WMAP: Experimental Sources of Systematic Error

Stephan Meyer Kavli Institute for Cosmological Physics University of Chicago

Instrument Design Philosophy

- 1.Control systematic effects from external sources (sun, earth, moon).
- 2.Control systematic effects from instrument by designing in extreme stability (temperature, voltage)
- Do this even at the cost of instrument sensitivity

Design Properties and Goals

- Resulting design uses
 - -differential radiometers
 - -L2 orbit
 - -passive cooling
 - -4 levels of modulation
 - -complex scan pattern
- Design goal of 4 µK limit on systematic errors reached.

ONo systematic corrections applied in data analysis of first year data

WMAP Parameters

- •Frequencies: 23, 33, 41, 61, 94 GHz
- Beam size: 0.88, 0.66, 0.51, 0.35, 0.22
 Degrees FWHM
- Primary modulation: 2.5 KHz
- Spin Frequency: 0.464 rpm
- Precession period: 1 hour

Parameters, maps, and data are at http://lambda.gsfc.nasa.gov/product/map/

Assembly

Each DA as two complete radiometers

70 K

90 K

300 K

The WMAP Instrument contains 10 DAs

W Band Amplifier

W-20

25 mm

InP High Electron Mobility Transistor

MAP Pseudo Correlation Receiver

Simplified Radiometer Diagram

Electric Field Signal into Power Detector

$$v_{l,in} = \frac{1}{\sqrt{2}} \left(\frac{A+B}{\sqrt{2}} + n_1 \right) g_1(t) \pm \frac{1}{\sqrt{2}} \left(\frac{A-B}{\sqrt{2}} + n_2 \right) g_2(t)$$
$$v_{r,in} = \frac{1}{\sqrt{2}} \left(\frac{A+B}{\sqrt{2}} + n_1 \right) g_1(t) \mp \frac{1}{\sqrt{2}} \left(\frac{A-B}{\sqrt{2}} + n_2 \right) g_2(t)$$

$$\overline{A} = \overline{B} = \overline{AB} = \overline{AB} = \overline{n_i A} = \overline{n_i B} = 0$$

$$\overline{AA} \propto k_B \Delta \nu T_a$$
$$\overline{BB} \propto k_B \Delta \nu T_b$$

Voltage out of Power Detector

$$V_{l} = s_{l}v_{l,in}^{2} = \frac{s}{2} \left\{ \left(\frac{A^{2} + B^{2}}{2} + n_{1}^{2}\right)g_{1}^{2}(t) + \left(\frac{A^{2} + B^{2}}{2} + n_{2}^{2}\right)g_{2}^{2}(t) \mp (A^{2} - B^{2})g_{1}(t)g_{2}(t) \right\}$$

$$V_r = s_r v_{r,in}^2 = \frac{s}{2} \left\{ (\frac{A^2 + B^2}{2} + n_1^2) g_1^2(t) + (\frac{A^2 + B^2}{2} + n_2^2) g_2^2(t) \pm (A^2 - B^2) g_1(t) g_2(t) \right\}$$

• $A^2, B^2 \Box T_{\text{CMB}} < 3K$ $A^2 - B^2 \Box T T < 30$ [K+ offset • $n^2 \Box T_{\text{Sys}} < 30$ K for K band and ~ 90K for W band

Leading terms are 10⁶ larger than last term

Using the radiometer output

- The leading two terms out of the detector are between 10⁵ and 10⁶ larger than the last term.
- The amplifiers have gain variations, *g*(*t*), with 1/f characteristics
- Differencing and locking detection can remove almost all of the first two terms

Post-Detection Signal Processing Diagram

Post-Detection Signal Processing

- Out of the detectors comes a signal with spikes on it during the phase switch transitions.
- AC coupling centers this on 0
- Track and Hold knocks out spikes
- Demodulation gives difference between A and B
- Low pass filtering makes it possible for ADC to integrate
- V/F ADC gives true integral of signal over windowing interval.
- Correlations between 25.6 ms samples are 2.6% becauase of low pass filter and -9% from V/F ADC.

```
29/06/200
```


Timestream Data

Each line is the sum of the two signals from each DA

What could go wrong?

- Phase and amplitude mismatch of chains. The signal to noise depends on cos(θ)
- Cross-talk in cold hyrid tee (leads to about 0.2K offset in WMAP radiometers)
- Standing waves cause gain mismatch and gain flatness errors

WMAP Observation Strategy

- Differential radiometer moves 1/f knee to near 1 mHz.
- Primary modulation frequency (spin) higher then radiometer effective 1/f knee.
- Large area of the sky covered with the secondary modulation (precession) in relatively short time.
- Full sky coverage.
- Relatively uniform coverage.

