Gravitational dynamics, galaxy structures and the new SDSS data

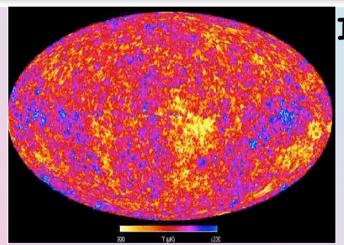
Francesco Sylos Labini

Enrico Fermi Center, Rome (Italy) &

Institute for complex systems, CNR, Rome (Italy)

Paris Observatory, 27 October 2006

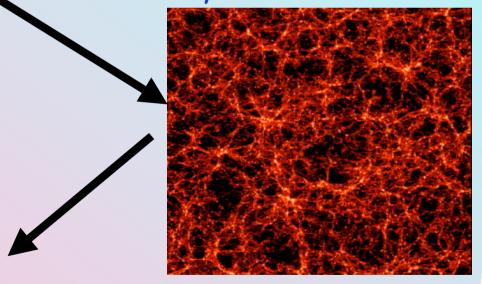
The problem of structure formation



11243 goloxies 25000 10000 1732 goloxies 25000 1732 goloxies 25000

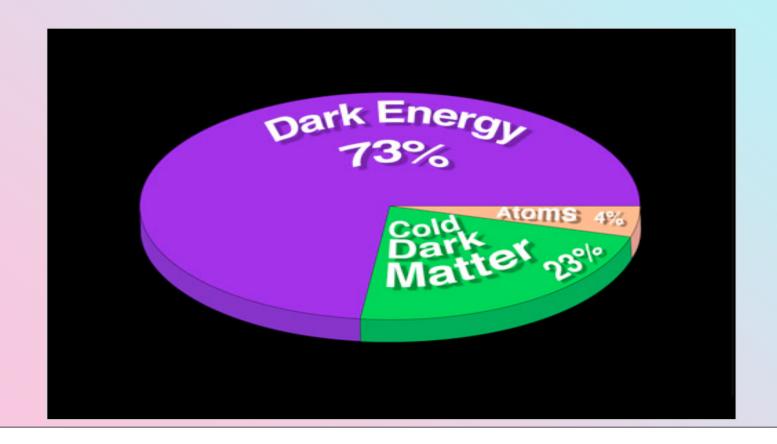
Initial conditions: uniform distribution

Dynamics: self-gravitating infinite system



Final conditions: Stronlgy clustered power-law correlations

Dark Matter in cosmology



Dark Matter: a statistical physicist point of view

- Fundamental properties of (dark matter) density fields in the framework of FRW models
- >Study of galaxy correlations and relation to the (dark matter) underlying density field
- >Study of the gravitational many-body problem by means

of simplified simulations

$$\lim_{R \to \infty} \sigma^2(R) = 0 \approx \lim_{R \to \infty} \frac{1}{V(R)} \int_{V(R)} \xi(r) d^3 r$$

$$\lim_{R\to\infty} \int_{V(R)} \widetilde{\xi}(r) d\vec{r} = P(0) = 0$$

$$\sigma^{2}(R = R_{H}(t)) = const. \longrightarrow \sigma_{\phi}^{2}(R) \approx \frac{1}{2} P_{\phi}(k) k^{3} \bigg|_{k=1/R} \approx const.$$

Substantially Poisson (finite correlation length)

$$P(0) \approx \int \widetilde{\xi}(r) d^3 r = const. > 0$$

$$< \Delta M(r)^2 > \propto < M(r) >$$

Super-Poisson (infinite correlation length)

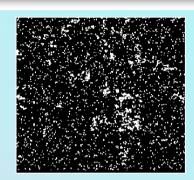
$$P(0) \approx \int \widetilde{\xi}(r) d^3 r = \infty$$

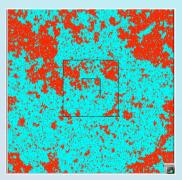
$$< \Delta M(r)^2 > \propto < M(r) > \beta \quad 1 < \beta < 2$$

