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The History of the Universe
It is a history of EXPANSION and cooling down.

EXPANSION: the space itself expands with the time.

ds2 = dt2 − a 2(t) d~x2 , a(t) = scale factor.

FRW: Homogeneous, isotropic and spatially flat geometry.

Cooling: temperature decreases as 1/a(t): T (t) ∼ 1/a(t).

The Universe underwent a succesion of phase transitions
towards the less symmetric phases.

Wavelenghts redshift as a(t) : λ(t) = a(t) λ(t0)
a(t0)

Redshift z : z + 1 = a(today)
a(t) , a(today) ≡ 1

The deeper you go in the past, the larger is the redshift and
the smaller is a(t).
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Standard Cosmological Model:ΛCDM

ΛCDM = Cold Dark Matter + Cosmological Constant
begins by the Inflationary Era. Explains the Observations:

5 years WMAP data and previous CMB data

Light Elements Abundances

Large Scale Structures (LSS) Observations. BAO.

Acceleration of the Universe expansion:
Supernova Luminosity/Distance and Radio Galaxies.

Gravitational Lensing Observations

Lyman α Forest Observations

Hubble Constant (H0) Measurements

Properties of Clusters of Galaxies

....
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Standard Cosmological Model: Concordance Model

ds2 = dt2 − a2(t) d~x 2: spatially flat geometry.

The Universe starts by an INFLATIONARY ERA .
Inflation = Accelerated Expansion: d2a

dt2 > 0.
During inflation the universe expands by at least sixty
efolds: e62 ≃ 1027. Inflation lasts ≃ 10−36 sec and ends by
z ∼ 1029 followed by a radiation dominated era.
Energy scale when inflation starts ∼ 1016 GeV ( ⇐= CMB
anisotropies) which coincides with the GUT scale.
Matter can be effectively described during inflation by a
Scalar Field φ(t,x): the Inflaton.

Lagrangean: L = a3(t)
[

φ̇2

2 − (∇φ)2

2 a2(t) − V (φ)
]

.

Friedmann eq.: H2(t) = 1
3 M2

P l

[

φ̇2

2 + V (φ)
]

, H(t) ≡ ȧ(t)/a(t)
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Physics during Inflation
Out of equilibrium evolution in a fastly expanding
geometry. Vacuum energy DOMINATES. a(t) ≃ eH t.

Extremely high energy density at the scale of . 1016

GeV.

Explosive particle production due to spinodal or
parametric instabilities.

Quantum non-linear phenomena eventually shut-off the
instabilities and stop inflation. Radiation dominated era
follows: a(t) =

√
t .

Huge redshift classicalizes the dynamics: an assembly
of (superhorizon) quantum modes behave as a classical
and homogeneous inflaton field. Inflaton slow-roll.

D. Boyanovsky, C. Destri, H. J. de Vega, N. G. Sánchez,
arXiv:0901.0549, to appear in Int. J. Mod. Phys. A.
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The Theory of Inflation

The inflaton is an effective field in the Ginsburg-Landau
sense.

Relevant effective theories in physics:

Ginsburg-Landau theory of superconductivity. It is an
effective theory for Cooper pairs in the microscopic
BCS theory of superconductivity.

The O(4) sigma model for pions, the sigma and photons
at energies . 1 GeV. The microscopic theory is QCD:
quarks and gluons. π ≃ q̄q , σ ≃ q̄q .

The theory of second order phase transitions à la
Landau-Kadanoff-Wilson... (ferromagnetic,
antiferromagnetic, liquid-gas, Helium 3 and 4, ...)

Fermi Theory of Weak Interactions (current-current).
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Slow Roll Inflaton Models

��� � �� � � � � � � �

� �� �
�� �

�� 	
�� 


� � �
� � � �� �� �� � ���� � � � �� � ��

V (Min) = V ′(Min) = 0 : inflation ends after a finite number
of efolds. Universal form of the slow-roll inflaton potential:

V (φ) = N M4 w
(

φ√
N MP l

)

N ∼ 60 number of efolds since horizon exit till end of
inflation. M = energy scale of inflation.
Slow-roll is needed to produce enough efolds of inflation.
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SLOW and Dimensionless Variables

χ = φ√
N MP l

, τ = m t√
N

, H(τ) = H(t)

m
√

N
,
(

m ≡ M2

MP l

)

slow inflaton, slow time, slow Hubble.
χ and w(χ) are of order one.
Evolution Equations:

H2(τ) =
1

3

[

1

2 N

(

dχ

dτ

)2

+ w(χ)

]

,

1

N

d2χ

dτ2
+ 3 H dχ

dτ
+ w′(χ) = 0 . (1)

1/N terms: corrections to slow-roll

Higher orders in slow-roll are obtained systematically by
expanding the solutions in 1/N .

