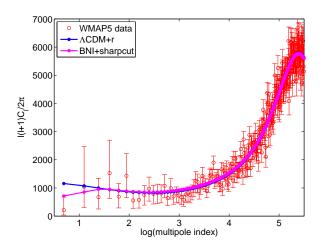
	WMAP5	+SDSS+ACBAR08	+SDSS+SN
BNI+sharpcut	0.025	0.033	0.022
BNI+fastroll	0.024	0.032	0.023

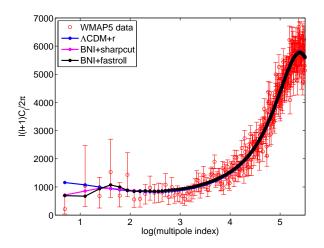
most likely value of k_{tran} (in Gpc⁻¹)

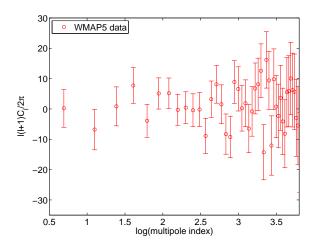
	WMAP5	+SDSS+ACBAR08	+SDSS+SN
BNI+sharpcut	0.258	0.260	0.244
BNI+fastroll	0.298	0.284	0.291

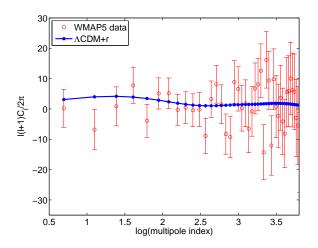




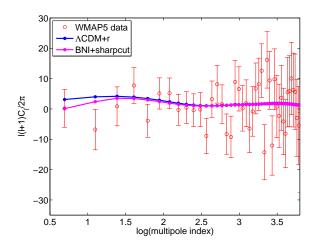




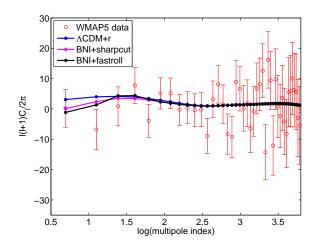


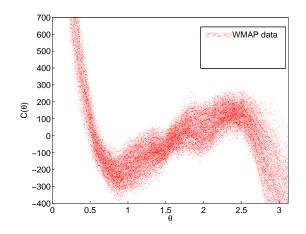


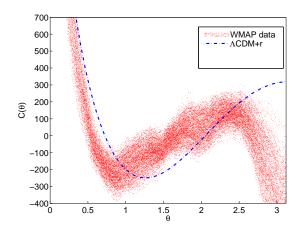
Comparing TE multipoles

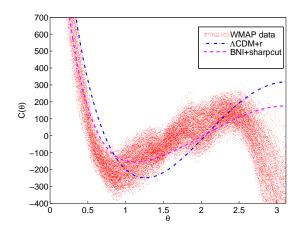


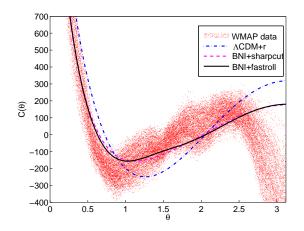
Comparing TE multipoles











Highlight

The quadrupole wavenumber

 $k_Q \simeq 0.83\,k_{tran}$ and exits roughly 1/10 of an efold before k_{tran} $N_{slowroll} \simeq 63$

- The study of large scale CMB anisotropies may teach us a lot about the beginning of inflation.
- Early fast-roll inflation is generic and provides a mechanism for lowest multipoles depression.
- BNI+fastroll significantly improves the fit w.r.t. ΛCDM+r.
- BNI+fastroll improves the fits also w.r.t. BNI+sharpcut.
- Fast-roll sets to 63 the number of slow-roll inflation efolds.

- Improve the EFT of inflations (entropy, reheating, ...)
- Wait for better data (Plank, Atacama, ...)
- Refine, refine, refine

- The study of large scale CMB anisotropies may teach us a lot about the beginning of inflation.
- Early fast-roll inflation is generic and provides a mechanism for lowest multipoles depression.
- BNI+fastroll significantly improves the fit w.r.t. ΛCDM+r.
- BNI+fastroll improves the fits also w.r.t. BNI+sharpcut.
- Fast-roll sets to 63 the number of slow-roll inflation efolds.

