- N

The Effective Theory of Inflation
and the Dark Energy In the
Standard Model of the Universe

H. J. de Vega

LPTHE, CNRS/Universit é Paris VI



Standard Cosmological Model: ACDM

-

ACDM = Cold Dark Matter + Cosmological Constant
Explains the Observations:

3 years WMAP data
Light Elements Abundances
Large Scale Structures (LSS) Observations

e o o o

Supernova Luminosity/Distance Relations (Acceleration
of the Universe expansion)

°

Gravitational Lensing Observations

°

Lyman « Forest Observations
# Hubble Constant (Hy) Measurements
L’ Properties of Clusters of Galaxies
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Standard Cosmological Model: Concordance Model
f ds® = dt* — a*(t) dz*: spatially flat geometry. j

The Universe starts by an INFLATIONARY ERA.

Inflation = Accelerated Expansion: % > 0.

During inflation the universe expands by at least sixty
efolds: % ~ 1029. Inflation lasts ~ 10~34sec and ends by
z ~ 10?® followed by a radiation dominated era.

Energy scale when inflation starts ~ 106 GeV.

This energy scale coincides with the GUT scale («<— CMB
anisotropies).

Matter can be effectively described during inflation by an
Scalar Field ¢(t, x): the Inflaton.

Lagrangean: £ = a’(t) {%2 - éva—f(); - V(gb)} .

LFriedmann eq.. H%(t) = 3]\1412” V; + V(gb)} , H(t) =a(t)/a(t). J



What is the Inflaton?
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It iIs an effective field.

It can describe a fermion-antifermion pair condensate:

¢ =< Yy >, ¢ = GUT fermion,

Such condensate can dominate the expectation value of the
hamiltonian and therefore govern the cosmological
expansion. [Recall that < ¢ >= 0].

Relevant effective theories in physics:

#® Ginsburg-Landau theory of superconductivity. It is an
effective theory for Cooper pairs in the microscopic
BCS theory of superconductivity.

# The O(4) sigma model for pions, the sigma and photons
at energies < 1 GeV. The microscopic theory is QCD:
guarks and gluons. © ~ gq , 0 ~ qq.

o |



Slow Roll Inflaton Models
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V(Min) = V/(Min) = 0 : inflation ends after a finite number

of efolds. Universal form of the slow-roll inflaton potential:
_ 4 ¢

Vie) =N M ()

N ~ 50 number of efolds since horizon exit till end of
unﬂation. M = energy scale of inflation.




SLOW and Dimensionless Variables

fX: ¢ ’ mL o H(r) = ) , (mzﬂj\f;)j

VN Mp; ( VN m VN
slow inflaton, slow time, slow Hubble.
x and w(x) are of order one.
Evolution Equations:

=3\ 5x (j§)2+w<x> .

1 d2X dx /
3H — =0 . 1
Nd7'2+ Hd7+w(X) @)

1/N terms: corrections to slow-roll

Higher orders in slow-roll are obtained systematically by
expanding the solutions in 1/N.
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Primordial Power Spectrum

fAdiabatic Scalar Perturbations: P(k) = ]Aﬁfgd\? sl T
To dominant order in slow-roll:
UNGCURE IS Ry 0 Vi RTl6
k ad 1272 \ Mp; w?(x)
Hence, for all slow-roll inflation models:
(S) N (M
|Ak ad| ™~ 27m/3 (MPZ)
The WMAP result |A'®) | = (0.467 £ 0.023) x 10~
determines the scale of inflation M (using N ~ 50)

2
(A%Dl) —1.02 %1075 — M = 0.77 x 106 GeV

The inflation energy scale turns to be the grand unification

energy scale !!
This statement is model independent [independent of the

Lshape of w(x)]. J




spectral indexng, Its running and the ratio r

L3 W], 2 v
s — 1= N w(X)] +N w(x)
dns _ 2 W'Y w"() 6 WO 8 WP w"(x
dink N2 w?(y) NZ wi(x) N2 wd(x)
L8 w’(x)]2

N [ w(x)

x IS the inflaton field at horizon exit.
ns — 1 and r are always of order 1/N ~ 0.02 (model indep.)