– p. 8/56



Inflaton Dynamics: w(χ) = y

32
(χ2 − 8

y
)2
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The vacuum energy transforms
into particles and inflation is followed in this simplified
approach by a matter dominated stage.
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Equation of State: pressure/energy density
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The equation of state is p/e = −1 during inflation.

p/e strongly oscillates between +1 and −1 during the matter
dominated stage. We have in average < p/e >= 0 .
We have here neglected spatial gradient terms

(∇φ)2

2 a2(t)

since a(t) grows exponentially during inflation.
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Primordial Power Spectrum

Adiabatic Scalar Perturbations: P (k) = |∆(S)
k ad|2 kns−1 .

To dominant order in slow-roll:

|∆(S)
k ad|2 = N2

12 π2

(

M
MP l

)4
w3(χ)
w′2(χ) .

Hence, for all slow-roll inflation models:

|∆(S)
k ad| ∼ N

2 π
√

3

(

M
MP l

)2

The WMAP5 result: |∆(S)
k ad| = (0.494 ± 0.1) × 10−4

determines the scale of inflation M (using N ≃ 60)
(

M
MP l

)2
= 0.85 × 10−5 −→ M = 0.70 × 1016 GeV

The inflation energy scale turns to be the grand unification
energy scale !! We find the scale of inflation without
knowing the tensor/scalar ratio r !!
The scale M is independent of the shape of w(χ).
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spectral indexns and the ratio r

r ≡ ratio of tensor to scalar fluctuations.
tensor fluctuations = primordial gravitons.

ns − 1 = − 3

N

[

w′(χ)

w(χ)

]2

+
2

N

w′′(χ)

w(χ)
, r =

8

N

[

w′(χ)

w(χ)

]2

dns

d ln k
= − 2

N2

w′(χ) w′′′(χ)

w2(χ)
− 6

N2

[w′(χ)]4

w4(χ)
+

8

N2

[w′(χ)]2 w′′(χ)

w3(χ)
,

χ is the inflaton field at horizon exit.
ns −1 and r are always of order 1/N ∼ 0.02 (model indep.)
Running of ns of order 1/N2 ∼ 0.0003 (model independent).

D. Boyanovsky, H. J. de Vega, N. G. Sanchez,
Phys. Rev. D 73, 023008 (2006), astro-ph/0507595.
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Ginsburg-Landau Approach
We choose a polynomial for w(χ). A quartic w(χ) is
renormalizable. Higher order polynomials are acceptable
since inflation it is an effective theory.

w(χ) = wo ± χ2

2 + G3 χ3 + G4 χ4 , G3 = O(1) = G4

V (φ) = N M4 w
(

φ√
N MP l

)

= Vo ± m2

2 φ2 + g φ3 + λ φ4 .

m = M2

MP l
, g = m√

N

(

M
MP l

)2
G3 , λ = G4

N

(

M
MP l

)4

Notice that
(

M
MP l

)2
≃ 10−5 ,

(

M
MP l

)4
≃ 10−10 , N ≃ 60 .

Small couplings arise naturally as ratio of two energy
scales: inflation and Planck.

The inflaton is a light particle:
m = M2

MP l
≃ 0.003 M , m = 2.5 × 1013GeV
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WMAP 5 years data set plus other CMB data

Theory and observations nicely agree except for the lowest
multipoles: the quadrupole suppression.
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Monte Carlo Markov Chains Analysis of Data: MCMC.

MCMC is an efficient stochastic numerical method to find
the probability distribution of the theoretical parameters that
describe a set of empirical data.

We found ns and r and the couplings y and h by MCMC.
NEW: We imposed as a hard constraint that r and ns are
given by the inflaton potential.
Our analysis differs in this crucial aspect from previous
MCMC studies of the WMAP data.

