### Ultra-High Energy Cosmic Rays

Dmitri Semikoz APC, Paris

### **Overview:**

- UHECR measurements
- Acceleration of UHECR in astrophysical sources
- Propagation of UHECR: energy losses, magnetic fields
- UHECR spectrum and GZK cutoff
- Theoretical models and composition

### **Overview:**

- UHECR arrival directions, their sources and galactic and extragalactic magnetic field
- Correlations of UHECR E>56 EeV with LSS
- Particle physics and UHECR
- Multi-messenger observations with UHECR
- Conclusions

### INTRODUCTION





# Measurements of UHECR

### **UHECR** measurement

- Depth of atmosphere is 1000 g/cm<sup>2</sup>
- Proton of 10<sup>20</sup> eV energy interact within 60-80 g/ cm<sup>2</sup>. Center mass energy is 300 TeV: much larger then LHC!
- Shower develops with final number 10<sup>10-11</sup> of low energy particles.



### Parameters to measure:

- Energy of primary particle
- Arrival direction.
- Type of primary particle (proton, nuclei, photon, neutrino, new particle)
- Properties of primary particle: total cross section.



### Detection of showers on ground

- Ground array measure footstep of the shower. Final particles at ground level are gamma-rays, electrons, positrons and muons.
- Typically 10<sup>10-11</sup> photons, electrons and positrons in area 20-50 km<sup>2</sup>. It is enough to have detectors with area of few m<sup>2</sup> per km<sup>2</sup>. Number of low energy particles is connected to primary energy.
- Space/time structure of signal give information on arrival direction.
- Number of muons compared to number of electrons give information on primary particle kind.



### Detection of shower development in atmosphere

- Fly's Eye technique mesure fluorescence emision of N<sub>2</sub> by collection of mirrors: shape of the shower.
- Total amount of light connected to energy of primary particle.
- Time structure of signal gives information on arrival direction.
- Depth in atmosphere with maximum signal give information on primary particle kind.



### Paris, June 4 2009, Ultra-High Energy Cosmic Rays Stereo Event E ~50 EeV







HiResl

HiRes2

## Shower structure: theoretical uncertanty

 Extrapolation of accelerator data to high energies with different approaches can give uncertainty up to 30 % in energy estimate for same shower and 100% important for chemical composition study.



### AGASA

- AGASA covers an area of about 100 km<sup>2</sup> and consists of 111 detectors on the ground (surface detectors) and 27 detectors under absorbers (muon detectors). Each surface detector is placed with a nearest-neighbor separation of about 1 km.
- Operated 1993- 2003.

Akeno Giant Air Shower Array



### High Resolution Fly's Eye: HiRes

- HiRes 1 and HiRes 2 sit on two small mountains in western Utah, with a separation of 13 km.
- HiRes 1 has 21 three meter diameter mirrors which are arranged to view the sky between elevations of 3 and 16 degrees over the full azimuth range;
- HiRes 2 has 42 mirrors which image the sky between elevations of 3 and 30 degrees over 360 degrees of azimuth.
- Operated in stereo mode 1999-2006.







ra-High Energy Cosmic Rays

### Auger Observatory

*rt involving more than 450* 2 *institutions in 17 countries:* stralia, Bolivia, Brazil, Czech Republic, any, Italy, Mexico, Netherlands, Poland, renia, Spain, United Kingdom, USA,





### Pierre Auger Observatory South site in Argentina almost finished North site – project



Surface Array 1600 detector stations 1.5 Km spacing 3000 Km<sup>2</sup> (30xAGASA)

Fluorescence Detectors 4 Telescope enclosures 6 Telescopes per enclosure 24 Telescopes total

### AUGER NORTH



### **Telescope Array**

### High Energy Cosmic Ray: 576 plastic scintillation

Surface Detectors (SD)

Atmospheric fluorescence telescope 3 stations **F** 



Sensitivity of SD : ~9 x AGASA

### Extreme Universe Space Observatory: JEM-EUSO (project)



### Integrated Exposure (at 10<sup>20</sup> eV)



# Acceleration of UHECR

### **Acceleration of UHECR**





- Shock acceleration
- Electric field acceleration
- Converter acceleration

$$1/E^{\alpha} \alpha >= 2$$

line at E<sub>max</sub> can be both Galaxy Lobe



## UHECR spectrum and GZK cutoff

### Paris, June 4 2009, Ultra-High Energy Cosmic Rays Paris, June 4 2009, Ultra-High Energy Cosmic Rays Cosmic

Nucleons can produce pions on the cosmic microwave background



### Same true for heavy nuclei: Fe



Simulation by D.Allard

### **HiRes: cutoff in the spectrum**



### **"GZK" Statistics**

- Expect 42.8 events
- Observe 15 events
- ~5 o

### Bergman (ICRC-2005)

### Auger Energy Spectrum 2009



## Theoretical models and composition

### Protons can fit UHECR data



problem: composition

### Mixed composition model



D.Allard, E.Parizot and A.Olinto, astro-ph/0512345

Problems: 1) escape of the nuclei from the source 2) How to accelerate Fe in our Galaxy

### **Composition study**



T.Pierog, R.Engel and D.Heck, astro-ph/0602190

### Models and composition



D.Allard, E.Parizot and A.Olinto, astro-ph/0512345

### Composition study: AUGER 2009

### Please, wait for ICRC!

## Arrival directions of UHECR and magnetic fields.

### **UHECR** propagation in Milky Way

Deflection angle ~ 1-2 degrees at 10<sup>20</sup>eV for protons
Astronomy by hadronic particles?