Running of n, of order 1/N? ~ 0.0004 (model independent).

D. Boyanovsky, H. J. de Vega, N. G. Sanchez,
LPhys. Rev. D 73, 023008 (2006), astro-ph/0507595. J



Ginsburg-Landau Approach

~ We choose a polynomial for w(y). A quartic w(x) is
renormalizable. Higher order polynomials are acceptable

since Inflation is an effective theory.
2
wx) =wo & +G3 x> +Gux* . G3=0(1) =Gy

V(g) =N M w( 2 ) =V £ 5 6249 6% + A 6*.
2 4
M? _ M _ Gy M
M=Mpy » 9= \/mﬁ (MPZ) Gy . A= N (MPZ)
Notice2that )
(45) ~107° (L) 10710, N~50,

# Small couplings arise naturally as ratio of two energy
scales: inflation and Planck.

# The inflaton is a light particle:
L m = M?/Mp; ~0.003 M , m=25x1013GeV



The number of efolds in Slow-roll

he number of e-folds N|x| since the field x exits the T
horizon till the end of inflation is:
Nlx| =N Xend w(( )) dy . We choose then N = N|y].

The spontaneously broken symmetric potential:
2
w(x) = 55 (X2 - 2)
produces Iinflation with 0 < /¥ Xinitia < 1 @and xepg = \/% .

This 1s small field inflation.

From the above integral: y = z — 1 — log z where z = y \?/8
This defines y = x(y). [1>2z>0for0 <y < o0].
Spectral index n, and the ratio r as functions of y:

_1_9324—1 16y =z

N (z—1)2

N ="~ (z—1)2
|



Binomial New Inflation: (y = coupling).

decreases monotonically with y :
ﬁstrong coupling) 0 < r < £ = 0.16 (zero coupling). T

(ns-1) vs.y

(6] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ns first grows with y, reaches a maximum value
Ns.mazimum = 0.96139 ... aty = 0.2387... and then n,
Ldecreases monotonically with y. J



Binomial New Inflation
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Trinomial Inflationary Models

-

# Trinomial Chaotic inflation:
wi) =32+ 55+ E
# Trinomial New inflation:
wx) = =3 2+ 4\ EC+ X+ 2R

h = asymmetry parameter. w(min) = w’(min) = 0,
y = quartic coupling, F(h)=8h*+4h%+1+ 80| (h2+1)

N

H. J. de Vega, N. G. Sanchez, Single Field Inflation models
allowed and ruled out by the three years WMAP data.
Phys. Rev. D 74, 063519 (2006), astro-ph/0604136.
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Monte Carlo Markov Chains Analysis of Data: MCMC.
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MCMC is an efficient stochastic numerical method to find
the probability distribution of the theoretical parameters that
describe a set of empirical data.

We found ns and r and the couplings y and » by MCMC.
NEW: We imposed as a hard constraint that » and n, are
given by the trinomial potential.

Our analysis differs in this crucial aspect from previous
MCMC studies of the WMAP data.

We ignore running of the spectral index since

dng/dInk ~ 0.0004 in slow roll.

Adding the running made insignificant changes on the fit of
ns and r.
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MCMC Results for Trinomial New Inflation.
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Probability Distributions. Trinomial New Inflation.
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Probability distributions: solid blue curves
Mean likelihoods: dot-dashed red curves.
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r VS. n, data within the Trinomial New Inflation Region.
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Marginalized probability distributions. New Inflation.
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Imposing the trinomial potential (solid blue curves) and just
the ACDM+r model (dashed red curves).
L(curves normalized to have the maxima equal to one). J



Probability Distributions. Trinomial Chaotic Inflation.
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Probability distributions (solid blue curves) and mean

likelihoods (dot-dashed red curves).