The color–filled areas correspond to 12%, 27%, 45%, 68%
and 95% confidence levels according to the WMAP3 and
Sloan data.
The color of the areas goes from the darker to the lighter for
increasing CL.
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MCMC Results for the double–well inflaton potential
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MCMC Results for double–well inflaton potential

Bounds: r > 0.023 (95% CL) , r > 0.046 (68% CL)
Most probable values: ns ≃ 0.964, r ≃ 0.051 ⇐measurable!!
The most probable double–well inflaton potential has a
moderate nonlinearity with the quartic coupling y ≃ 1.26 . . ..
The χ → −χ symmetry is here spontaneously broken
since the absolute minimum of the potential is at χ 6= 0

w(χ) = y
32

(

χ2 − 8
y

)2

MCMC analysis calls for w′′(χ) < 0 at horizon exit
=⇒ double well potential favoured.

C. Destri, H. J. de Vega, N. Sanchez, MCMC analysis of
WMAP3 data points to broken symmetry inflaton potentials
and provides a lower bound on the tensor to scalar ratio,
Phys. Rev. D77, 043509 (2008), astro-ph/0703417.
Similar results from WMAP5 data.
Acbar08 data slightly increases ns < 1 and r.
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Higher Order Inflaton Potentials
Till here we considered fourth degree inflaton potentials.
Can higher order terms modify the physical results and the
observable predictions?

We systematically study the effects produced by higher
order terms (n > 4) in the inflationary potential on the
observables ns and r.
All coefficients in the potential w become order one using
the field χ within the Ginsburg-Landau approach:
w(χ) = c0 − 1

2 χ2 +
∑∞

n=3
cn

n χn , cn = O(1) .

All r = r(ns) curves for double–well potentials of arbitrary
high order fall inside a universal banana-shaped region B.
Moreover, the r = r(ns) curves for double–well potentials
even for arbitrary positive higher order terms lie inside the
banana region B.
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The 100th degree polynomial inflaton potential
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2k
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c
2k

 = 0 for 2<=k<50, c
100

 = 1

2kξ
k
 uniformely random in [0,1]

ξ
k
 uniformely random in [0,1]

w(χ) = 4
y − 1

2 χ2 + 4
y

∑n
k=2

c2k

k

(

yk

8k χ2k − 1
)

The coefficients c2k were extracted at random.
The lower border of the banana-shaped region is given by
the potential:

w(χ) = 4
y − 1

2 χ2 + 4
n y

(

yn

8n χ2n − 1
)

with n = 50.
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The universal banana region
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We find that all r = r(ns) curves for double–well inflaton
potentials in the Ginsburg-Landau spirit fall inside the
universal banana region B.
The lower border of B corresponds to the limiting potential:

w(χ) = 4
y − 1

2 χ2 for χ <
√

8
y , w(χ) = +∞ for χ >

√

8
y

This gives a lower bound for r for all potentials in the
Ginsburg-Landau class: r > 0.021 for the current best value
of the spectral index ns = 0.964.
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The Energy Scale of Inflation

Grand Unification Idea (GUT)

Renormalization group running of electromagnetic,
weak and strong couplings shows that they all meet at
EGUT ≃ 2 × 1016 GeV

Neutrino masses are explained by the see-saw

mechanism: mν ∼ M2
Fermi

MR
with MR ∼ 1016 GeV.

Inflation energy scale: M ≃ 1016 GeV.

Conclusion: the GUT energy scale appears in at least three
independent ways.

Moreover, moduli potentials: Vmoduli = M4
SUSY v

(

φ
MP l

)

ressemble inflation potentials provided MSUSY ∼ 1016 GeV.
First observation of SUSY in nature??
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The Universe is made of radiation, matter and dark energy
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End of inflation: z ∼ 1029, Treh . 1016 GeV, t ∼ 10−36 sec.
E-W phase transition: z ∼ 1015, TEW ∼ 100 GeV, t ∼ 10−11 s.
QCD conf. transition: z ∼ 1012, TQCD ∼ 170 MeV, t ∼ 10−5 s.
BBN: z ∼ 109 , T ≃ 0.1 MeV, t ∼ 20 sec.
Rad-Mat equality: z ≃ 3050, T ≃ 0.7 eV, t ∼ 57000 yr.
CMB last scattering: z ≃ 1100, T ≃ 0.25 eV , t ∼ 370000 yr.
Mat-DE equality: z ≃ 0.47, T ≃ 0.345 meV , t ∼ 8.9 Gyr.
Today: z = 0, T = 2.725K = 0.2348 meV t = 13.72 Gyr.
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Dark Matter

DM must be non-relativistic by structure formation (z < 30)
in order to reproduce the observed small structures at
∼ 2 − 3 kpc. DM particles can decouple being
ultrarelativistic (UR) at Td ≫ m or non-relativistic Td ≪ m.
Consider particles that decouple at or out of LTE
(LTE = local thermal equilibrium).
Distribution function:
fd[a(t) Pf (t)] = fd[pc] freezes out at decoupling.
Pf (t) = pc/a(t) = Physical momentum.
pc = comoving momentum.