## Uncertainty of GMF models

- From M.Kachelriess et al, astro-ph/0510444
- Protons with energy 4\*10<sup>19</sup> eV deflection in galactic magnetic field.









HMR model

PS model

## **Deflections by EGMF**

By K.Dolag, D.Grasso, V.Springel, and I.Tkachev





FIG. 1: Full sky map (area preserving projection) of d scale. All structure within a radius of 107 Mpc aroun with the galactic anti-center in the middle of the ms corresponding halos in the simulation.

FIG. 2: Cumulative fraction of the sky with deflection angle larger than  $\delta_{\rm th}$ , for several values of propagation distance (solid lines). We also include an extrapolation to 500 Mpc, assuming self similarity with  $\alpha = 0.5$  (dashed line) or  $\alpha = 0.8$ (dotted line). The assumed UHECR energy for all lines is  $4.0 \times 10^{19}$  eV.

#### Magnetic field in several directions from Earth for constrained simulation



Dolag et al, astro-ph/0410419

#### EGMF by G. Sigl et al. astro-ph/0401084





#### Horizon for protons



Simulation with SOPHIA, stochastic energy losses, Assuming  $\Delta E/E = 20\%$  event by event

#### AGASA data E> 4×10<sup>19</sup> eV ~60 events



Clusters -- are events which came from the same part of sky within given (usually small) angle from each other. Angle is 2.5 degrees for AGASA.

## Arrival directions for E>40 EeV in HiRes (E>52 EeV in AGASA)



## **Probability of correlation**



M.Kachelriess and D.S. astro-ph/0512498

# Clustering signal in AUGER: 20-25 degree scales



~1-2 %, ~70 events, Pierre Auger Collaboration, ICRC 2007

#### Clustering signal in AUGER: scan



2% after scan and penalty between 7 and 23 degrees Pierre Auger Collaboration, ICRC 2007

Statistically limited at the moment. If real, connection to LSS and EGMF

# Search for individual sources on sky



G.Giacinti, X.Derkx and D.S. to be published

#### **Reconstructed of source position**



G.Giacinti, X.Derkx and D.S. to be published

# Reconstructed direction of magnetic field



G.Giacinti, X.Derkx and D.S. to be published

# Correlations with local LSS

## Prescription of blind test

- Based on 15 events E>56 EeV period January 1, 2004 - May 28, 2006
- 12<sup>th</sup> Catalog of AGN's by Veron
- Z<=0.018 or R<=75 Mpc 472 objects</p>
- PAO data with ICRC T5 E>=56 EeV Herald v4
- Search of correlations in 3.1 degree angle from AGN's. Within this angle P<sub>chance</sub>=0.21
- Running prescription until P=0.01 or up to 34 events
- Status: passed 6/8 May 2007
- At August 31, 2007 8/13 P=1.6e-3

# Arrival directions for E>57 EeV in Auger



Paris, June 4 2009, Ultra-High Energy Cosmic Rays

## Doublet – at Cen A - real source? 2 sigma at the moment



#### Cen A: radio galaxy



#### Paris, June 4 2009, Ultra-High Energy Cosmic Rays

#### Cen A

- Radio galaxy with AGN located at 4 Mpc from our galaxy: extremely nearby !!!
- Typical distance between radio galaxies is 20-40 Mpc





 Most nearby AGN: typical distance between AGN's is 10 Mpc (if not in clusters)

## Cen A: Auger ICRC 2009



Fig. 3. Left: The cumulative number of events with  $E \ge 55$  EeV as a function of angular distance from Cen A. The average isotropic expectation with approximate 68% confidence intervals is shaded blue. *Right:* The histogram of events as a function of angular distance from Cen A. The average isotropic expectation is shaded brown.

## Statistics with Galactic plane cut

- Z<=0.018 R=75 Mpc: 425 AGN</li>
  |b|>12 degrees
- 6 events in Galactic plane only one correlate
- Out of Galactic plane 21 event /19 correlate 90%.
- Only new events: 11/9 correlate P=0.0002

# SUMMARY of Auger correlation study 2007:

- Evidence that UHECR sky is anisotropic above GZK cutoff
- 3 degree angle mean that magnetic fields are not very large + <Z> is not very large ? Contradict composition!
- Independent confirmation of GZK cutoff from correlations with NEARBY sources.
- AGN's can be sources or tracers of sources in local LSS
- ONLY PROTONS from AGN's: Energy scale has to move up E->E+30% Warning: There is no signal from Virgo cluster, 2-3 sigma
- New data?