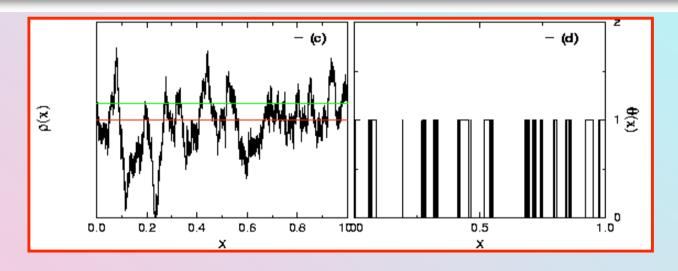
Sub-Poisson (ordered or super-homogeneous)

$$P(0) \approx \int \tilde{\xi}(r)d^3r = 0$$

$$< \Delta M(r)^2 > \infty < M(r) > \beta \quad 2/3 < \beta < 1$$

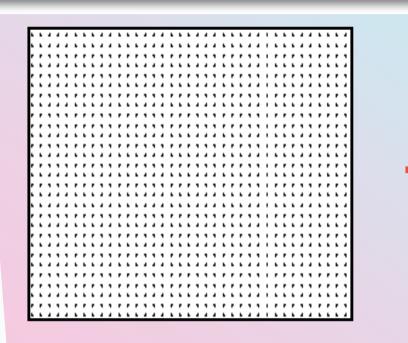


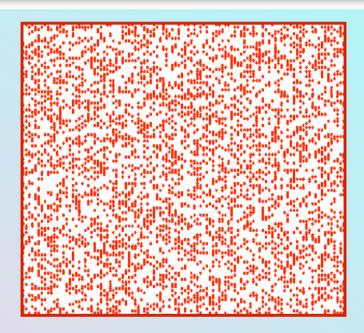




$$\theta_{v}(\vec{x}) = \theta(\delta(\vec{x}) - v\sigma) = \begin{cases} 1 & \text{if } \delta(\vec{x}) \ge v\sigma \\ 0 & \text{if } \delta(\vec{x}) \le v\sigma \end{cases}$$

$$\xi_{v}(r) = f(v, \xi_{c}(r))$$





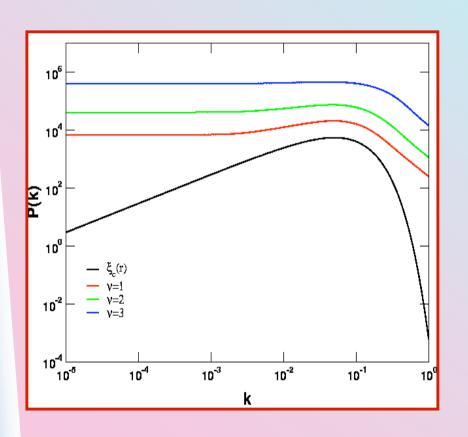
$$P(0) = 0$$

$$\sigma^2(R) \approx R^{-4}$$

$$P(0) = const.$$

$$\sigma^2(R) \approx R^{-3}$$

R. Durrer, A. Gabrielli, M. Joyce and F. Sylos Labini, ApJL ,585, L1 (2003)



$$P_c(0) = const \Rightarrow P_v(0) = const$$

$$P_c(0) = \infty \Rightarrow P_v(0) = \infty$$

$$P_c(0) = 0 \Rightarrow P_v(0) = const$$

$$P_{\nu}(k) \neq \nu^2 P_c(k) \forall k$$

$$\xi_{\nu}(r) \cong \nu^2 \xi_c(r)$$

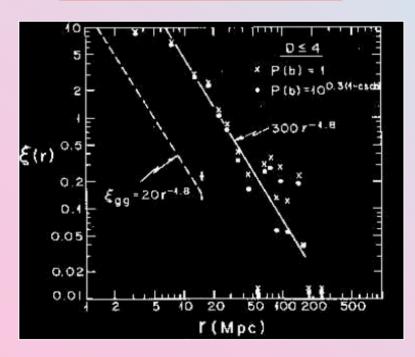
HZ critical feature $\xi(r) \approx -r^{-4}$