Velocity fluctuations: y = Pf (t)/Td(t) = pc/Td

〈~V 2(t)〉 = 〈
~P 2

f (t)
m2 〉 =

R d3Pf

(2π)3

~P2
f

m2 fd[a(t) Pf ]

R d3Pf

(2π)3
fd[a(t) Pf ]

=
[

Td

m a(t)

]2 R

∞

0
y4fd(y)dy

R

∞

0
y2fd(y)dy

.
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The formula for the Mass of the Dark Matter particles

Energy Density: ρDM (t) = g
∫ d3Pf

(2π)3

√

m2 + P 2
f fd[a(t) Pf ]

g : # of internal degrees of freedom of the DM particle,
1 ≤ g ≤ 4. For z . 30 ⇒ DM particles are non-relativistic:

ρDM (t) = m g T 3
d

a3(t)

∫∞
0 y2 fd(y) dy

2π2 .

Using entropy conservation: Td =
(

2
gd

)
1
3

Tγ (1 + zd),

gd = effective # of UR degrees of freedom at decoupling,
Tγ = 0.2348 meV , 1 meV = 10−3 eV.
Today ΩDM = ρDM (0)/ρc = 0.105/h2 and we obtain for the
mass of the DM particle:

m = 6.986 eV
gd

g

∫ ∞

0
y2 fd(y) dy

.
Goal : determine m and gd
We need TWO constraints
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Phase-space density invariant under universe expansion

Using again entropy conservation to replace Td yields for
the one-dimensional velocity dispersion,

σDM (z) =
√

1
3 〈~V 2〉(z) = 2

1
3√
3

1+z

g
1
3
d

Tγ

m

√

R

∞

0
y4 Fd(y) dy

R

∞

0
y2 Fd(y) dy

=

= 0.05124 1+z

g
1
3
d

keV
m

[
R

∞

0
y4 Fd(y) dy

R

∞

0
y2 Fd(y) dy

]

1
2 km

s .

Phase-space density: D ≡ n(t)

〈~P 2
phys(t)〉

3
2

non−rel
= ρDM

3
√

3 m4 σ3
DM

D is computed theoretically from freezed-out distributions:

D =
g

2 π2

[∫∞
0 y2Fd(y)dy

]

5
2

[∫∞
0 y4Fd(y)dy

]
3
2

Theorem: The phase-space density D can only decrease
under self-gravity interactions (gravitational clustering)
[Lynden-Bell, Tremaine, Henon, 1986].
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Phase-space density invariantD
Observing dwarf spheroidal satellite galaxies in the Milky
Way (dSphs) yields
ρs

σ3
s
∼ 5 × 103 keV/cm3

(km/s)3
= (0.18 keV)4 Gilmore et al. 07 and 08.

During structure formation z . 30, D reduces by a factor
that we call Z. Since D = ρDM/[3

√
3 m4 σ3

DM ],
ρs

σ3
s

= 1
Z

ρDM

σ3
DM

N -body simulations results: 1000 > Z > 1.

ρDM = 1.107 × keV/cm3 = average value today.
We thus obtain general formulas for m and gd:

m = (27)−
1
8 ρ

1
4

DM σ
− 3

4

DM = 0.2504 keV
(

Z
g

)
1
4

"

∫ ∞

0
y4 Fd(y) dy

#

3
8

"

∫ ∞

0
y2 Fd(y) dy

#

5
8

gd = 35.96Z
1
4 g

3
4

[∫∞
0 y4 Fd(y) dy

∫∞
0 y2Fd(y)dy

]

3
8
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Mass Estimates of DM particles

Our previous formulas yield for relics decoupling UR at LTE:

m =
(

Z
g

)
1
4

keV

{

0.568

0.484
, gd = g

3
4 Z

1
4

{

155 Fermions

180 Bosons
.

Since g = 1 − 4, we see that gd > 100 ⇒ Td > 100 GeV.
1 < Z

1
4 < 5.6 for 1 < Z < 1000.