#### Source in magnetized region



#### K.Dolag, M.Kachelriess and D.S., 2008

# Particle physics at ultra-high energies

#### Number of muons and energy scale



#### **Relative number of muons**



we need in 1.5 times more muons as compared to QGSJET-II model: Heavier then Fe or wrong model prediction

# Composition study: depends on hadronic interaction models



Paris, June 4 2009, Ultra-High Energy Cosmic Rays

## LHC-CR interplay

Calibration of the models at high energy is mandatory

14 TeV in the center of mass  $E_{lab}=10^{17} \text{ eV} (E_{lab}=E_{cm}^2/2 \text{ m}_P)$ 



Major LHC detectors (ATLAS, CMS, LHCB) will measure the particles emitted in transverse directions

LHCf is a tool to calibrate MC code to energy relevant for CR physics. It will cover the very forward part May be also Heavy Ion runs? Paris, June 4 2009, Ultra-High Energy Cosmic Rays



#### Two independent detectors on both side of IP1

- ✓ Redundancy
- Background rejection (especially beam-gas)

#### LHCf Arm 1 – Installation



Paris, June 4 2009, Ultra-High Energy Cosmic Rays

## LHCf performances: Monte Carlo γ-ray energy spectrum

#### Gamma Energy Spectrum of 20mm square at Beam Center



Paris, June 4 2009, Ultra-High Energy Cosmic Rays

#### LHCf performances:

#### model dependence of neutron energy distribution

Original n energy



#### 30% energy resolution



# Secondary photons and neutrinos from UHECR





Conclusion: proton, photon and neutrino fluxes are connected in well-defined way. If we know one of them we can predict other ones:  $E_{\nu}^{tot} \sim E_{\nu}^{tot}$ 

# GZK photons with E>10 EeV

#### Secondary photons and neutrinos





G.Gelmini et al, astro-ph/0702464
## Search for secondary photons



# Cascade photons with GeV - TeV energies

## Cascade photons for 1/E<sup>2</sup>.





### Contribution of UHECR to EGRET



O.Kalashev , D.S. and G.Sigl, astro-ph/0704.2463

## UHE neutrinos.

### **Pion production**



Conclusion: proton, photon and neutrino fluxes are connected in well-defined way. If we know one of them we can predict other ones:  $E_v^{tot} \sim E_v^{tot}$ 

## Multi-messenger observations of sky.



## Previous generation: AGASA, HiRes

#### AGASA ~100km<sup>2</sup> (closed in 2004)

111 scintillation detectors27 muon detectors~4M\$ (~30 Scientists)

HiRes ~300km<sup>2</sup>yr/yr (closed in 2006) HiRes-I, HiRes-II

~10M\$ (~60 Scientists)



Paris, June 4 2009, Ultra-High Energy Cosmic Rays Now Concretion 10 events/year E>100 EeV TOPO! map printed on 50 events/year E>60 EeV 113°02.000' 39°25.000' N 400 events/year E>30 EeV Z 000 2007: !!! 000 July: Cutoff confirmed !!! 113°02.000 TN\*/MN /13%° November 9th: Anisotropic sky !!!. Map created with T ations Sources - astrophysical objects in Auger LSS !!!! 1600 W with 1.5 4 Fluore Goal: establish first UHECR ~50M\$ (``Eyes'') **SOURCES: 3-5 years of Auger data?** ure

#### Future Projects: Auger North, JEM-EUSO

JEM-EUSO (~20% duty cycle)

Auger North

~10,000km2 \* ( $\frac{3}{4} \pi$  Sr)/yr for 10 years

Nadir mode ~40,000km2yr / yr for 2 years Tilted mode ~200,000km2yr / yr for 3 years

Total ~680,000km2 yr ~2M km2 str yr

Northern SiteSoutheastern ColorEnergy ≥ 101° eV1.6 km square gridA single FD 30° x:Propose 10,000 kmGoal: start UHECR astronomy

#### Multi-Messenger observation all-sky



## Conclusions

- Cutoff in UHECR spectrum exist. UHECR come from astrophysical sources. Open questions:
  - □ Cutoff from acceleration or/and cutoff from propagation.
  - □ Composition: protons or/and nuclei?
- November 9, 2007: Evidence that sources are in local LSS.
- A lot of astrophysics can be done: Galactic and extragalactic magnetic fields, individual sources of UHECR, acceleration mechanism, etc. Larger detectors needed (Auger North, JEM-EUSO, etc.)!
- Input from LHC needed to reduce uncertainty in hadronic models: energy determination and composition of UHECR. Definitely revision of calculations with high-energy interactions.
- Secondary photons and neutrinos can give additional information on sources when they will be detected