Exploring the primordial Universe with QUBIC the Q U Bolometric Interferometer for Cosmology

J.-Ch. Hamilton (APC - Paris, CNRS/IN2P3)

Observing the CMB polarization gives access to the Primordial Universe physics (inflation epoch)

CMB: Tremendous progress over the last 15 years

Huge success : thousands of independent points fitted with less than 10 parameters and a χ^2 /ndf about 1 Theoretical curve predicted in 1987 [Bond & Efstathiou] without any data. [Also by Zeldovitch, Sunyaev et al. in 1972 !!!]

Density Field Transfer Function

Early Universe Primordial Density Fluctuations (inflation)

Fourier mode k

- Perturbations evolve from end of inflation to decoupling due to matter-radiation oscillations.
- The <u>transfert function</u> depends upon « simple physics » and cosmological parameters
- Allows to fit both cosmology and primordial spectra (including inflationary physics)

Planck Results: ACDM firmly Established

Next (current actually !) step: Inflation Physics through CMB Polarization

CMB Polarization (~10%)

Generated by Thomson scattering

- ★ electrons in quadrupolar motion falling into Dark
 Matter potential wells before decoupling
- Stokes Parameters (linear pol.)

$$I = \left\langle |E_x|^2 \right\rangle + \left\langle |E_y|^2 \right\rangle \qquad Q = \left\langle |E_x|^2 \right\rangle - \left\langle |E_y|^2 \right\rangle \\ U = 2 \left\langle \operatorname{Re}[E_x E_y^{\star}] \right\rangle$$

W. Hu

Scalar and tensor modes - E & B polarization

Scalar perturbations: $P_s(k) = A_s\left(\frac{k}{k_0}\right)^2$

- Density fluctuations
 - Temperature
 - E polarization
 - No B polarization
- Tensor perturbations: $P_r(k) = A_t$
 - Specific prediction from inflation!
 - = Primordial gravitational waves
 - Temperature
 - E polarization
 - B Polarization

\Rightarrow detecting primordial B-modes:

- Direct detection of tensor modes
- «smoking gun» for inflation
- Measurement of its energy scale

~ ratio between E

and B modes

 $r_{\rm CMB}$

J.-Ch. Hamilton École Chalonge - De Vega - Novembre 2017

 $=rac{P_t(k_0)}{P_s(k_0)}$

 $V^{1/4} = 1.06 \times 10^{16} \text{GeV}$

Take home message:

Inflation

B-modes

New landscape for B-modes We have entered into the measurement era

Before

Today

Detected signal is Dust + Lensing [Planck+BICEP2] Let's go deeper & cleaner !

Why B-modes are so hard ?

<u>Sensitivity :</u>

- Signal amplitude ~ 70 nK on a 3K background
- Need extremely sensitive and stable detectors at ~150 GHz

Astrophysical Foregrounds :

- \star BICEP2 false alert has shown their importance
- \star Interstellar Dust is already known to be high
 - Need high frequency detectors at > 150 GHz
- \star Synchrotron emission might become an issue
 - Observations at < 70 GHz will be important in a few years

• <u>Systematic effects :</u>

Need for accurate polarization modulation and detailed knowledge of instrument properties

Possible instruments

Imagers with bolometers:

- ★ No doubt they are nice detectors for CMB:
 - wide band
 - low noise
- Diffraction on external optical elements, ground pickup, Polarization, ... may be an issue

Interferometers:

- ★ Long history in CMB
 - CMB anisotropies in the late 90s (CAT: 1st detection of subdegrees anisotropies, VSA)
 - CMB polarization Ist detection (DASI, CBI)
- ★ Clean systematics:
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)
- \star Technology used so far
 - Antennas + HEMTs : higher noise
 - Correlators : hard to scale to large #channels

• Can these two nice devices be combined ?

Bolometric Interferometry !