The data request a strongly asymmetric potential in chaotic

Inflation almost having two minima. That is, a strong
Lbreakdown of the y — —y symmetry. J




MCMC Results for Trinomial New Inflation.

 Bounds: r > 0.016 (95% CL) , > 0.049 (68% CL) o
Most probable values: ny, ~0.956 , r ~0.055.
The most probable trinomial potential for new inflation is
symmetric and has a moderate nonlinearity with the quartic
couplingy ~ 2.01...and h ~ 0.3.
The y — —yx symmetry is here spontaneously broken since
the absolute minimum of the potential is at y # 0.

2 8\’
w(x) = 35 (X — g)
C. Destri, H. J. de Vega, N. Sanchez, MCMC analysis of
WMAP3 data points to broken symmetry inflaton potentials

and provides a lower bound on the tensor to scalar ratio,
astro-ph/0703417.
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WMAP 3 years data plus others.

Angular Scale
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Theory and observations nicely agree except for the lowest
Lmultipoles: the quadrupole suppression. J




Quadrupole Suppression and Fast Roll

low-roll inflation is generically preceded by a fast-roll stage
where ¢% ~ V(¢). Fast-Roll typically lasts 1 efold. T

The slow-roll regime is an attractor with a large basin of
attraction.

During fast roll curvature and tensor perturbations feel a
potential equal to the slow-roll potential plus an extra
attractive piece. This new piece suppresses the low
multipoles as 1/12.

If the quadrupole modes (~ Hubble radius today) exited the
horizon 1.5 efolds after the beginning of fast roll, then the
guadrupole modes get suppresed ~ 20% in agreement with
the observations. = Niytq; e foids =~ 60 + 1.5.

D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Phys. Rev.
D74, 123006 and123007 (2006).
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Loop Quantum Corrections to Slow-Roll Inflation

CG(@ ) = Bolt) TR 1), Do(t) =< G(Ft) >, < (@ t) >=0

w@%ﬂ:=a@>f(§£3Lﬁ;wxn)éhf+iLo ,

a;%, a; are creation/annihilation operators,

X (n) are mode functions. n = conformal time.
To one loop order the equation of motion for the inflaton is

Go(t) + 3 H do(t) + V(Do) + g(Po) ([p(,1)]?) =0

where g(®g) = 1 V"' (dy).
The mode functions obey:

1/

L)+ 124 202(@0) a2 — 8| (o) =0

Lwhere M?(®g) = V"(®y) = 3 HE ny + O(1/N?) J



Quantum Corrections to the Friedmann Equation

fThe mode functions equations for slow-roll become,
!/ 2_1
)+ B2 = S ) =0, v =3+er — v +O(1/N?).

The scale factor during slow rollis a(n) = — (11_€V).

Scale invariant case: v = 3. A =32 —v =gy — ey controls
the departure from scale invariance.
Explicit solutions in slow-roll:

Xk(n) = % — 1) iVt Hﬁl)(—kn), H,Sl)(z) — Hankel function

Quantum fluctuations: ([p(z,)]*) = & [ (g;’fg Ixx(n)]?
2

e, )% = (£2)" [A? +In A2+ £ + 29 — 4+ O(A)]

UV cutoff A, = physical cutoff/H, £ = infrared pole.

<gb2>, <(Vgp)2> are infrared finite. We thus compute (Tj).

o



Quantum Corrections to the Inflaton Potential

rUpon uv renormallzatlon the Frledmann equatlon results

2
Quantum corrections are proportional to (Mipl) ~ 1079 1

The Friedmann equation gives for the effective potential:
0\ 2 Vi (o
Vers(®o) = VR(®o) + + (dn)® Vo)

2
Verr(®o) = Vr(Po) 1+ (—45\0@;) —W"VGV]
in terms of slow-roll parameters

Very DIFFERENT from the one-loop effective potential in
Minkowski space-time:

Veff(q)O) = Vr(Dg) + Ve (®0)]° In Y& (®o)

64 72 M?2




Quantum Fluctuations:

calar Curvature(C), Tensor (t), Fermion (F), Light Scalar(s)
All these gquantum fluctuations contribute to the inflaton T
potential and to the primordial power spectra.