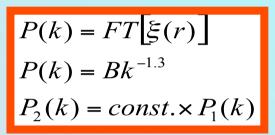
$$\xi(r) \approx -r^{-4}$$

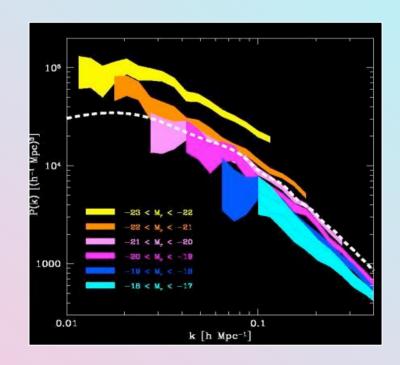
$$\xi(r) = \frac{\langle n(r)n(0) \rangle}{\langle n \rangle^2} - 1$$

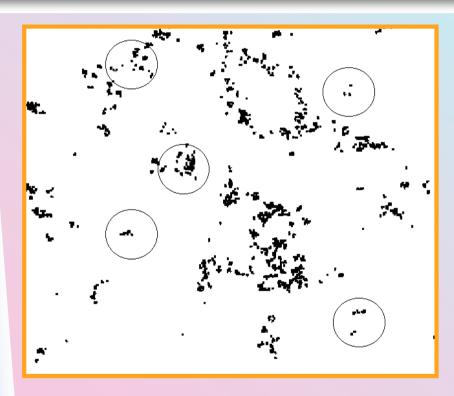
$$\xi(r) = Ar^{-1.7}$$

$$\xi_1(r) = const \times \xi_2(r)$$



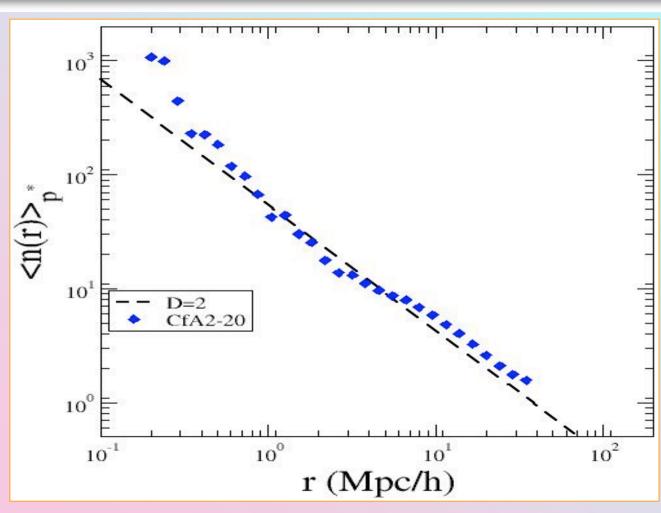




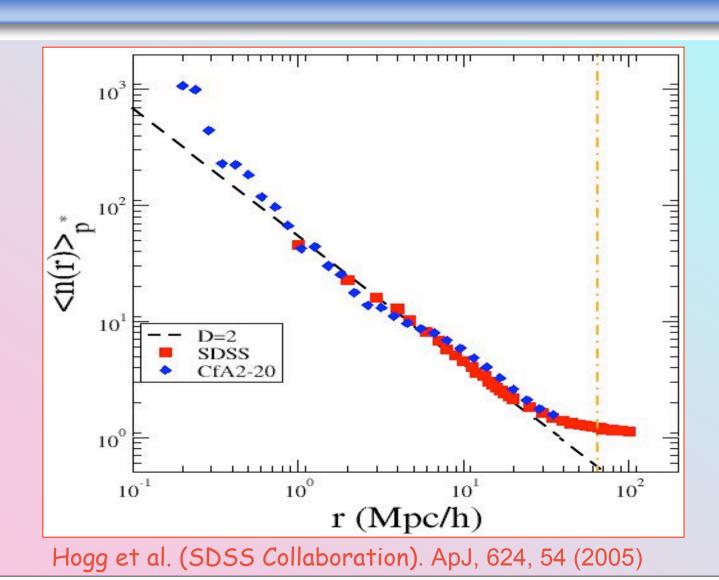


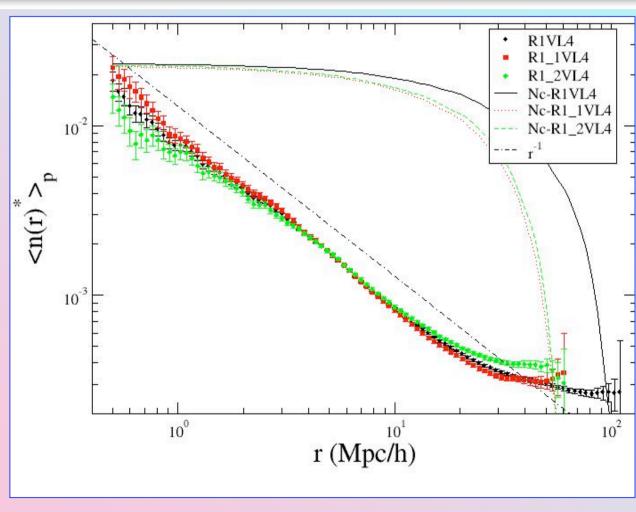