Radiometric offset and 1/f noise

Gain Imbalance

- •Gain imbalance before hybrid tee promotes a common mode signal.
- Mostly canceled for T measurement. Not for polarization.
- •Can be corrected using the common mode signal from dipole anisotropy.

Predicted Common-mode Response

The gain imbalance in the two arms can be determined

29/06/200

Achieved radiometer stability is high Gain and Offset Over 1 Year Period

Estimating Sources of Systematic Errors

- Systematic errors are of two sorts:
 - Additive $P_{out} = P_{in} + \langle D(t) \rangle$
 - where (=™P/™D is the susceptibility
 - D(t) is the time dependent driving function
 - Multiplicative $P_{out} = g(t) P_{in}$
- Driving function time dependence
 - Modulation synchronous
 - Does not integrate down with time
 - Assume different driving functions add with random phase
 - Random (integrates down with time)

Radiometer Systematic Error Terms

Component	Susceptibility \times Forcing function	Effect
Feed horns	$\epsilon imes \Delta (T_a - T_b)$	Α
Orthomode transducer	$\epsilon imes \Delta (T_a - T_b)$	Α
OMT - hybrid waveguides	$\epsilon imes \Delta (T_a - T_b)$	Α
FPA hybrid tee	$(\epsilon_a - \epsilon_b) imes \Delta T$	Α
FPA HEMT amplifiers	$dg/dx \times \{\Delta V_{gc}, \Delta V_{gf}, \Delta V_d, \Delta T, \Delta I_{LED}\}$	Μ
RXB HEMT amplifiers	$dg/dx \times \{\Delta V_{gf}, \Delta V_d, \Delta T\}$	Μ
Band definition filters	$dS_{21}/dt imes \Delta T$	A^*, M
Phase switches	$d(S_{21}(0^\circ) - S_{21}(180^\circ)/dx \times \{\Delta T, \Delta I\}$	A^*, \mathbf{M}
Detectors	$ds/dT imes \Delta T$	Μ
Line drivers	$dg/dx imes \{\Delta V_{dd}, \Delta V_{ss}, \Delta T\}$	Μ
AEU	$\{dA_v/dx, dO_v/dx\} imes \{\Delta T, \Delta V_{bus}\}$	A, M
PDU	$\{dV_{ge}/dx, dV_{gf}/dx, dV_d/dx, dI_{LED}/dx\} \times \{\Delta T, \Delta V_{bus}\}$	

Instrument Temperatures During First Year Observations

29/06/200

The warm part of the instrument is thermally suspended with time constant of a week.

Temperature Powerspectrum

Paris Cosmology Colloquium 2005

29/06/200

Temperature Drift Rates

Temperature differences are proportional to the drift rates.

Temporial variation in temperature differences drive systematics

Top of Reflector Power Spectrum

5

Characterization of optical instrument elements that can effect systematics

Window Function Determination

- Two methods to measure beam shape
 1. Pixelize (2.4') a Jupiter map.
 - 2. Fit time ordered data (TOD) to Hermite functions centered on position of Jupiter.
- Both methods iteratively determine a centroid.
- The two methods agree within measurement uncertainty.

Normalized Symmetrized **Beams**

29/06/200 5

Relative Gain

- Calibration of WMAP is done using the change in the dipole due to the change of velocity of the satellite over the year. (*l*=1)
- Want to know absolute C_l over all l so we must be able to relate point source response to full beam response.
- Net uncertainty in total beam solid angle is about 2%.
- Beam uncertainties are propagated through all analysis.

Contributions to Beam

Paris Cosmology Colloquium 2005

29/06/200

Adopted Window Functions

Final Estimated Beam Uncertainty

Hermite statistical

Fractional diff between Jup maps and Hermite

Adopted 1 (beam transfer function uncertanty

2xHermite statistical

29/06/200

Far-Sidelobe Determination Four sources of information used for sidelobe determination

- Anechoic chamber with 3m source telescope and reflections at -70dB. Model of 1/2 of reflector system is measured without full ground screens.
- 2. Outdoor range with full reflector system. Limited by noise floor at -100dB.
- 3. Moon during phasing loops. Moon about 2⁰ across but not full coverage.
- 4. Physical optics model.

29/06/200

Sum and Differenc e Maps

29/06/200

Polarization Measurements

- Polarization measurements depend on difference between two radiometers
 - •Gain imbalances, pass-band imbalance, beam sidelobe differences all effect the results.