In de Sitter space-time: < T}, >= 1 g, <T& >
Hence, V. jp = Vgt < TY) >=Vp+ 3 < TS >

Sub-horizon (Ultraviolet) contributions appear through the
trace anomaly and only depend on the spin of the particle.
Superhorizon (Infrared) contributions are of the order NV
and can be expressed in terms of the slow-roll parameters.

H2 ,U—4EU 3 s
Ver (o) = V(®0) |1+ e (szev +ooa+ T)

T =T0+7T.+ 7T 4T = — 28 s the total trace anorﬁaly.

29 717 11
TC:Z’:—ma t = T 75 TFZ@

— the graviton (t) dominates. J



Corrections to the Primordial Scalar and Tensor Power

AP = AR {1+ -

41 §7“(ns—l)+4 s 2903
o} () o+ 2o ) )

2
2 _ 2 1 ( H 1 2903
’Akeff‘ = |A ’ { — 3 (47rj\o4pl) {_1+§ 1+ %50 }}

The anomaly contribution —23% = —145.15 DOMINATES

(as long as the number of fermions is less than 783).

The scalar curvature fluctuations ]A,(f)P are ENHANCED

and the tensor fluctuations ]A,(CT)\Q REDUCED.
2
H -

Boyanovsky, H. J. de Vega N. G. Sanchez, Phys. Rev. D
L?Z 103006 (2005), astro-ph/0507596. J



The Energy Scale of Inflation

~ Grand Unification Idea (GUT) o

# Renormalization group running of electromagnetic,
weak and strong couplings shows that they all meet at

Ecyr ~ 2 x 101% GeV

# Neutrino masses are explained by the see-saw
. 2 . .
mechanism: m,, ~ =i with Mz ~ 1016 GeV.

o Inflation energy scale: M ~ 10'% GeV.

Conclusion: the GUT energy scale appears in at least three
iIndependent ways.

] . L] 4
Moreover, moduli potentials: V,,oqui = Mgygy v (J\fpl)

ressemble inflation potentials provided Mgygy ~ 101°GeV.
First observation of SUSY In nature??
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De Sitter Geometry and Scale Invariance
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The De Sitter metric Is scale invariant:

ds® = oy [(dn)? — (dZ)?] .

-

n = conformal time.
But inflation only lasts for N efolds !
Corrections to scale invariance:
Ins — 1| as well as the ratio r are of order ~ 1/N,
ns = 1 and » = 0 correspond to a critical point.
It is a gaussian fixed point around which the inflation model
hovers in the renormalization group (RG) sense with an
almost scale invariant spectrum during the slow roll stage.
The quartic coupling:
4 : :
A= (J;\;l (]\%z) , IV =log C;((I}?(?r?;t)or? e(ig?))

Lruns like In four dimensional RG in flat euclidean space. J




Dark Energy

76 = 5% of the present energy of the Universe is Dark!
Current observed value:

oA = QA pe = (2.39meV)* |, 1 meV =107 eV.

Equation of state py = —pa within observational errors.
Quantum zero point energy. Renormalized value is finite.
Bosons (fermions) give positive (negative) contributions.
Mass of the lightest fermion ~ 1 meV is in the right scale.
Spontaneous symmetry breaking of continuous symmetries
produces massless scalars as Goldstone bosons. A small
symmetry breaking provide light scalars: axions, familons,
majorons .....

Observational Axion window 1073 meV < Magion < 10 meV.
Dark energy can be a cosmological analogue to the Casimir
effect in Minkowski with non-trivial boundaries.