Example: for DM Majorana fermions (g = 2) m ≃ 0.85 keV.

Sterile neutrinos ν as DM decoupling out of LTE and UR.
ν is a singlet Majorana fermion with a Majorana mass mν

coupled with a Yukawa-type coupling Y ∼ 10−8 to a real
scalar field χ. χ is more strongly coupled to the particles in
the Standard Model. [Chikashige,Mohapatra,Peccei (1981),
Gelmini,Roncadelli (1981), Schechter, Valle (1982),
Shaposhnikov, Tkachev (2006), Boyanovsky (2008)]
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DM particles decoupling out of LTE and UR

Distribution function: F ν
d (y) = τ

g 5
2
(y)

√
y , g 5

2
(y) ≡

∑∞
n=1

e−n y

n
5
2

F ν
d (y) is enhanced for small y and suppressed for large y

compared with Fermi-Dirac. We find for Sterile neutrinos

DM: mν ∼
(

Z
τ

)

1
4 0.434 keV , gd ∼ τ

3
4 Z

1
4 185.

Typical coupling range: 0.035 . τ . 0.35.

Generally speaking, thermalization is reached by the mixing
of the particle modes and scattering between particles: the
larger momentum modes are populated by a cascade
towards the ultraviolet akin to a cascade in turbulence.
In case the DM particles decouple not yet being at LTE,
their momentum distribution peaks at smaller momenta
than at LTE since the UV cascade is not yet completed.
As a final result m can be reduced by a factor about ∼ 2 and
gd even more. D. Boyanovsky, C. Destri, H. J. de Vega,
PRD69,045003(2004), CD, HJdeV, PRD73,025014(2006)
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Relics decoupling non-relativistic

FNR
d (pc) = 2

5
2 π

7
2

45 gd Y∞
(

Td

m

)

3
2 e

− p2
c

2 m Td = 2
5
2 π

7
2

45
gd Y∞

x
3
2

e−
y2

2 x

Y (t) = n(t)/s(t), n(t) number of DM particles per unit
volume, s(t) entropy per unit volume, x ≡ m/Td, Td < m.

Y∞ = 1
π

√

45
8

1√
gd Td σ0 MP l

late time limit of Boltzmann.

σ0: thermally averaged total annihilation cross-section times
the velocity.

From our general equations for m and gd:

m = 45
4 π2

ΩDM ρc

g T 3
γ Y∞

= 0.748
g Y∞

eV and m
5
2 T

3
2

d = 45
2 π2

1
g gd Y∞

Z ρs

σ3
s

Finally:
√

m Td = 1.47
(

Z
gd

)
1
3

keV. m = 3.67 keV Z
1
3

g
1
12
d√
g

√

σ0

pb

We used ρDM today and the decrease of the phase space
density by a factor Z. 1 pb = 10−36 cm2 = 0.257 /(105 GeV2).
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Relics decoupling non-relativistic 2

Allowed ranges for m and Td.
m > Td > b eV where b > 1 or b ≫ 1 for DM decoupling in
the RD era
(

Z
gd

)
1
3

1.47 keV < m < 2.16
b MeV

(

Z
gd

)
2
3

gd ≃ 3 for 1 eV < Td < 100 keV and 1 < Z < 103

1.02 keV < m < 104
b MeV , Td < 10.2 keV.

D. Boyanovsky, H. J. de Vega, N. Sanchez,
Phys. Rev. D 77, 043518 (2008), arXiv:0710.5180.
H. J. de Vega, N. G. Sanchez, arXiv:0901.0922.

Only using ρDM today (ignoring the phase space density
information) gives one equation with three unknowns,
m, Td and σ0:

σ0 = 0.16 pbarn
g√
gd

m

Td
http://pdg.lbl.gov
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Dark Energy

