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Standard Cosmological Model:ΛCDM

ΛCDM = Cold Dark Matter + Cosmological Constant
Explains the Observations:

3 years WMAP data

Light Elements Abundances

Large Scale Structures (LSS) Observations

Supernova Luminosity/Distance Relations (Acceleration
of the Universe expansion)

Gravitational Lensing Observations

Lyman α Forest Observations

Hubble Constant (H0) Measurements

Properties of Clusters of Galaxies

....
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Standard Cosmological Model: Concordance Model

ds2 = dt2 − a2(t) d~x2: spatially flat geometry.

The Universe starts by an INFLATIONARY ERA .
Inflation = Accelerated Expansion: d2a

dt2 > 0.
During inflation the universe expands by at least sixty
efolds: e60 ≃ 1026. Inflation lasts ≃ 10−34sec and ends by
z ∼ 1028 followed by a radiation dominated era.
Energy scale when inflation starts ∼ 1016 GeV.
This energy scale coincides with the GUT scale (⇐= CMB
anisotropies).
Matter can be effectively described during inflation by an
Scalar Field φ(t,x): the Inflaton.

Lagrangean: L = a3(t)
[

φ̇2

2 − (∇φ)2

2 a2(t) − V (φ)
]

.

Friedmann eq.: H2(t) = 1
3 M2

Pl

[

φ̇2

2 + V (φ)
]

, H(t) ≡ ȧ(t)/a(t).
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What is the Inflaton?

It is an effective field.
It can describe a fermion-antifermion pair condensate:
φ =< ψ̄ψ >, ψ = GUT fermion,
Such condensate can dominate the expectation value of the
hamiltonian and therefore govern the cosmological
expansion. [Recall that < ψ >= 0].
Relevant effective theories in physics:

Ginsburg-Landau theory of superconductivity. It is an
effective theory for Cooper pairs in the microscopic
BCS theory of superconductivity.

The O(4) sigma model for pions, the sigma and photons
at energies . 1 GeV. The microscopic theory is QCD:
quarks and gluons. π ≃ q̄q , σ ≃ q̄q.
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Slow Roll Inflaton Models
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w(chi)  vs.  chi

V (Min) = V ′(Min) = 0 : inflation ends after a finite number
of efolds. Universal form of the slow-roll inflaton potential:

V (φ) = N M4 w
(

φ√
N MPl

)

N ∼ 50 number of efolds since horizon exit till end of
inflation. M = energy scale of inflation.
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SLOW and Dimensionless Variables

χ = φ√
N MPl

, τ = m t√
N

, H(τ) = H(t)

m
√

N
,
(

m ≡ M2

MPl

)

slow inflaton, slow time, slow Hubble.
χ and w(χ) are of order one.
Evolution Equations:

H2(τ) =
1

3

[

1

2 N

(

dχ

dτ

)2

+ w(χ)

]

,

1

N

d2χ

dτ2
+ 3 H dχ

dτ
+ w′(χ) = 0 . (1)

1/N terms: corrections to slow-roll

Higher orders in slow-roll are obtained systematically by
expanding the solutions in 1/N .
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Primordial Power Spectrum

Adiabatic Scalar Perturbations: P (k) = |∆(S)
k ad|2 kns−1 .

To dominant order in slow-roll:

|∆(S)
k ad|2 = N2

12 π2

(

M
MPl

)4
w3(χ)
w′2(χ) .

Hence, for all slow-roll inflation models:

|∆(S)
k ad| ∼ N

2 π
√

3

(

M
MPl

)2

The WMAP result |∆(S)
k ad| = (0.467 ± 0.023) × 10−4

determines the scale of inflation M (using N ∼ 50)
(

M
MPl

)2
= 1.02 × 10−5 −→M = 0.77 × 1016 GeV

The inflation energy scale turns to be the grand unification
energy scale !!
This statement is model independent [independent of the
shape of w(χ)].
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spectral indexns, its running and the ratio r

ns − 1 = − 3

N

[

w′(χ)

w(χ)