- Improve the EFT of inflations (entropy, reheating, ...)
- Wait for better data (Plank, Atacama, ...)
- Refine, refine, refine

- The study of large scale CMB anisotropies may teach us a lot about the beginning of inflation.
- Early fast-roll inflation is generic and provides a mechanism for lowest multipoles depression.
- BNI+fastroll significantly improves the fit w.r.t. ΛCDM+*r*.
- BNI+fastroll improves the fits also w.r.t. BNI+sharpcut
- Fast-roll sets to 63 the number of slow-roll inflation efolds.
- Outlook
 - Improve the EFT of inflations (entropy, reheating, ...)
 - Wait for better data (Plank, Atacama, ...)
 - Refine, refine, refine

- The study of large scale CMB anisotropies may teach us a lot about the beginning of inflation.
- Early fast-roll inflation is generic and provides a mechanism for lowest multipoles depression.
- BNI+fastroll significantly improves the fit w.r.t. ΛCDM+r.
- BNI+fastroll improves the fits also w.r.t. BNI+sharpcut.
- Fast-roll sets to 63 the number of slow-roll inflation efolds.
- Outlook
 - Improve the EFT of inflations (entropy, reheating, ...)
 Wait for better data (Plank, Atacama, ...)

- The study of large scale CMB anisotropies may teach us a lot about the beginning of inflation.
- Early fast-roll inflation is generic and provides a mechanism for lowest multipoles depression.
- BNI+fastroll significantly improves the fit w.r.t. ΛCDM+r.
- BNI+fastroll improves the fits also w.r.t. BNI+sharpcut.
- Fast-roll sets to 63 the number of slow-roll inflation efolds.

Outlook

Improve the EFT of inflations (entropy, reheating, ...)
Wait for better data (Plank, Atacama, ...)
Refine, refine

4 D > 4 A > 4 B > 4 B > B 900

- The study of large scale CMB anisotropies may teach us a lot about the beginning of inflation.
- Early fast-roll inflation is generic and provides a mechanism for lowest multipoles depression.
- BNI+fastroll significantly improves the fit w.r.t. ΛCDM+*r*.
- BNI+fastroll improves the fits also w.r.t. BNI+sharpcut.
- Fast-roll sets to 63 the number of slow-roll inflation efolds.

- Improve the EFT of inflations (entropy, reheating, ...)
- Wait for better data (Plank, Atacama, ...)
- Refine, refine, refine

- The study of large scale CMB anisotropies may teach us a lot about the beginning of inflation.
- Early fast-roll inflation is generic and provides a mechanism for lowest multipoles depression.
- BNI+fastroll significantly improves the fit w.r.t. ΛCDM+*r*.
- BNI+fastroll improves the fits also w.r.t. BNI+sharpcut.
- Fast-roll sets to 63 the number of slow-roll inflation efolds.
- Outlook
 - Improve the EFT of inflations (entropy, reheating, ...)
 - Wait for better data (Plank, Atacama, ...)
 - Refine, refine, refine

- The study of large scale CMB anisotropies may teach us a lot about the beginning of inflation.
- Early fast-roll inflation is generic and provides a mechanism for lowest multipoles depression.
- BNI+fastroll significantly improves the fit w.r.t. ΛCDM+*r*.
- BNI+fastroll improves the fits also w.r.t. BNI+sharpcut.
- Fast-roll sets to 63 the number of slow-roll inflation efolds.

- Improve the EFT of inflations (entropy, reheating, ...)
- Wait for better data (Plank, Atacama, ...)
- Refine, refine, refine

- The study of large scale CMB anisotropies may teach us a lot about the beginning of inflation.
- Early fast-roll inflation is generic and provides a mechanism for lowest multipoles depression.
- BNI+fastroll significantly improves the fit w.r.t. ΛCDM+r.
- BNI+fastroll improves the fits also w.r.t. BNI+sharpcut.
- Fast-roll sets to 63 the number of slow-roll inflation efolds.

- Improve the EFT of inflations (entropy, reheating, ...)
- Wait for better data (Plank, Atacama, ...)
- · Refine, refine, refine