76 ± 5% of the present energy of the Universe is Dark !
Current observed value:
ρΛ = ΩΛ ρc = (2.39 meV)4 , 1 meV = 10−3 eV.
Equation of state pΛ = −ρΛ within observational errors.
Quantum zero point energy. Renormalized value is finite.
Bosons (fermions) give positive (negative) contributions.
Mass of the lightest particles ∼ 1 meV is in the right scale.
Spontaneous symmetry breaking of continuous symmetries
produces massless scalars as Goldstone bosons. A small
symmetry breaking provide light scalars: axions,majorons...
Observational Axion window 10−3 meV . Maxion . 10 meV.
Dark energy can be a cosmological zero point effect. (As
the Casimir effect in Minkowski with non-trivial boundaries).
We need to learn the physics of light particles (< 1 MeV),
also to understand dark matter !!
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Summary and Conclusions
We formulate inflation as an effective field theory in the
Ginsburg-Landau spirit with energy scale
M ∼ MGUT ∼ 1016 GeV ≪ MPl. Inflaton mass small:
m ∼ H/

√
N ∼ M2/MPl ≪ M . Infrared regime !!

For all slow-roll models ns − 1 and r are 1/N, N ∼ 60.

MCMC analysis of WMAP+LSS data plus this theory
input indicates a spontaneously broken inflaton

potential: w(χ) = y
32

(

χ2 − 8
y

)2
, y ≃ 1.26.

Lower Bounds: r > 0.023 (95% CL) , r > 0.046 (68% CL).
The most probable values are r ≃ 0.051(⇐ measurable
!!) ns ≃ 0.964 .

Model independent analysis of dark matter points to a
particle mass at the keV scale. Td may be > 100 GeV.
DM is cold.
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Summary and Conclusions 2

CMB quadrupole suppression may be explained by the
effect of fast-roll inflation provided the today’s horizon
size modes exited by the end of fast-roll inflation.

Quantum (loop) corrections in the effective theory are of
the order (H/MPl)

2 ∼ 10−9. Same order of magnitude
as loop graviton corrections.

D. Boyanovsky, H. J. de Vega, N. G. Sanchez,

Quantum corrections to the inflaton potential and the power
spectra from superhorizon modes and trace anomalies,
Phys. Rev. D 72, 103006 (2005), astro-ph/0507596.

Quantum corrections to slow roll inflation and new scaling
of superhorizon fluctuations. Nucl. Phys. B 747, 25 (2006),
astro-ph/0503669.
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Future Perspectives
The Golden Age of Cosmology and Astrophysics continues.

A wealth of data from WMAP (7 yr), Planck, Atacama
Cosmology Tel and further experiments are coming.

Galaxy and Star formation. DM properties from
astronomical observations. Better bounds on DM
cross-sections.

DM in planets and the earth. Flyby and Pioneer anomalies?

The Dark Ages...Reionisation...the 21cm line...

Nature of Dark Energy? 76% of the energy of the universe.

Nature of Dark Matter? 83% of the matter in the universe.

Light DM particles are strongly favoured mDM ∼ keV.

Sterile neutrinos? Some unknown light particle ??

Need to learn about the physics of light particles (< 1 MeV).
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t  ~ 10-39 sec

Fast roll inflation  
10-39 sec ~<  t  ~< 10-38 sec
Slow roll in flation  
10-38 sec ~<  t  ~< 10-36 sec

Planck  time:  t ~ 10-44 sec 

COSMIC HISTORY AND CMB QUADRUPOLE SUPPRESSION

Fast roll inflation produces
the CMB quadrupole 

suppression
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Higher Order Inflaton Potentials
Can higher order terms modify the physical results and the
observable predictions?
We find that all r = r(ns) curves for double–well inflaton
potentials in the Ginsburg-Landau spirit fall inside the
universal banana region B.
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This gives a lower bound for r for all potentials in the
Ginsburg-Landau class: r > 0.021 for the current best value
of the spectral index ns = 0.964.
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Out of equilibrium Decoupling

Thermalization mechanism: k-modes cascade towards the
UV till the thermal distribution is attained.
D. Boyanovsky, C. Destri, H. J. de Vega, PRD69, 045003
(2004), C. Destri, H. J. de Vega, PRD73, 025014 (2006)

Hence, before LTE is reached: lower momenta are more
populated than at LTE.
An approximate description:

fd(y) = fequil(y/ξ) θ(y0 − y), ξ < 1 out of equilibrium

Modes with pc > y0 Td are empty. [y = pc/Td].

For fermions: m = 6.99 eV (gd/g) F (∞)/[ξ3 F (y0/ξ)]

F (s) ≡
∫ s
0 fequil(w) w2 dw , F (∞)/[ξ3 F (y0/ξ)] > 1.
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The number of efolds in Slow-roll

The number of e-folds N [χ] since the field χ exits the
horizon till the end of inflation is:

N [χ] = N
∫ χ
χend

w(χ)
w′(χ) dχ. We choose then N = N [χ].