]2

+
2

N

w′′(χ)

w(χ)
,

dns

d ln k
= − 2

N2

w′(χ) w′′′(χ)

w2(χ)
− 6

N2

[w′(χ)]4

w4(χ)
+

8

N2

[w′(χ)]2 w′′(χ)

w3(χ)
,

r =
8

N

[

w′(χ)

w(χ)

]2

. (2)

χ is the inflaton field at horizon exit.
ns − 1 and r are always of order 1/N ∼ 0.02 (model indep.)
Running of ns of order 1/N2 ∼ 0.0004 (model independent).
D. Boyanovsky, H. J. de Vega, N. G. Sanchez,
Phys. Rev. D 73, 023008 (2006), astro-ph/0507595.
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Ginsburg-Landau Approach

We choose a polynomial for w(χ). A quartic w(χ) is
renormalizable. Higher order polynomials are acceptable
since inflation is an effective theory.

w(χ) = wo ± χ2

2 +G3 χ
3 +G4 χ

4 , G3 = O(1) = G4

V (φ) = N M4 w
(

φ√
N MPl

)

= Vo ± m2

2 φ2 + g φ3 + λ φ4 .

m = M2

MPl
, g = m√

N

(

M
MPl

)2
G3 , λ = G4

N

(

M
MPl

)4

Notice that
(

M
MPl

)2
≃ 10−5 ,

(

M
MPl

)4
≃ 10−10 , N ≃ 50 .

Small couplings arise naturally as ratio of two energy
scales: inflation and Planck.

The inflaton is a light particle:
m = M2/MPl ≃ 0.003 M , m = 2.5 × 1013GeV
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The number of efolds in Slow-roll

The number of e-folds N [χ] since the field χ exits the
horizon till the end of inflation is:

N [χ] = N
∫ χ

χend

w(χ)
w′(χ) dχ . We choose then N = N [χ].

The spontaneously broken symmetric potential:

w(χ) = y
32

(

χ2 − 8
y

)2

produces inflation with 0 <
√
y χinitial ≪ 1 and χend =

√

8
y .

This is small field inflation.

From the above integral: y = z − 1 − log z where z ≡ y χ2/8
This defines χ = χ(y). [1 > z > 0 for 0 < y <∞].
Spectral index ns and the ratio r as functions of y:
ns = 1 − y

N
3 z+1
(z−1)2 , r = 16 y

N
z

(z−1)2
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Binomial New Inflation: ( y = coupling).
r decreases monotonically with y :
(strong coupling) 0 < r < 8

N = 0.16 (zero coupling).
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(ns - 1)  vs. y

r vs. y

ns first grows with y, reaches a maximum value
ns,maximum = 0.96139 . . . at y = 0.2387 . . . and then ns

decreases monotonically with y.
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Binomial New Inflation
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r = 8
N = 0.16 and ns = 1 − 2

N = 0.96 at y = 0.

r is a double valued function of ns.
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Trinomial Inflationary Models

Trinomial Chaotic inflation:
w(χ) = 1

2 χ
2 + h

3

√

y
2 χ

3 + y
32 χ

4 .

Trinomial New inflation:
w(χ) = −1

2 χ
2 + h

3

√

y
2 χ

3 + y
32 χ

4 + 2
y F (h) .

h = asymmetry parameter. w(min) = w′(min) = 0,
y = quartic coupling, F (h) = 8

3 h
4 + 4h2 + 1 + 8

3 |h| (h2 + 1)
3

2 .

H. J. de Vega, N. G. Sanchez, Single Field Inflation models
allowed and ruled out by the three years WMAP data.
Phys. Rev. D 74, 063519 (2006), astro-ph/0604136.
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Monte Carlo Markov Chains Analysis of Data: MCMC.

MCMC is an efficient stochastic numerical method to find
the probability distribution of the theoretical parameters that
describe a set of empirical data.

We found ns and r and the couplings y and h by MCMC.
NEW: We imposed as a hard constraint that r and ns are
given by the trinomial potential.
Our analysis differs in this crucial aspect from previous
MCMC studies of the WMAP data.