$$\langle N(r) \rangle_P = \sum_{i=1}^M N_i(r) = Br^D \quad D \le 3$$

$$\langle n(r) \rangle_p = \frac{\langle N(r) \rangle_p}{V(r)} = \frac{3B}{4\pi} r^{D-3}$$

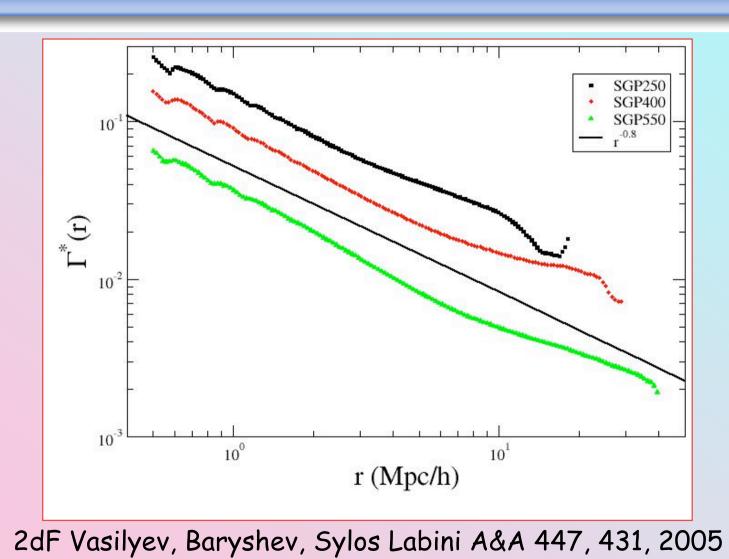


Sylos Labini, F., Montuori M. & Pietronero L. Phys Rep, 293, 66 (1998)



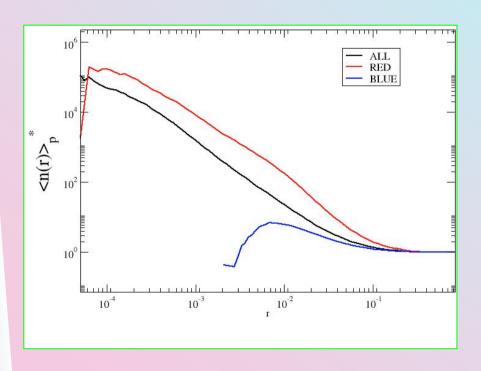


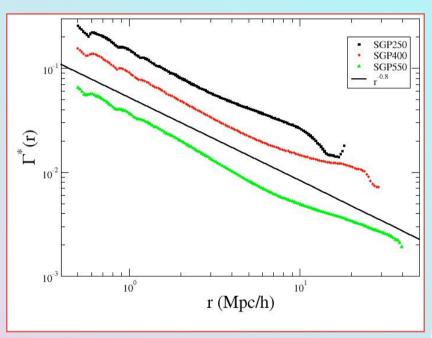
SDSS DR4: Sylos Labini, Vasilyev, Baryshev, A&A 2006