The spontaneously broken symmetric potential:

w(χ) = y
32

(

χ2 − 8
y

)2

produces inflation with 0 <
√

y χinitial ≪ 1 and χend =
√

8
y .

This is small field inflation.

From the above integral: y = z − 1 − log z

where z ≡ y χ2/8 and we have 0 < y < ∞ for 1 > z > 0.
Spectral index ns and the ratio r as functions of y:
ns = 1 − y

N
3 z+1
(z−1)2 , r = 16 y

N
z

(z−1)2
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Binomial New Inflation: ( y = coupling).
r decreases monotonically with y :
(strong coupling) 0 < r < 8

N = 0.16 (zero coupling).
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(ns - 1)  vs. y

r vs. y

ns first grows with y, reaches a maximum value
ns,maximum = 0.96139 . . . at y = 0.2387 . . . and then ns

decreases monotonically with y.
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Binomial New Inflation
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r  vs. ns

r = 8
N = 0.16 and ns = 1 − 2

N = 0.96 at y = 0.

r is a double valued function of ns.
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Probability Distributions. Trinomial New Inflation.
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Probability distributions: solid blue curves
Mean likelihoods: dot-dashed red curves.
z1 = 1 − y

8 (|h|+
√

h2+1)
2 χ2 .
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Marginalized probability distributions. New Inflation.
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Imposing the trinomial potential (solid blue curves) and just
the ΛCDM+r model (dashed red curves).
(curves normalized to have the maxima equal to one).
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Probability Distributions. Trinomial Chaotic Inflation.
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Probability distributions (solid blue curves) and mean
likelihoods (dot-dashed red curves).
The data request a strongly asymmetric potential in chaotic
inflation almost having two minima. That is, a strong
breakdown of the χ → −χ symmetry.
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Quadrupole suppression and Fast-roll Inflation

The observed CMB-quadrupole (COBE,WMAP5) is six
times smaller than the ΛCDM model value.
In the best ΛCDM fit the probability that the quadrupole is
as low or lower than the observed value is 3%.
It is hence relevant to find a cosmological explanation of the
quadrupole suppression.

Generically, the classical evolution of the inflaton has a brief
fast-roll stage that precedes the slow-roll regime.
In case the quadrupole CMB mode leaves the horizon
during fast-roll, before slow-roll starts, we find that the
quadrupole mode gets suppressed.

P (k) = |∆(S)
k ad|2 (k/k0)

ns−1[1 + D(k)]

The transfer function D(k) changes the primordial power.
1 + D(0) = 0, D(∞) = 0
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The Fast-Roll Transfer Function
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beginning of inflation = 0.9 × 1056 ≃ e129.

– p. 46/56



Comparison, with the experimental WMAP5 data
of the theoretical CTT

ℓ multipoles
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Comparison, with the experimental WMAP5 data
of the theoretical CTE

ℓ multipoles
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Comparison, with the experimental WMAP-5 data
of the theoretical CEE

ℓ multipoles
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Transfer Function for different initial times of fluctuatio ns
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Transfer function 1 + D(k) for different initial times of
fluctuations: ∆τ from the begining of fast-roll. BD initial
conditions. ∆τ = 0.25: begining of slow-roll.
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∆CTT

ℓ vs. initial time of fluctuations
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amplitudes according to the starting time ∆τ chosen for the
fluctuations from the begining of fast-roll. BD initial
conditions. ∆τ = 0.25: begining of slow-roll.
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Loop Quantum Corrections to Slow-Roll Inflation

φ(~x, t) = Φ0(t)+ϕ(~x, t), Φ0(t) ≡< φ(~x, t) >, < ϕ(~x, t) >= 0

ϕ(~x, t) = 1
a(η)

∫

d3k
(2 π)3

[

a~k
χk(η) ei~k·~x + h.c.