We ignore running of the spectral index since
dns/d ln k ∼ 0.0004 in slow roll.
Adding the running made insignificant changes on the fit of
ns and r.
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MCMC Results for Trinomial New Inflation.

n
s

r

 

 

h = −0.999
h = −0.99

h = −0.95

h = −0.9

h = −0.85

h = −0.8

h = −0.5

h = 0

h = 0.99

h = 0
h = 20

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04
0

0.05

0.1

0.15

0.2

0.25

0.3

– p. 15



Probability Distributions. Trinomial New Inflation.
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z

1
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|h|
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n

s
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r

Probability distributions: solid blue curves
Mean likelihoods: dot-dashed red curves.
z1 = 1 − y

8 (|h|+
√

h2+1)
2 χ2 .
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r vs.ns data within the Trinomial New Inflation Region.
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r

CL = 95%, 68%, 40%, 20%
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Marginalized probability distributions. New Inflation.
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Imposing the trinomial potential (solid blue curves) and just
the ΛCDM+r model (dashed red curves).
(curves normalized to have the maxima equal to one).
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Probability Distributions. Trinomial Chaotic Inflation.
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z
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n

s
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Probability distributions (solid blue curves) and mean
likelihoods (dot-dashed red curves).
The data request a strongly asymmetric potential in chaotic
inflation almost having two minima. That is, a strong
breakdown of the χ→ −χ symmetry.
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MCMC Results for Trinomial New Inflation.

Bounds: r > 0.016 (95% CL) , r > 0.049 (68% CL)
Most probable values: ns ≃ 0.956 , r ≃ 0.055 .
The most probable trinomial potential for new inflation is
symmetric and has a moderate nonlinearity with the quartic
coupling y ≃ 2.01 . . . and h ≃ 0.3.
The χ→ −χ symmetry is here spontaneously broken since
the absolute minimum of the potential is at χ 6= 0.

w(χ) = y
32

(

χ2 − 8
y

)2

C. Destri, H. J. de Vega, N. Sanchez, MCMC analysis of
WMAP3 data points to broken symmetry inflaton potentials
and provides a lower bound on the tensor to scalar ratio,
astro-ph/0703417.
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WMAP 3 years data plus others.

Theory and observations nicely agree except for the lowest
multipoles: the quadrupole suppression.
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Quadrupole Suppression and Fast Roll
Slow-roll inflation is generically preceded by a fast-roll stage
where φ̇2 ∼ V (φ). Fast-Roll typically lasts 1 efold.

The slow-roll regime is an attractor with a large basin of
attraction.

During fast roll curvature and tensor perturbations feel a
potential equal to the slow-roll potential plus an extra
attractive piece. This new piece suppresses the low
multipoles as 1/l2.
If the quadrupole modes (∼ Hubble radius today) exited the
horizon 1.5 efolds after the beginning of fast roll, then the
quadrupole modes get suppresed ∼ 20% in agreement with
the observations. =⇒ Ntotal efolds ≃ 60 + 1.5.

D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Phys. Rev.
D74, 123006 and123007 (2006).
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Loop Quantum Corrections to Slow-Roll Inflation

φ(~x, t) = Φ0(t)+ϕ(~x, t), Φ0(t) ≡< φ(~x, t) >, < ϕ(~x, t) >= 0

ϕ(~x, t) = 1
a(η)

∫

d3k
(2 π)3

[

a~k
χk(η) e

i~k·~x + h.c.
]

,

a†
~k
, a~k

are creation/annihilation operators,

χk(η) are mode functions. η = conformal time.
To one loop order the equation of motion for the inflaton is

Φ̈0(t) + 3H Φ̇0(t) + V ′(Φ0) + g(Φ0) 〈[ϕ(x, t)]2〉 = 0

where g(Φ0) = 1
2 V

′′′

(Φ0).
The mode functions obey:

χ
′′

k(η) +

[

k2 +M2(Φ0) a
2(η) − a

′′

(η)
a(η)

]

χk(η) = 0

where M2(Φ0) = V ′′(Φ0) = 3 H2
0 ηV + O(1/N2)
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Quantum Corrections to the Friedmann Equation

The mode functions equations for slow-roll become,

χ
′′

k(η)+
[

k2 − ν2− 1

4

η2

]

χk(η) = 0 , ν = 3
2 + ǫV −ηV +O(1/N2).