We need to learn the physics of light particles (< 1 MeV),
also to understand dark matter !!

-
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Summary and Conclusions

Inflation can be formulated as an effective field theory in |
the Ginsburg-Landau spirit with energy scale

M ~ Mayr ~ 101°GeV « Mpy.

Effective theory does work because: H < M < Mp;.
Inflaton mass small: m ~ H/+/N. Infrared regime!

The slow-roll approximation is a 1/N expansion, N ~ 50

MCMC analysis of WMAP+LSS data plus the Trinomial
Inflation potential indicates a spontaneously symmetry

. . . . 2
breaking potential (new inflation): w(x) = % (X2 — g) .

Lower Bounds: r > 0.016 (95% CL) , r > 0.049 (68% CL).
The most probable values are ny ~ 0.956 , » ~ 0.055
with a quartic coupling y ~ 2.

|



Summary and Conclusions 2

# The guadrupole suppression may be explained by the
f effect of fast roll inflation provided the today’s horizon T
size modes exited 1.5 efolds after the beginning of

Inflation.

# Quantum (loop) corrections in the effective theory are of
the order (H/Mp;)? ~ 1077,

D. Boyanovsky, H. J. de Vega, N. G. Sanchez,

Quantum corrections to the inflaton potential and the power
spectra from superhorizon modes and trace anomalies,
Phys. Rev. D 72, 103006 (2005), astro-ph/0507596.

Quantum corrections to slow roll inflation and new scaling
of superhorizon fluctuations. Nucl. Phys. B 747, 25 (2006),

astro-ph/05036609.
- .
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Fast and Slow Roll Inflation

1 1 .
H? = Z P+ V(D
3M§L[2 * ()]’

®+3HO+V'(®)=0.
Slow-roll corresponds to 2 <« V(®).

Generically, we can have &2 ~ V(&) to start.
That is, FAST ROLL inflation.

However, slow-roll is an attractor with a large basin.

o



Fast roll for new inflation
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Hin
2 b2 L o V((I)) 2
Y _2M]%ZH2_3[1 SMJ%ZHQ} U=y =3,
n = conformal time.

S8

; = Hubble at the beginning of slow-roll.
2 ~ 1 = Fast-roll for H; n < —0.5.

2= L <1 =slow-roll for H; n > —0.5.
y?> = ey during slow-roll.]
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N ~ 50.



Hubble vs. number of efolds
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H; = Hubble at the beginning of slow-roll.
Fast-roll lasts about one-efold.

Extreme fast roll solution (y? = 3) in cosmic time:

H=3 , a(t)=apts |, @:—Mpl\/glog(mt).
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¢(x,t) = Inflaton fluctuations. ¢ (x,t) = newtonian potential.

Gauge Invariant Curvature Perturbations
(@,1) = —(x,1) - gl $(x, 1)

These fluctuations around the FRW geometry are

responsible of the CMB anisotropies and the LSS formation.

Gauge invariant potential
w(@,t) = —2(t) R(z, 1), 2(t) = a(t) 2

H(t)

In Fourier space: u(k,n) = ar (k) Sg(k;n) + ak (k) Sk (k;n)
(k) and ar (k) are creation and annihilation operators.

T
dr

The mode functions obey a Schrddinger-like equation,

o

d2

dn?

+k* = Wrr(n)

Sr1(k;n) =0.

-



Scalar Curvature and tensor fluctuations

-

Wr(n) = %%’3 for scalar, Wy (n) = %%@L for tensor.

2 1

Wr1(n) = =0+ Vr1(n)-

Like a centrifugal barrier plus Vz 7(n).
scalar: vg =3 +3ey —ny , tensorivp =3 +ey

v = 2}v [ZUU(%)} V= % Ifu((xx)) -

V(n) = 0 during slow-roll, V(n) # 0 during fast-roll.
During slow-roll: S(k;n) = A(k) g, (k;n) + B(k) f,(k;n)
gu(kim) = § 5 =mn By (=) o fy(ksm) = [gu (ks m)]*
H,Sl)(z): Hankel function.