]

,

a†~k, a~k
are creation/annihilation operators,

χk(η) are mode functions. η = conformal time.
To one loop order the equation of motion for the inflaton is

Φ̈0(t) + 3H Φ̇0(t) + V ′(Φ0) + g(Φ0) 〈[ϕ(x, t)]2〉 = 0

where g(Φ0) = 1
2 V

′′′

(Φ0).
The mode functions obey:

χ
′′

k(η) +

[

k2 + M2(Φ0) a2(η) − a
′′

(η)
a(η)

]

χk(η) = 0

where M2(Φ0) = V ′′(Φ0) = 3 H2
0 ηV + O(1/N2)
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Quantum Corrections to the Friedmann Equation

The mode functions equations for slow-roll become,

χ
′′

k(η)+
[

k2 − ν2− 1
4

η2

]

χk(η) = 0 , ν = 3
2 + ǫV −ηV +O(1/N2).

The scale factor during slow roll is a(η) = − 1
H0 η (1−ǫV ) .

Scale invariant case: ν = 3
2 . ∆ ≡ 3

2 − ν = ηV − ǫV controls
the departure from scale invariance.
Explicit solutions in slow-roll:

χk(η) = 1
2

√−πη iν+ 1
2 H

(1)
ν (−kη), H

(1)
ν (z) = Hankel function

Quantum fluctuations: 〈[ϕ(x, t)]2〉 = 1
a2(η)

∫

d3k
(2π)3 |χk(η)|2

1
2〈[ϕ(x, t)]2〉 =

(

H0

4 π

)2 [
Λp

2 + ln Λ2
p + 1

∆ + 2 γ − 4 + O(∆)
]

UV cutoff Λp = physical cutoff/H, 1
∆ = infrared pole.

〈

ϕ̇2
〉

,
〈

(∇ϕ)2
〉

are infrared finite
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Quantum Corrections to the Inflaton Potential

Upon UV renormalization the Friedmann equation results

H2 = 1
3 M2

P l

[

1
2 Φ̇0

2
+ VR(Φ0) +

(

H0

4 π

)2 V
′′

R (Φ0)
∆ + O

(

1
N

)

]

Quantum corrections are proportional to
(

H
MP l

)2
∼ 10−9 !!

The Friedmann equation gives for the effective potential:

Veff (Φ0) = VR(Φ0) +
(

H0

4 π

)2 V
′′

R (Φ0)
∆

Veff (Φ0) = VR(Φ0)

[

1 +
(

H0

4 π MP l

)2
ηV

ηV −ǫV

]

in terms of slow-roll parameters

Very DIFFERENT from the one-loop effective potential in
Minkowski space-time:

Veff (Φ0) = VR(Φ0) + [V
′′

R (Φ0)]
2

64 π2 ln V
′′

R (Φ0)
M2
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Quantum Fluctuations:
Scalar Curvature, Tensor, Fermion, Light Scalar.
All these quantum fluctuations contribute to the inflaton
potential and to the primordial power spectra.

In de Sitter space-time: < Tµ ν >= 1
4 gµ ν < Tα

α >

Hence, Veff = VR+ < T 0
0 >= VR + 1

4 < Tα
α >

Sub-horizon (Ultraviolet) contributions appear through the
trace anomaly and only depend on the spin of the particle.
Superhorizon (Infrared) contributions are of the order N0

and can be expressed in terms of the slow-roll parameters.

Veff (Φ0) = V (Φ0)

[

1 + H2
0

3 (4π)2 M2
P l

(

ηv−4 ǫv

ηv−3 ǫv
+ 3 ησ

ησ−ǫv
+ T

)]

T = TΦ + Ts + Tt + TF = −2903
20 is the total trace anomaly.

TΦ = Ts = −29
30 , Tt = −717

5 , TF = 11
60

−→ the graviton (t) dominates.
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Corrections to the Primordial Scalar and Tensor Power

|∆(S)
k,eff |2 = |∆(S)

k |2 {1+

+2
3

(

H0

4 π MP l

)2 [

1 +
3
8

r (ns−1)+2 dns
d ln k

(ns−1)2 + 2903
40

]

}

|∆(T )
k,eff |2 = |∆(T )

k |2
{

1 − 1
3

(

H0

4 π MP l

)2 [

−1 + 1
8

r
ns−1 + 2903

20

]

}

.

The anomaly contribution −2903
20 = −145.15 DOMINATES

as long as the number of fermions less than 783.

The scalar curvature fluctuations |∆(S)
k |2 are ENHANCED

and the tensor fluctuations |∆(T )
k |2 REDUCED.

However,
(

H
MP l

)2
∼ 10−9.

D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Phys. Rev. D
72, 103006 (2005), astro-ph/0507596.
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