The scale factor during slow roll is a(η) = − 1
H0 η (1−ǫV ) .

Scale invariant case: ν = 3
2 . ∆ ≡ 3

2 − ν = ηV − ǫV controls
the departure from scale invariance.
Explicit solutions in slow-roll:

χk(η) = 1
2

√−πη iν+ 1

2 H
(1)
ν (−kη), H

(1)
ν (z) = Hankel function

Quantum fluctuations: 〈[ϕ(x, t)]2〉 = 1
a2(η)

∫

d3k
(2π)3 |χk(η)|2

1
2〈[ϕ(x, t)]2〉 =

(

H0

4 π

)2 [
Λp

2 + ln Λ2
p + 1

∆ + 2 γ − 4 + O(∆)
]

UV cutoff Λp = physical cutoff/H, 1
∆ = infrared pole.

〈

ϕ̇2
〉

,
〈

(∇ϕ)2
〉

are infrared finite. We thus compute 〈T00〉.
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Quantum Corrections to the Inflaton Potential

Upon UV renormalization the Friedmann equation results

H2 = 1
3 M2

Pl

[

1
2 Φ̇0

2
+ VR(Φ0) +

(

H0

4 π

)2 V
′′

R (Φ0)
∆ + O

(

1
N

)

]

Quantum corrections are proportional to
(

H
MPl

)2
∼ 10−9 !!

The Friedmann equation gives for the effective potential:

Veff (Φ0) = VR(Φ0) +
(

H0

4 π

)2 V
′′

R (Φ0)
∆

Veff (Φ0) = VR(Φ0)

[

1 +
(

H0

4 π MPl

)2
ηV

ηV −ǫV

]

in terms of slow-roll parameters

Very DIFFERENT from the one-loop effective potential in
Minkowski space-time:

Veff (Φ0) = VR(Φ0) + [V
′′

R (Φ0)]
2

64 π2 ln V
′′

R (Φ0)
M2
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Quantum Fluctuations:
Scalar Curvature(C), Tensor (t), Fermion (F), Light Scalar(s)
All these quantum fluctuations contribute to the inflaton
potential and to the primordial power spectra.

In de Sitter space-time: < Tµ ν >= 1
4 gµ ν < Tα

α >

Hence, Veff = VR+ < T 0
0 >= VR + 1

4 < Tα
α >

Sub-horizon (Ultraviolet) contributions appear through the
trace anomaly and only depend on the spin of the particle.
Superhorizon (Infrared) contributions are of the order N0

and can be expressed in terms of the slow-roll parameters.

Veff (Φ0) = V (Φ0)

[

1 + H2

0

3 (4π)2 M2

Pl

(

ηv−4 ǫv

ηv−3 ǫv
+ 3 ηs

ηs−ǫv
+ T

)]

T = TC + Ts + Tt + TF = −2903
20 is the total trace anomaly.

TC = Ts = −29
30 , Tt = −717

5 , TF = 11
60

−→ the graviton (t) dominates.
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Corrections to the Primordial Scalar and Tensor Power

|∆(S)
k,eff |2 = |∆(S)

k |2 {1+

+1
3

(

H0

4 π MPl

)2 [

2 +
3

4
r (ns−1)+4 dns

d ln k

(ns−1)2 + 2903
20

]

}

|∆(T )
k,eff |2 = |∆(T )

k |2
{

1 − 1
3

(

H0

4 π MPl

)2 [

−1 + 1
8

r
ns−1 + 2903

20

]

}

.

The anomaly contribution −2903
20 = −145.15 DOMINATES

(as long as the number of fermions is less than 783).

The scalar curvature fluctuations |∆(S)
k |2 are ENHANCED

and the tensor fluctuations |∆(T )
k |2 REDUCED.

However,
(

H
MPl

)2
∼ 10−9.