Scale invariant limit: ga (k:7) = < [1 _ %} .

.




The effect of Vi 1(n) during the fast roll

The initial conditions on the modes S(k;n) plus Vg 7(n)
determine the coefficients Az (k) and Bg 7 (k).

We choose Bunch-Davies initial conditions:

Sy(ksm) =" \/%_k e~k

Vr1(n) =0 — A(k) =1, B(k) =0

Vr.1(n) # 0 I1s analogous to a one dimensional scattering
problem in the n-axis.

D. Boyanovsky, H. J. de Vega, N. Sanchez,

CMB quadrupole suppression:

l. Initial conditions of inflationary perturbations,

ll. The early fast roll stage,

Phys.Rev. D74 (2006) 123006 and 123007,
Lastro-ph/0607508 and astro-ph/0607487.



Primordial Power Spectrum

e S )
Pr(k) "10‘ ‘STa ‘;”7 ( = P (k)1 + Dr(k)]

Standard slow roll power spectrum:

ST 2 k ns—1 ST 2 k
Pr (k) = Az (/?0) , Ppl(k) = A7 (/?O)
D(k) =2 |B(k)|* — 2 Re |[A(k) B*(k)i* 7]

Dr (k) and Dr(k) are the transfer functions of curvature and
tensor perturbations taking into account the effect of the
fast-roll stage.

o |
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Potential felt by the Scalar and by the Tensor Fluctuations

- ~ .

2
Vr()/H';
L
2
Vr(m)yH’;

H; = Hubble at the beginning of slow-roll.
Both Vz(n) and V() are ATTRACTIVE potentials.

Potential felt by tensor fluctuations much smaller:
Vr(n) ~ 4 Vr(n)

o |



Change in the(C; due to fast roll

— sr AC, fooo Dr.1(kx) fi(z)dx
Ca=0reac 4G - lebarnd .

k=ag Hy/3.3 =as H;/3.3 , fi(z) =2 2j(x)]*.
Since Vx 7(n) are quite small we can compute the transfer
functions in the Born approximation:

Drir(k) = [2 dVr.r(m)lsin(2kn) (1 - g )+ cos(2kn)]/k

and then, ACQ =1 f dn Vr1(n) ¥(kn)
where ¥ (x n) > 0 for n < 0.

ATTRACTIVE Vg 7(n) < 0implies ACy < 0.
— QUADRUPOLE SUPPRESSION.

In general, 0 > £% = O (%) -

o | |



The Transfer Function D(k) for the scalar fluctuations.
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The transfer function D (k) computed in the Born
approximation for trinomia

Pr(k) = P& (k) {1 + Dr(k)

o

new inflation y ~ 2, h = 0.
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Quadrupole Suppression vs. Fast Roll

AC,/C,
a‘;‘fa“g

ACY/C

3.0 _1 ‘0 L L L L L
2.0 2.5 3.0 3.5 4.0 4.5 5.0
k/Hj 1

Hii = g% . The Quadrupole is suppressed 20% for

asr ~ 4.6 >~ e!> — the quadrupole modes should exit the
horizon ~ 1.5 efolds after fast-roll starts

Quadrupole Suppression Explanation:

Inflation starts with fast roll: 0 efolds.

Fast-roll ends and slow-roll begins: 1 efold.

Today Horizon size modes exit the horizon by 1.5 efolds.
nflation ends at the minimal number of efolds plus ~ 1.5 .

I



U(x) is an odd function.

= 3foo Zy {(yz — #)Sin@yaj) + % cos(2y:c} —
o e - a1 1| o e
222°  2g°
105 21

p(x) Is the sixth order polynomial:
p(z) =102 +302° + 332 + 1923 + 922 + 32 + 1.

U(x)<O0forz>0.

(
(@)= 06, V@) T s+ 0 () |
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