APC Paris, France C2N Orsay, France **CSNSM Orsay, France IAS Orsay, France IRAP** Toulouse, France LAL Orsay, France Universita di Milano-Bicocca, Italy Universita degli studi di Milano, Italy Universita La Sapienza, Roma, Italy Maynooth University, Ireland Cardiff University, UK University of Manchester, UK **Brown University, USA Richmond University, USA** University of Wisconsin, USA Centro Atómico Constituyentes, Argentina **GEMA**, Argentina Comisión Nacional de Energía Atómica, Argentina Facultad de Cs Astronómicas y Geofísicas, Argentina Centro Atómico Bariloche and Instituto Balseiro, Argentina Instituto de Tecnologías en Detección y Astropartículas, Argentina Instituto Argentino de Radioastronomía, Argentina

Primordial B-modes with QUBIC

400 elements Interferometer

- Synthesized Imaging (well controlled beam) angular resolution 23.5 arcmin
- Self-Calibration using switches + active source

QUBIC concept: Quasi optical correlator

fringes successfuly observed in 2009 with MBI-4 [Timbie et al. 2006]

QUBIC QU Bolometric Interferometer for Cosmology

Instrument fully designed

- Outer cryostat: Roma
- IK Box / detectors: APC
- Fridges: Manchester
- Optics: Roma / Maynooth

1.547m high 1.42m diameter About 800kg

Integration has started

QUBIC Site: near San Antonio de los Cobres (Salta, Argentina)

- 5000m a.s.l.
- Logistics + mount : Argentina
- NEW: Access road built up to LLAMA (800m remaining)

Detection Chain

French responsibility
 APC + CSNSM / IEF / IRAP

• 2 arrays of 992 NbSiTES

- ★ Each array : 4x248 elements
- ★ 300 mK bath (³He-⁴He evaporation cooler)
- ★ 3 mm size
- ★ Measured NEP ~ 4.10-17 W.Hz-1/2
- ★ time constant ~ 10 ms

• 4K SQUIDs + SiGe ASIC Mux

- ★ SQUIDs pre-amplifier+mux
 - 32:1 multiplexing
- ★ 4K SiGe ASIC (amp+mux)
 - 4:1 multiplexing
- ★ 128 channels / ASIC
- ★ Low noise: ~200 pV.Hz^{-1/2}
- ★ low power: ~ few mW

Dual Band Platelet Horns

Conception / Realisation
 Milano / APC / Manchester

- Platelet fabrication
 - \star Cheap arrays
 - ★ Milano
- Exquisite beam and Xpol
 ★ based on Clover design

• Wide band

★ Single model at 150 GHz★ Few model at 220 GHz

Systematics: Self-Calibration

• Unique possibility to handle systematic errors

- Use horn array redundancy to calibrate systematics
 - In a perfect instrument redundant baselines should see the same signal
 - Differences due to systematics
 - Allow to fit systematics with an external source on the field
- ★ Unique specificity of Bolometric Interferometry ! [Bigot-Sazy et al., A&A 2012, arXiv:1209.4905]
 - Example: exact horns locations (figure exagerated !!)

Actual horn positions (red) are not well know One uses ideal ones (blue) in map reconstruction \Rightarrow Systematics in maps, E/B leakage

Actual horn positions (red) are recovered thanks to self calibration (green) ⇒ E/B leakage is reduced

Horn position knowledge improvement

Self-Calibration Simulation [Bigot-Sazy et al., A&A 2012, arXiv:1209.4905]

- Simulate instrument with systematics
- Perform Self-Calibration

 \star done for various amounts of time spent on calibration

 Check improvement on systematic parameters

Self-Calibration Simulation [Bigot-Sazy et al., A&A 2012, arXiv:1209.4905]

- Simulate instrument with systematics
- Perform Self-Calibration
 - \star done for various amounts of time spent on calibration
- Check improvement on systematics parameters

	List is	
not	exhaustive	

Horn location error Horn transmission Horn CrossPol HWP transmission HWP CrossPol

parameters	No Self Cal.	1 day / year		100 days/year	
	$\sigma_{nominal-real}$	$\sigma_{real-recovered}$	ratio	$\sigma_{real-recovered}$	ratio
$\overrightarrow{x_i}$	$100. \times 10^{-6}$	5.86×10^{-5}	17	2.27×10^{-8}	4402
$g_{\eta}(\overrightarrow{x_i})$	0.0001	1.36×10^{-6}	73	1.22×10^{-8}	8182
$e_{\eta}(\overrightarrow{x_i})$	0.0001	1.09×10^{-6}	92	1.20×10^{-8}	8280
h_η	0.01	1.18×10^{-4}	84	7.27×10^{-6}	1375
ξ_η	0.01	1.24×10^{-4}	80	5.81×10^{-6}	1722