D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Phys. Rev. D
72, 103006 (2005), astro-ph/0507596.
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The Energy Scale of Inflation

Grand Unification Idea (GUT)

Renormalization group running of electromagnetic,
weak and strong couplings shows that they all meet at
EGUT ≃ 2 × 1016 GeV

Neutrino masses are explained by the see-saw

mechanism: mν ∼ M2

Fermi

MR
with MR ∼ 1016 GeV.

Inflation energy scale: M ≃ 1016 GeV.

Conclusion: the GUT energy scale appears in at least three
independent ways.

Moreover, moduli potentials: Vmoduli = M4
SUSY v

(

φ
MPl

)

ressemble inflation potentials provided MSUSY ∼ 1016GeV.
First observation of SUSY in nature??
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De Sitter Geometry and Scale Invariance

The De Sitter metric is scale invariant:
ds2 = 1

(H η)2

[

(dη)2 − (d~x)2
]

.

η = conformal time.
But inflation only lasts for N efolds !
Corrections to scale invariance:
|ns − 1| as well as the ratio r are of order ∼ 1/N ,
ns = 1 and r = 0 correspond to a critical point.
It is a gaussian fixed point around which the inflation model
hovers in the renormalization group (RG) sense with an
almost scale invariant spectrum during the slow roll stage.
The quartic coupling:

λ = G4

N

(

M
MPl

)4
, N = log a(inflation end)

a(horizon exit)

runs like in four dimensional RG in flat euclidean space.
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Dark Energy

76 ± 5% of the present energy of the Universe is Dark!
Current observed value:
ρΛ = ΩΛ ρc = (2.39 meV)4 , 1 meV = 10−3 eV.
Equation of state pΛ = −ρΛ within observational errors.
Quantum zero point energy. Renormalized value is finite.
Bosons (fermions) give positive (negative) contributions.
Mass of the lightest fermion ∼ 1 meV is in the right scale.
Spontaneous symmetry breaking of continuous symmetries
produces massless scalars as Goldstone bosons. A small
symmetry breaking provide light scalars: axions, familons,
majorons .....
Observational Axion window 10−3 meV . Maxion . 10 meV.
Dark energy can be a cosmological analogue to the Casimir
effect in Minkowski with non-trivial boundaries.
We need to learn the physics of light particles (< 1 MeV),
also to understand dark matter !!
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Summary and Conclusions

Inflation can be formulated as an effective field theory in
the Ginsburg-Landau spirit with energy scale
M ∼MGUT ∼ 1016GeV ≪MPl.

Effective theory does work because: H ≪M ≪MPl.
Inflaton mass small: m ∼ H/

√
N . Infrared regime!

The slow-roll approximation is a 1/N expansion, N ∼ 50

MCMC analysis of WMAP+LSS data plus the Trinomial
Inflation potential indicates a spontaneously symmetry

breaking potential (new inflation): w(χ) = y
32

(

χ2 − 8
y

)2
.

Lower Bounds: r > 0.016 (95% CL) , r > 0.049 (68% CL).
The most probable values are ns ≃ 0.956 , r ≃ 0.055
with a quartic coupling y ≃ 2.
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Summary and Conclusions 2
The quadrupole suppression may be explained by the
effect of fast roll inflation provided the today’s horizon
size modes exited 1.5 efolds after the beginning of
inflation.

Quantum (loop) corrections in the effective theory are of
the order (H/MPl)

2 ∼ 10−9.

D. Boyanovsky, H. J. de Vega, N. G. Sanchez,

Quantum corrections to the inflaton potential and the power
spectra from superhorizon modes and trace anomalies,
Phys. Rev. D 72, 103006 (2005), astro-ph/0507596.

Quantum corrections to slow roll inflation and new scaling
of superhorizon fluctuations. Nucl. Phys. B 747, 25 (2006),
astro-ph/0503669.
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Fast and Slow Roll Inflation

H2 =
1

3 M2
PL

[

1

2
Φ̇2 + V (Φ)

]

,

Φ̈ + 3 H Φ̇ + V ′(Φ) = 0 .

Slow-roll corresponds to Φ̇2 ≪ V (Φ).

Generically, we can have Φ̇2 ∼ V (Φ) to start.
That is, FAST ROLL inflation.

