

Beyond the Standard Lore of the SZ effect

Sergio Colafrancesco ASI-ASDC INAF - Osservatorio Astronomico di Roma Email: <u>Sergio.Colafrancesco@mporzio.astro.it</u>

11th Paris Cosmology Colloquium

SZ effect: the Standard Lore

The origin of the SZ effect

Non-coherent Compton Scattering

Fall-out effect of the Cold War

1957 A.S. Kompaneets publishes his Compton scattering Fokker-Planck equation

$$\frac{\partial n}{\partial y} = \frac{1}{x^2} \frac{\partial}{\partial x} x^4 \left(\frac{\partial n}{\partial x} + n + n^2 \right)$$

(derived by A.S. Kompaneets in Soviet Union ~ 1950 but was classified due to nuclear bomb research until 1956)

1 Ya. B. Zel'dovich & R. Sunyaev derive the thermal SZ effect (i.e., applied the Kompaneets eq.)

SZ effect: observational timeline

1993 - Ryle tel. first detect the SZE from A2218 (Jones et al. 1993)

1999 - Interferometric SZE maps out to z ~ 1 (OVRO) (Carlstrom et al. 1999)

1998 – First sub-mm SZE detection of RXJ1347 (Diabolo) (Pointecouteau et al. 1998)

2002 – First SZE spectrum Coma cluster (DePetris et al. 2002)

2003 – Bolometric observations (5" FWHM) A3266 (VIPER + ACBAR) (Gomez et al. 2003)

ASDE SZ effect: theoretical timeline

1980 Sunyaev & Zel'dovich ARA&A, 18, 37 Review

1995 Y.Rephaeli ARA&A, 33, 541 Review

1999 M. Birkinshaw Phys.Rep., 310, 97 Review

2007 S. Colafrancesco NewA.Rev., 51, 304 Review

CMB distortions by hot IC gas:

- first principles
- non-relativistic approach

SZE:

- -Various physical mechanisms (thermal, kin., pol., ...)
- Relativistic treatment

SZE:

- Various astrophysical sources
- Observational techniques
- Theoretical backgrounds

SZE:

- Generalized description
- Thermal, non-thermal, DM, B-field, ...
- Unique tool for μwave tomography of LSS

SZ_{th}: working approximations

Blob-ology

04 06 04

aw <mark>Mana</mark>a

13 48 M 80 M 18 U 9 89

ASDC ASI Science Data Center

SZ effect and simple physics

Science	Technique	Quantity
Simple science results - cluster physics	 Integrated SZ effects total thermal energy content total hot electron content SZ structures not as sensitive as X-ray data need for gas temperature Mass structures vs. lensing Radial peculiar velocity via SZ kinematic Transverse velocity via Rees-Sciama effect (Nottale, 1984) 	E _e N _e M _{gas} , M _{tot} V _r V _t
Simple science results - cosmology	 Cosmological parameters cluster-based Hubble diagram cluster counts as function of redshift Cluster evolution physics evolution of cluster atmospheres evolution of radial velocity distribution evolution of baryon fraction T_{CMB}(z) elsewhere in the Universe 	$egin{aligned} & H_{0} & & \ & \mathbf{\Omega}_{\mathrm{m}}\mathbf{\Omega}_{\mathrm{A}}\mathbf{\Omega}_{0} & & \ & T_{\mathrm{e}}(\mathbf{z}),\mathbf{n}_{\mathrm{e}}(\mathbf{z}) & & \ & V_{\mathrm{r}}(\mathbf{z}) & & \ & \mathbf{\Omega}_{\mathrm{b}} & & \ & T_{\mathrm{CMB}}(\mathbf{z}) & & \ \end{aligned}$

Astro-Particle Physics view of Large-Scale Structures

LSS and Dark Matter

DM signals

Best Labs.

Clusters

gas

[Colafrancesco 2006, 2007]

LSS shock waves

Shock wave acceleration \Rightarrow CRs

Magnetic fields in LSS

B-field in clusters: evidence

LSS and Black Holes

One of the most massive DM clumps at t = 1 Gyr containing one of the most massive galaxies and most massive BH

The first object descendants today

One of the most massive galaxy clusters at t = 13.7 Gyrs The AGN descendant is part of the central massive galaxy

z=0: Dark Matter z=0: galaxy light $M = 2 \times 10^{15} M_{\odot}$ M= 2×10¹⁵ M_r 2 Mpc/h 2 Mpc/h

BHs in galaxy clusters: evidence

3Hs: ejecta and pressure waves

Cluster cool cores

Storage rooms for cosmic material

The e⁻ distributions in clusters

[**S.C.** (2005 - 2007)]

Cosmo-Astro-Particle Physics in L.S.S.

