

How to unravel early moments of the Universe with neutrinos: Introduction to the PTOLEMY project

Chris Tully (Princeton University)

22 April 2025 APC Astroparticule & Cosmologie, Université Paris Cité, Paris, France

Research supported by

John Templeton Foundation

ERA OF AMAZING NEW TELESCOPES

James Webb Space Telescope

Source: Nasa

https://www.space.com/ james-webb-spacetelescope-ancientblack-hole-quasar d s e e c

Event Horizon Telescope Supermassive Black Hole at Center of Milky Way Galaxy

At 330,000 years, the Universe is smooth to 10 parts per million

Cosmic Neutrino Background

Number density: $n_v = 112/cm^3$ **Temperature:** $T_{v} \sim 1.95 K$ Time of decoupling: $t_v \sim 1$ second ~50% of the Total Energy Density of the Universe @ 1 sec neutron/proton ratio @start of nucleosynthesis \rightarrow ⁴He

Dicke, Peebles^{*}, Roll, Wilkinson (1965) <u>Cosmology's Century (2020)</u>
<u>IAMES PEEBLES</u>
NOBEL PRIZE IN PHYSICS 2019 ^{2}H

(³He)

Looking Back in Time with Photons

Emission Time -13.8x10⁹ years \sim -4x10⁹ years -200x10⁶ years -2x10⁶ years All of this light arrives at the same time (t=0)

Neutrino Masses from Oscillations

Theory developed by Bruno Pontecorvo

3 mass eigenstates X 3 flavors (electron, muon, tau)

Neutrino Masses from Oscillations

Theory developed by Bruno Pontecorvo

3 mass eigenstates X 3 flavors (electron, muon, tau)

Neutrino Mass Oscillation Observatory

KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss) determination of the neutrino mass hierarchy (E_v ~ MeV – GeV) low energy neutrinos Depth – 2500 m – offshore Toulon (France)

Neutrino Mass Oscillation Observatory

KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss) determination of the neutrino mass hierarchy (E_v ~ MeV – GeV) low energy neutrinos Depth – 2500 m – offshore Toulon (France)

Massive Neutrino Timeline

Emission Time

Neutrino Sky

Einstein rings Predicted by Einstein in 1936

Neutrino Rings? **Einstein rings** from Primordial Black Holes Predicted by Einstein in 1936 v_3 $\bar{\nu}_2$ ν_2 ν_1 Three images of the same galaxy \bar{v}_1 73 v_3 V3 3 $\bar{\nu}_2$ $\bar{\nu}_3$ v_2

PTOLEMY - RELIC NEUTRINO DETECTION

PonTecorvo Observatory for Light Early-universe Massive-neutrino Yield

IDEA OF ENRICO FERMI

91 year anniversary!

Fermi, E. Versuch einer Theorie der β-Strahlen. I. *Z. Physik* **88**, 161–177 (**1934**). https://doi.org/10.1007/BF01351864

The neutrino masses are so tiny, their effects are smaller than atomic transitions in normal materials. (There is a reason that there are no units on this plot.)

PTOLEMY: 2D MATERIAL - GRAPHENE

Other graphene structures also under study 17

 $\phi \equiv$ "Atomic" work function

PTOLEMY: 2D MATERIAL - GRAPHENE

18

Other graphene structures also under study

 $b \equiv$ "Atomic" work function

MICRO-CALORIMETER

Based on the expertise of the INRiM important results have been achieved on electron measurement with TES. Key elements of the measurements: performing TES and new e-source based on nanostructures

First measurement of electrons at 100 V with resolution of ~1-1.5 eV

Best in the World!

Design Goal (PTOLEMY): $\Delta E_{FWHM} = 0.05 \text{ eV}$ @ 10 eV

translates to $\Delta E \propto E^{\alpha} \ (\alpha \le 1/3)$ $\Delta E_{FWHM} = 0.022 \text{ eV} @ 0.8 \text{ eV}$

RF MEASUREMENTS NON-DESTRUCTIVE ELECTRON TAG

RECENT PROJECT 8 TRITIUM RF MEASUREMENT

RF measurement background levels extremely low.

No events observed above endpoint, Setting upper limit on background rate

< 3×10⁻¹⁰ /eV/s (90% CL)

→ Background Rate
 < I event per eV
 in 100 years!

ACHIEVED!! RF MEASUREMENTS NON-DESTRUCTIVE ELECTRON TAG

Fabrication of a Tritiated-Graphene Target/Source Hydrogen and Deuterium loading on graphene at Roma1 and Roma3

atomic H as a tool to '*pinch*' the sp² bonds towards a sp³ configuration while maintaining the planar nature of graphene

sp³ C-H bond

T-chamber in Rome side view:

UKAEA's Active Gas Handling System (tritium for JET, EU Tokamak) for feasibility study & design requirement of a new T loading chamber

JINST 17 (2022) 05, P05021

• A new electromagnetic filter idea based on RF detection and dynamic E setting

JINST 17 (2022) 05, P05021

• A new electromagnetic filter idea based on RF detection and dynamic E setting

JINST 17 (2022) 05, P05021

• A new electromagnetic filter idea based on RF detection and dynamic E setting

JINST 17 (2022) 05, P05021

• A new electromagnetic filter idea based on RF detection and dynamic E setting

 Δ V known to 1 ppm precision

Precision energy measurement from Condensed Matter/ARPES Electostatic analyser

~few meV energy resolution

Electron optic basic equation

End-to-End Drift Collimation and Transmission Results

10% Static Transport Achieved!!! Down to 160eV

Average over $\phi = [0, 2\pi], N = 81600$

DEMONSTRATOR MAGNET

BEING BUILT AND WILL BE INSTALLED AT THE LNGS KEY ELEMENT TO REALIZE THE PTOLEMY EXPERIMENT

Construction ASG/Suprasys consortium of a SC dipole with special attention to the fringe field

Under construction in Genova \rightarrow Shipment to CERN → LNGS Simulated B-map Low Power MgB₂ Superconducting Conduction-cooled Coils Vacuum System 🗳 < 200 cm

Zero B field saddle point key feature of the field map

The PTOLEMY Collaboration

The PTOLEMY Collaboration

14 May 202³4, Pollica, Italy

CONCLUSION

- PTOLEMY's goal is to eventually detect the cosmic neutrino background
- The detector prototype will be ready at LNGS by the end of this year
- Prototype baseline option is: T embedded on graphene; New concept EM filter; electron energy resolution measured in several steps (SDD/electrostatic spec/TES). Ultimately operating with sub-eV energy resolution.
- Ultimate goals of the Demonstrator: instrumented mass ~ hundreds of µg, energy resolution 50-100 meV, T storage solution will come from optimization of atomic T support structure. Time scale 5 years.
- ''Intermediate'' physics program of Demonstrator: neutrino mass measurements (or limits) beyond what has been achieved by all previous experiments.
- Submitted letter of intent to European Strategy for Particle Physics 2026 (#28)

SENSITIVITY AS A FUNCTION OF TRITIUM MASS

Remarks:

 the sensitivity is weakly dependent upon the energy resolution (500 meV is already a good starting point)

1 µg (7x7 cm²) already
 provides competitive sensitivity

- 100 µg (0.5 m²) can potentially probe the neutrino mass down to the IO scenario

In preparation a theory paper on solid state effects on the electron spectrum & consequent theory systematics on m_v **extraction** (A. Casale, A. Esposito G. Menichetti, V. Tozzini)

HV High precision stability (LNGS)

37