However, slow-roll is an attractor with a large basin.
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Fast roll for new inflation
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y2 = Φ̇2

2 M2

Pl H2 = 3
[

1 − V (Φ)
3 M2

Pl H2

]

, 0 ≤ y2 ≤ 3 , N ∼ 50.

η = conformal time.
Hi = Hubble at the beginning of slow-roll.
y2 ∼ 1 = Fast-roll for Hi η < −0.5.
y2 = 1

N ≪ 1 = slow-roll for Hi η > −0.5.
[y2 = ǫV during slow-roll.]
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Hubble vs. number of efolds
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Hi = Hubble at the beginning of slow-roll.
Fast-roll lasts about one-efold.

Extreme fast roll solution (y2 = 3) in cosmic time:

H = 1
3 t , a(t) = a0 t

1

3 , Φ = −MPl

√

2
3 log(m t) .
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Gauge Invariant Curvature Perturbations

R(x, t) = −ψ(x, t) − H(t)

Φ̇(t)
φ(x, t)

φ(x, t) = inflaton fluctuations. ψ(x, t) = newtonian potential.

These fluctuations around the FRW geometry are
responsible of the CMB anisotropies and the LSS formation.

Gauge invariant potential

u(x, t) ≡ −z(t) R(x, t) , z(t) ≡ a(t) Φ̇(t)
H(t)

In Fourier space: u(k, η) = αR(k) SR(k; η) + α†
R(k) S∗

R(k; η)

α†
R(k) and αR(k) are creation and annihilation operators.

The mode functions obey a Schrödinger-like equation,
[

d2

dη2
+ k2 −WR,T (η)

]

SR,T (k; η) = 0 .
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Scalar Curvature and tensor fluctuations

WR(η) = 1
z

d2z
dη2 for scalar, WT (η) = 1

a
d2a
dη2 for tensor.

WR,T (η) =
ν2

R,T − 1

4

η2 + VR,T (η).
Like a centrifugal barrier plus VR,T (η).
scalar: νR = 3

2 + 3 ǫV − ηV , tensor: νT = 3
2 + ǫV

ǫV = 1
2N

[

w′(χ)
w(χ)

]2
, ηV = 1

N
w′′(χ)
w(χ) .

V(η) = 0 during slow-roll, V(η) 6= 0 during fast-roll.

During slow-roll: S(k; η) = A(k) gν(k; η) +B(k) fν(k; η)

gν(k; η) = 1
2 i

ν+ 1

2

√−πη H(1)
ν (−kη) , fν(k; η) = [gν(k; η)]∗

H
(1)
ν (z): Hankel function.

Scale invariant limit: g 3

2

(k; η) = e−ikη

√
2k

[

1 − i
kη

]

.
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The effect ofVR,T (η) during the fast roll

The initial conditions on the modes S(k; η) plus VR,T (η)

determine the coefficients AR,T (k) and BR,T (k).

We choose Bunch-Davies initial conditions:
Sν(k; η)

η→−∞
= 1√

2 k
e−ikη

VR,T (η) = 0 −→ A(k) = 1, B(k) = 0

VR,T (η) 6= 0 is analogous to a one dimensional scattering
problem in the η-axis.

D. Boyanovsky, H. J. de Vega, N. Sanchez,
CMB quadrupole suppression:
I. Initial conditions of inflationary perturbations,
II. The early fast roll stage,
Phys.Rev. D74 (2006) 123006 and 123007,
astro-ph/0607508 and astro-ph/0607487.
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Primordial Power Spectrum

PR(k)
η→0−

=
k3

2 π2

∣

∣

∣

SR(k; η)

z(η)

∣

∣

∣

2
= P sr

R (k)
[

1 +DR(k)
]

,

PT (k)
η→0−

=
k3

2 π2

∣

∣

∣

ST (k; η)

a(η)

∣

∣

∣

2
= P sr

T (k)
[

1 +DT (k)
]

.