Probing the origin of every particle family using a single technique

 $\frac{\sigma_T}{2}\int d\ell \cdot P_{e,th} + P_{e,rel}$

Jhe SZeffect

SZ effect: ...more than basics

SZE: general derivation

Intensity change
$$\Delta I(x) = 2 \frac{(k_B T_0)^3}{(hc)^2} y \tilde{g}(x)$$
 $y = \frac{\sigma_T}{m_e c^2} \int P d\ell.$ PressureThermal $P_{lh} = n_e k_B T_e$ Relativistic $P_{rel} = n_e \int_0^\infty dp f_e(p) \frac{1}{3} p v(p) m_e c$

$$\tilde{g}(x) = \frac{m_e c^2}{\langle k_B T_e \rangle} \left\{ \frac{1}{\tau} \left[\int_{-\infty}^{+\infty} i_0(x e^{-s}) P(s) ds - i_0(x) \right] \right\}.$$

$$\langle k_B T_e \rangle = rac{\sigma_T}{\tau} \int P d\ell = rac{\int P d\ell}{\int n_e d\ell}.$$

Redistribution function

$$P(s) = \int_{0}^{\infty} dp f_{e}(p) P_{s}(s;p)$$

SZE from various e⁻ populations

The SZ effect: unique tool to probe Astro-Particle Physics in cosmic structures

SZ effect & Cosmic rays

Relativistic particles in the ICM

SZ effect and CR acceleration

SZE, CRs & cooling flows

Warming Rays in cool cores

CRs from AGNs

SZE & cavities in Clusters [S.C. 2005, A&A, 435, L9]

SZE from radio-galaxy lobes

SZ effect & Dark Matter

AT.

17.1

SZE & DM nature

The case of Coma cluster

[**S.C.** 2004, A&A, 422, L23]

CMB maps & dSph galaxies (Draco)

Diffusion effects

1ES0657-556

1ES0657-556

The cluster 1ES0657-556

1ES0657-556: simple model

SZ_{DM} from 1ES0657-556

Isolating SZ_{DM} at ~223 GHz

ASI Science Data Center

& magnetic fields

SZ_{th} effect

B

B-field in clusters

Magnetic Virial Theorem

Temperature structure

$$\frac{1}{2}\frac{d^2 I_{ik}}{dt^2} = 2K_{ik} + \frac{2}{3}U\delta_{ik} + \int_V F_{ik}d^3x + W_{ik}$$

$$2K + 2U + U_B + W = 0$$

Hydrostatic Equilibrium

Density structure

$$\frac{\partial p_g(r,B)}{\partial r} + \frac{\partial p_B(r,B)}{\partial r} = -\frac{GM(\leq r)}{r^2}\rho_g(r,B),$$

Density structure

The T-M relation

$$kT_{\rm g} = kT_{\rm g}(B=0) \left(1 - \frac{M_{\phi}^2}{M_{\rm vir}^2} + \frac{P_{\rm ext}}{P_{\rm vir}}\right)$$

$$k_{\rm B}T_{\rm g}(B=0) = -\frac{\xi\mu m_{\rm p}W}{3M_{\rm vir}}$$
$$M_{\phi} \simeq 1.32 \times 10^{13} M_{\odot} \left[\frac{I(c)}{c^3}\right]^{1/2} \left(\frac{B_*}{C}\right) \left(\frac{r_{\rm vir}}{M_{\odot}}\right)^2$$

ASDC ASI Science Data Center

B-field & cluster structure: panacea

"B-field solves many (or all) of the still problematic aspects of cluster evolution"

[Colafrancesco & Giordano 2006-2007]

B-field from SZE

B-field evolution

Cluster-bound <B-pressure>

Cluster-bound <B-tension>

CR confinement in LSS

Magnetic tomography of LSS

Cluster bound average B-field

$$B\rangle = \int \frac{dV(z)}{dz} dz \int dM \cdot N(M,z) \cdot B(M,z)$$

$$\langle B \rangle \approx 200 - 500 \mu G$$

 $\langle B^2 \rangle^{1/2} \approx 40 - 100 \mu G$

SZE from LSS atmospheres

Strategy

- ----

SZE in LSS atmospheres

[Colafrancesco, Prokhorov & Dogiel 2007]

The slope of the SZE around X₀

Simple SZ physics not quite representative no reliable cluster physics no cosmological use	$\Delta y \approx 10\% \qquad \qquad$

SZ as single technique to study the leptonic structure of cluster/galaxy atmospheres

- density, entropy, pressure, energy
- various electron populations
- equilibrium conditions, shocks, B-field
- Acceleration vs. Injection vs. *in-situ* prod.

Technological challenge

- $\sim \mu K$ sensitivity
- arcsec arcmin resolution
- Solution Continuous μ -wave spectroscopy

Astro-Particle Physics

- DM nature
- CR physics
- B-field relevance

S ...

THANKS

for your attention !