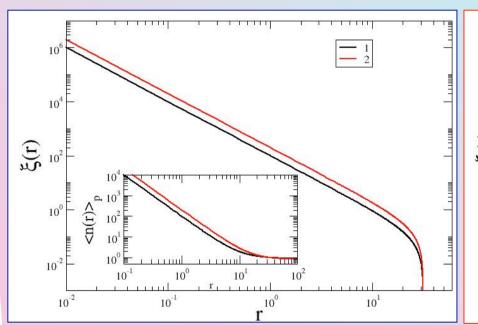
- > Selection of objects and the "bias" problem
- > Formation of non-linear structures....

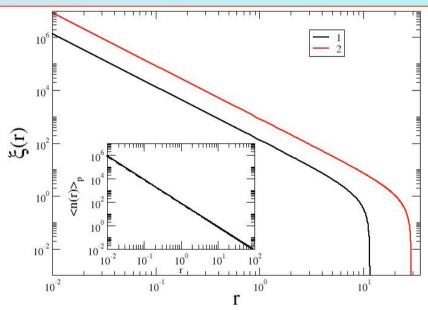




Correlation of "galaxies" of different "luminosity" is different

Galaxies of different luminosity present the same correlations





$$\langle N(R_s) \rangle_P = BR_s^D$$

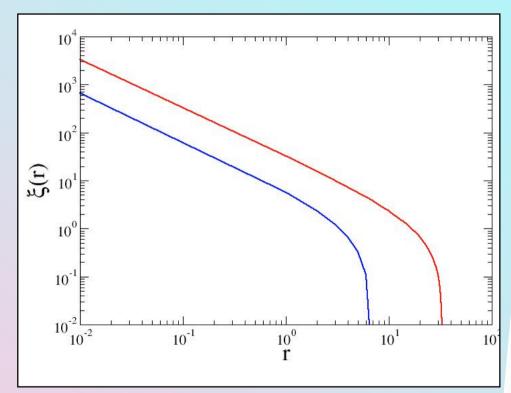
$$V(R_s) = \frac{4\pi}{3}R_s^3$$

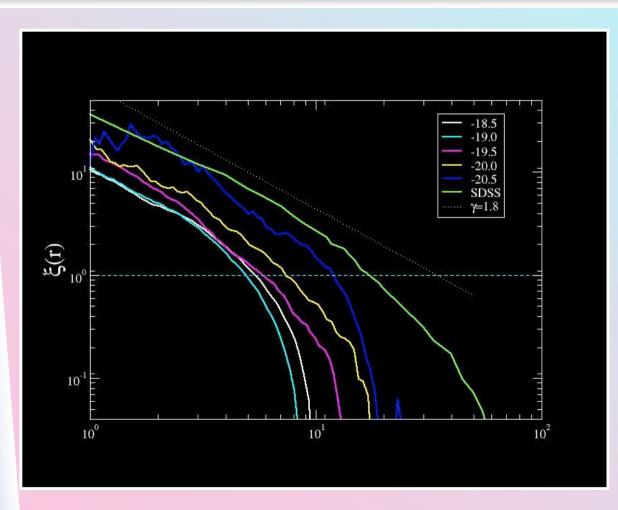
$$\langle n \rangle_E = \frac{\langle N(R_s) \rangle_P}{V(R_s)} = \frac{3B}{4\pi}R_s^{D-3}$$

$$\langle n(r) \rangle_P = \frac{\langle N(r) \rangle_p}{V(r)} = \frac{3B}{4\pi} r^{D-3}$$