 Improvement allows to improve maps by having a better synthesized beam model

Deduce amount of leakage from E to B

NB: Sources of T,E leakage are different in interferometry (see Bunn 2006)

Self-Calibration results

[Bigot-Sazy et al., A&A 2012, arXiv:1209.4905]

Self-Calibration summary

- <u>Complicated synthesized beam but can be known to exquisite</u> <u>accuracy</u>
- Specific feature of Bolometric Interferometry
- Adjustable handling of systematics limited by:
 - amount of time spent on self-calibration
 - systematics modeling can be complexified if needed (constraints $\propto N_h^2$, unknowns $\propto N_h$)
 - Possibility to improve on systematics when they become the limitation
- Calibration source:
 - ★ In the far-field ~50 m: need for a ~45m calibration tower
 - ★ Large power ~10-100 mW
 - ★ Polarized (but no need to know its actual polarization)

B.I. = Synthesized imager

Primary horns array

13 deg. FWHM, D=1.2 cm

Single detector beam – 400 horns 25% BW – 3 mm detectors (including detector finite size and 30% BW)

FWHM 23.5 arcmin

[Interestingly close to an analogic and polarization sensitive version of the « Omniscope » discussed in 2009 by Tegmark & Zaldarriaga]

8.5 deg.

Synthesized beam (on the sky)

(0.0, 90.0) Galactic

Synthesized beam used to scan the sky as with an imager

QUBIC QU Bolometric Interferometer for Cosmology

Data Analysis more complex but richer than with a classical imager

QU Bolometric Interferometer for Cosmology

Expected Sensitivity: σ(r)~0.01

QUBIC QU Bolometric Interferometer for Cosmology

QUBIC Deployment Plan

2017-2018 : at APC

- Integration started
- Early 2018: Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors
- April 2018: Upgrade to full size mirrors and 400 horns

In-Lab demonstration of Bolometric Interferometry

QUBIC Deployment Plan

2017-2018 : at APC

- Integration started
- Early 2018: Technological Demonstrator (reduced QUBIC)
 - 1/4 focal plane, 64 horns, small mirrors
- April 2018: Upgrade to full size mirrors and 400 horns

In-Lab demonstration of Bolometric Interferometry

2018 : Argentina

- mid-2018: Integration with mount, Installation on site
- First Light Sept. 2018 with ¼ focal plane

On-Sky demonstration of Bolometric Interferometry

2019 : Argentina

- Upgrade to QUBIC 1st module (2 focal planes 150 and 220 GHz)
- First Light March 2019
- Data taking: 2-3 years σ(r)=0.01

Stage III $\sigma(r) = 0.01$

2020-... : QUBIC evolves towards Stage-IV

- European extension of the collaboration
- Improved designs already being investigated
- Excellent quality site open to development

Evolution to Stage IV $\sigma(r) = 0.001$

Summary

• QUBIC is a novel instrumental concept

★ Dedicated to CMB polarimetry and inflationary physics

- ★ High sensitivity with \sim 2000 TES bolometers
- ★ High Control of Instrumental Systematics thanks to Interferometry
- ★ Spectro-Imaging within 2 bands (150 and 220 GHz) thanks to Interferometry

★ <u>Target</u> :

- First module (150 & 220 GHz): σ(r)=0.01 (incl. dust)
- QUBIC Full (more modules) (90, 150, 220 GHz) : $\sigma(r)$ =0.001 around 2025 ?
- A possible contribution to CMB-S4 or CMB-E4 ?

★ <u>Status :</u>

- Instrument being Integrated at APC First cool-down January 2018 Tests at APC
- On-Sky in Argentina with 256 TES Late 2018
- On-Sky in Argentina with 2048 TES in 2019

Thank you

Exciting times ahead !!!