Standard slow roll power spectrum:

P sr
R (k) = A2

R

(

k
k0

)ns−1
, P sr

T (k) = A2
T

(

k
k0

)nT

D(k) = 2 |B(k)|2 − 2 Re
[

A(k) B∗(k) i2ν−3
]

DR(k) and DT (k) are the transfer functions of curvature and
tensor perturbations taking into account the effect of the
fast-roll stage.
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Potential felt by the Scalar and by the Tensor Fluctuations

& ' () * + , ) , + - ) , + . ) , + / ) , + 0 ) , + 1 ) , + 2 ) , + 3 ) , + 4 ) , + *

5 67 89:
;< =

) * 4) * ,
) .) 0

) 2) 4
,

> ? @A B C D A B C E A B C F A B C G A B C H A B C I A B C J A B C K

L M N OPQR
S T

A U C IA U C KA U C B
A B C EA B C GA B C I

A B C KB C B
Hi = Hubble at the beginning of slow-roll.

Both VR(η) and VT (η) are ATTRACTIVE potentials.

Potential felt by tensor fluctuations much smaller:
VT (η) ∼ 1

10 VR(η)
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Change in theCl due to fast roll

Cl ≡ Csr
l + ∆Cl , ∆Cl

Cl
=

R

∞

0
DR,T (κ x) fl(x) dx

R

∞

0
fl(x) dx

κ ≡ a0 H0/3.3 = asr Hi/3.3 , fl(x) ≡ xns−2[jl(x)]
2 .

Since VR,T (η) are quite small we can compute the transfer
functions in the Born approximation:

DR,T (k) =
∫ 0
−∞ dηVR,T (η)[sin(2kη)

(

1 − 1
k2η2

)

+ 2
kη cos(2kη)]/k

and then, ∆C2

C2
= 1

κ

∫ 0
−∞ dη VR,T (η) Ψ(κ η)

where Ψ(κ η) > 0 for η < 0.

ATTRACTIVE VR,T (η) < 0 implies ∆C2 < 0.

−→ QUADRUPOLE SUPPRESSION.

In general, 0 > ∆Cl

Cl
= O

(

1
l2

)

.
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The Transfer Function D(k) for the scalar fluctuations.
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D(k) vs. k

The transfer function DR(k) computed in the Born
approximation for trinomial new inflation y ≃ 2, h = 0.

PR(k) = P sr
R (k)

[

1 +DR(k)
]
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Quadrupole Suppression vs. Fast Roll

V W X YZ [ \ ] [ Z ] [ \̂ [ Ẑ [ \ _ [ Z

à bca b
d _ [ Zd̂ [ \d̂ [ Zd ] [ \d ] [ Zd Z [ \Z [ Z

ef g h f g i j g h j g i k g h k g i i g h

l m nom n
p q g hp h g rp h g sp h g kp h g fh g h

h g f
t u v w x y z {t u v w x |

t u v w x }
κ
Hi

= asr

3.3 . The Quadrupole is suppressed 20% for
asr ≃ 4.6 ≃ e1.5 −→ the quadrupole modes should exit the
horizon ≃ 1.5 efolds after fast-roll starts

Quadrupole Suppression Explanation:
Inflation starts with fast roll: 0 efolds.
Fast-roll ends and slow-roll begins: 1 efold.
Today Horizon size modes exit the horizon by 1.5 efolds.
Inflation ends at the minimal number of efolds plus ≃ 1.5 .
[NT ≃ 60 + 1.5]
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Ψ(x) is an odd function.
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psix

Ψ(x) ≡ 3
∫∞
0

dy
y4 [j2(y)]

2
[

(y2 − 1
x2 ) sin(2 y x) + 2 y

x cos(2 y x)
]

=

= 1
105 x2

[

p(x) (1 − x)3 log
∣

∣1 − 1
x

∣

∣− (x→ −x)
]

+ 2
105 x − 13 x

126 +
22 x3

105 − 2 x5

21 ,

p(x) is the sixth order polynomial:
p(x) ≡ 10x6 + 30x5 + 33x4 + 19x3 + 9x2 + 3x+ 1 .

Ψ(x) < 0 for x > 0 .

Ψ(x)
x→0
= −x

6 + O(x3) , Ψ(x)
x→∞
= − 1

60 x3 + O
(

1
x5

)

.
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