$$\xi_{E}(r) = \frac{\langle n(r) \rangle_{P}}{\langle n \rangle_{E}} - 1 = \frac{D}{3} \left(\frac{r}{R_{s}} \right)^{D-3} - 1$$

$$\xi_{E}(r_{0}) = 1 \Rightarrow r_{0} = \left(\frac{D}{6} \right)^{1/(D-3)} R_{s}$$





$$\xi(r) = Ar^{-1.7}$$

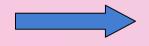
$$\xi_1(r) = const \times \xi_2(r)$$

$$P(k) = Bk^{-1.3}$$

$$P_2(k) = const. \times P_1(k)$$

$$const = f(R_s)$$

- \triangleright Bias: this is not only a parameter but a function b(r). Is this the same problem of galaxy catalogs?
- Non-linear regime: no theoretical predictions (crucial for comparison with observations)
- Linear regime: Problem of characterization of real space properties in the regime of small fluctuations (PS vs CF). Problem of generating IC...



How much discreteness is important? statistical and dynamical effects

Gravitational clustering: theoretical framework

- >Newtonian approximation in an expanding universe
- > Collisionless gas (at the scale of interest): Vlasov-Poisson

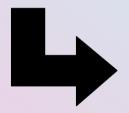
$$\frac{\partial f}{\partial t} + \frac{\mathbf{v}}{a^2} \cdot \nabla f - \nabla \Phi \frac{\partial f}{\partial \mathbf{v}} = 0$$

$$\nabla^2 \Phi(\mathbf{x}) = \frac{4\pi G}{a^3} \int (f - f_0) \, d\mathbf{v}$$

Very often the Vlasov equation is simplified into fluid equations

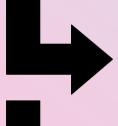
Solution of the equation of motion

> Perturbative solution of fluid equations

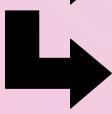


Only valid for small density perturbations or large scales

> Numerical simulations

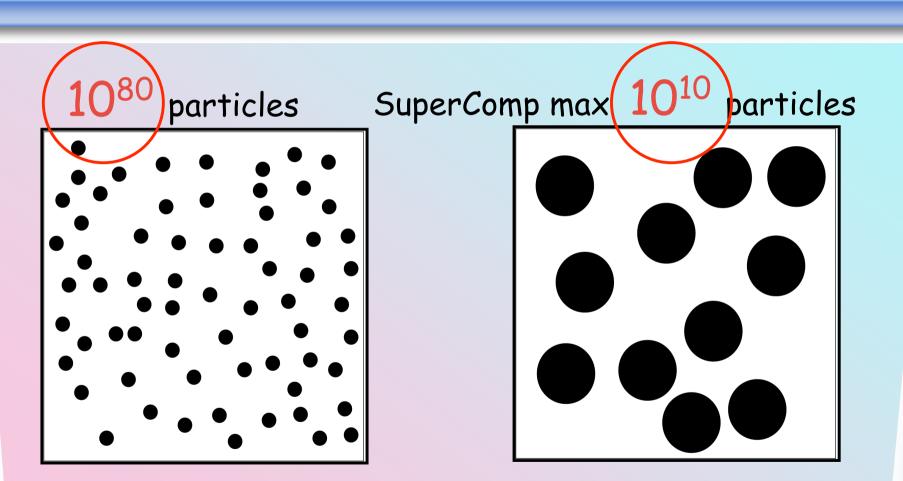


Direct solution Vlasov not feasible



Discretization into "N-bodies"

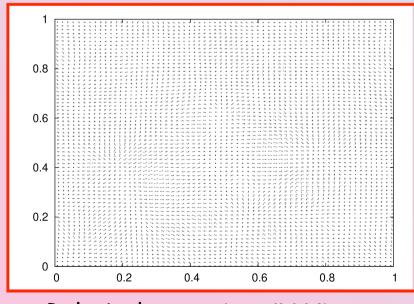
Discreteness effects

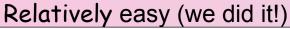


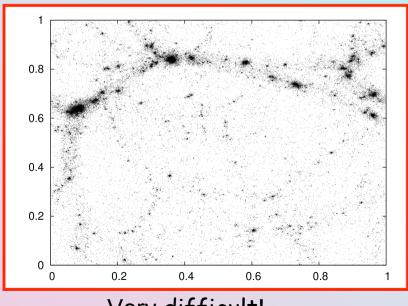
Do these systems have the same evolution?

Discreteness effects

- There is no rigorous theory of discreteness effects (only convergency "tests")
- The main reason is that there is not a single discretization scale at all times







Very difficult!

- Construct an analogous perturbation theory than the standard fluid one $(\delta \rho/\rho <<1)$.
- > Full evolution

$$\ddot{\mathbf{x}}_{i} + 2H(t)\dot{\mathbf{x}}_{i} = -\frac{1}{a^{3}} \sum_{i \neq j} \frac{Gm_{j}(\mathbf{x}_{i} - \mathbf{x}_{j})}{\left|\mathbf{x}_{i} - \mathbf{x}_{j}\right|^{3}}$$

$$a(t) = 1$$
; $H(t) = 0$; $Gm^2 = -e^2 \Rightarrow$ Wigner Crystal

$$ho$$
Linearization $\mathbf{x}_{\mathbf{i}}(t) = \mathbf{R} + \mathbf{u}(\mathbf{R},t)$ $\mathbf{F}(\mathbf{r}) = \sum_{\mathbf{R}'} \mathbf{D}(\mathbf{R} - \mathbf{R}') \mathbf{u}(\mathbf{R}')$

$$\ddot{\mathbf{u}}(\mathbf{R},t) + 2H\dot{\mathbf{u}}(\mathbf{R},t) = -\frac{1}{a^3} \sum_{\mathbf{R}'} \mathbf{D}(\mathbf{R} - \mathbf{R}') \mathbf{u}(\mathbf{R}',t)$$

Bloch Theorem: diagonalization by plane waves

$$\mathbf{u}(\mathbf{R},t) = \frac{1}{N} \sum_{\mathbf{k}} \tilde{\mathbf{u}}(\mathbf{k},t) \exp(i\mathbf{k}\mathbf{R})$$

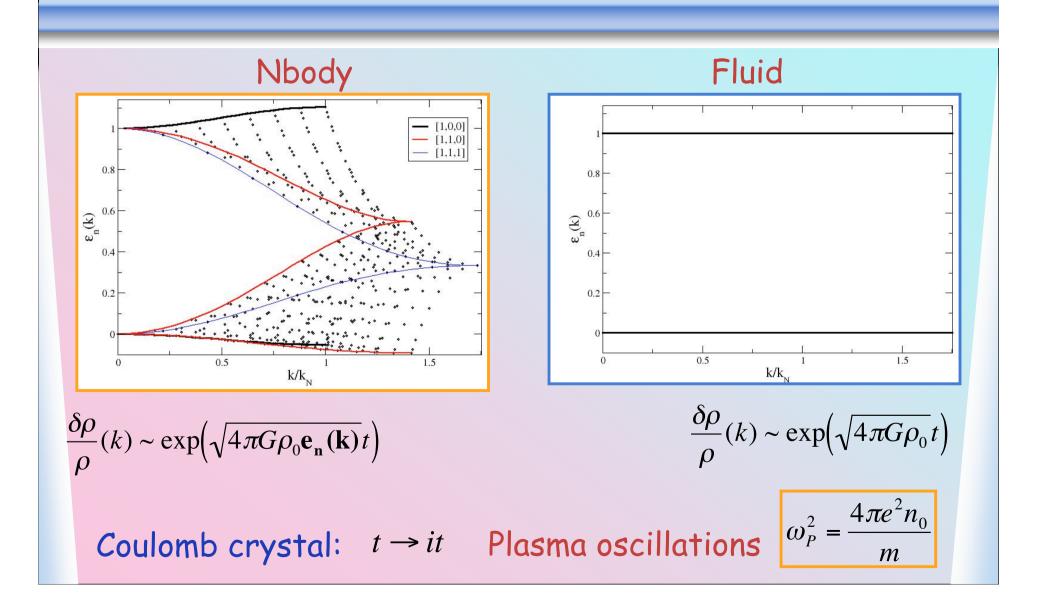
$$\widetilde{\mathbf{D}}(\mathbf{k}) = FT[\mathbf{D}(\mathbf{R})]$$

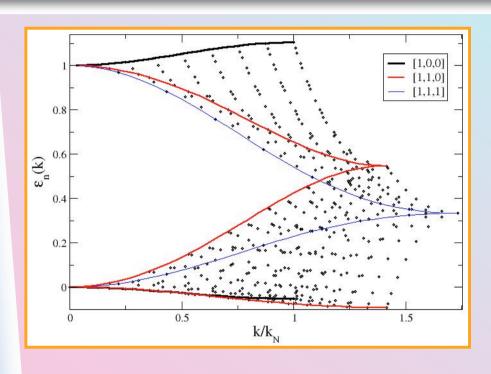
$$\ddot{\tilde{\mathbf{u}}}(\mathbf{k},t) + 2H\dot{\tilde{\mathbf{u}}}(\mathbf{k},t) = -\frac{1}{a^3}\mathbf{D}(\mathbf{k})\tilde{\mathbf{u}}(\mathbf{k},t)$$
System of vectorial 2nd order differential equations

$$\forall \mathbf{k}$$
 Eigenvalue Eq. $\tilde{\mathbf{D}}(\mathbf{k})\mathbf{e}_{\mathbf{n}}(\mathbf{k}) = \omega_n^2(\mathbf{k})\mathbf{e}_{\mathbf{n}}(\mathbf{k})$ $n = 1, 2, 3$

Kohn sum rule

$$\frac{\varepsilon_{\mathbf{n}}(\mathbf{k}) = \frac{\omega_n^2(\mathbf{k})}{4\pi G\rho_0} \Rightarrow \forall \mathbf{k} \sum_{n=1,2,3} \varepsilon_{\mathbf{n}}(\mathbf{k}) = 1$$





- > Explicit fluid limit
- > Oscillatory modes
- > "Super-fluid" modes
- > Anisotropy
- Discreteness effects depend on time
- Explicit differentiation between discreteness and non-linear fluid effects
- M. Joyce, B. Marcos, A. Gabrielli, T. Baertschiger, F. Sylos Labini Phys. Rev. Lett. 95, 011305 (2005)
- B. Marcos, T. Baertschiger, M. Joyce, A. Gabrielli, F. Sylos Labini Phys. Rev. D 73, 103507 (2006)

Conclusions

- HZ tail in real space: distinctive feature of FRW-IC in matter distribution is the behavior of the large scales tail of the correlation function. Note yet observed in galaxy distributions
- Homogeneity scale: not yet identified with galaxy distribution
- Structures in N-Body simulations: Problem of identification of "galaxies" and problem of size. Underlying theoretical problem: discreteness and its effects in the non-linear regime

Selected references

- A.Gabrielli, F. Sylos Labini, M. Joyce, L. Pietronero Statistical physics for cosmic structures <u>Springer Verlag</u> 2005
- M. Joyce, B. Marcos, A. Gabrielli, T. Baertschiger, F. Sylos Labini Gravitational evolution of a perturbed lattice and its fluid limit Phys.Rev.Lett. 95 011304 2005
- Gabrielli, M. Joyce and F. Sylos Labini The Glass-like universe: real space statistical properties of standard cosmological models, Phys.Rev.D, 65, 083523 (2002)
- M. Joyce, F. Sylos Labini, et al. Basic properties of galaxy clustering in the light of recent results from the Sloan Digital Sky Survey A&A. 443, 11, (2005)