

Testing LCDM on large and small scales

Carlos S. Frenk Institute for Computational Cosmology, Durham

The emergence of a cosmological paradigm

The CDM model:

What is it?

• How do we test it?

The **ACDM** model

Material content: Cold dark matter (eg neutralino;21%), baryons (4%), dark energy (Λ; 75%)

Initial conditions for formation of structure:

Quantum fluctuations during inflation: $|\delta_k|^2 \propto k^n$, n≈1; Gaussian amplitudes

The density & geometry of the Universe

$$\Omega = \frac{\text{density}}{\text{critical density}} \qquad \rho = \rho_{\text{rel}} + \rho_{\text{mass}} + \rho_{\text{vac}}$$

critical density = density that makes univ. flat:

In
$$\Lambda CDM$$
: $\Omega_{tot} = \Omega_{matter} + \Omega_{\Lambda} + \Omega_{radn} = 1$

consistent with the flat universe expected in inflation

The CDM model is an intrinsically implausible model, all the more so when the cosmological constant Λ is required.

Couldn't we have something simpler?

In particular, couldn't we just have $\Omega_{matter} = 1$

Clusters give direct evidence for $\Omega_{matter} < 1$

Galaxy Sity of Durham X-ray emise Clusters ot plasma in clusters Images from David Buote

About 90% of baryons in clusters are in hot gas

X-rays \Rightarrow gas mass

Photometry ⇒ stellar mass Gas in hydrostatic equilibrium so X-rays (or lensing) ⇒ total gravitating mass

⇒ Baryon fraction, f_b

$\boldsymbol{\Omega}$ from the baryon fraction in clusters

Iniversity of Durhan

In clusters matter that has fallen in is still in the cluster $(r_{vir} \sim r_{non-linear})$

⇒ baryon fraction in clusters ≈ baryon fraction of universe

$$M_{b} = M_{gas} + M_{stars}$$

White, Navarro, Evrard & Frenk '93

where $\gamma=1$ if f_b has the universal value Simulations $\Rightarrow \gamma=0.9$

 Ω from the baryon fraction in clusters

The baryon fraction in clusters, f_b, is related to the universal

baryon fraction by:

 $f_b = \frac{M_b}{M_{tot}} = \gamma \frac{\Omega_b}{\Omega_m}$ White, Navarro, Evrard & Frenk

Evrard & Frenk '93

where $\gamma = 1$ if f_{b} has the universal value

- simulations $\rightarrow \gamma = 0.9 \pm 10\%$
- X-rays+lensing $\rightarrow f_{b} = (0.060h^{-3/2} + 0.009) \pm 10\%$
- BBNS, CMB $\rightarrow \Omega_{\rm b}h^2 = 0.019 \pm 20\%$
- \rightarrow h = 0.7 ± 10% HST

$$\Omega_m = \frac{\Omega_b \gamma}{f_b} = 0.31 \pm 0.12$$
Allen etal '04
Institute for Computational
Complexity

 Ω < 1: open or flat universe?

$\Omega_{\text{matter}} < 1 \Rightarrow \begin{cases} \text{Open universe} \\ \text{Cosmological constant to give } \Omega_{\text{tot}} = 1 \end{cases}$

White et al 1993

(Some) evidence for dark energy

Evidence for Λ from high-z supernovae

SN type Ia (standard candles) at z~0.5 are fainter than expected even if the Universe were empty

The cosmic expansion must have been accelerating since the light was emitted

$$\ddot{a} = -\frac{4\pi}{3}G\rho a(3w+1)$$
where
$$p = w\rho c^{2}$$

$$P_{\text{tot}} = \rho_{\text{mass}} + \rho_{\text{rel}} + \rho_{\text{val}}$$

const

Evidence for Λ from high-z supernovae

Distant SN are fainter than expected if expansion were decelerating

Evidence for Λ from high-z supernovae

- Latest data rules out $\Omega_{\Lambda} = 0$.
- Main concerns:
- Physics of SNIa not understood
- Systematic errors?

Clocchiatti et al '06

So (implaussibly), we seem to need dark energy

But why cold dark matter?

Non-baryonic dark matter candidates

Cosmology

Neutrino (hot) dark matter

Free-streaming length so large that superclusters form first and galaxies are too young

Neutrinos cannot make an appreciable contribution to Ω and m_v<< 10 ev

Non-baryonic dark matter cosmologies

Neutrino dark matter produces unrealistic clustering

Early CDM N-body simulations gave promising results

In CDM structure forms hierarchically

The cold dark matter cosmogony

Peebles '82

THE ASTROPHYSICAL JOURNAL, 263:L1-L5, 1982 December 1 © 1982. The American Astronomical Society. All rights reserved. Printed in U.S.A.

> LARGE-SCALE BACKGROUND TEMPERATURE AND MASS FLUCTUATIONS DUE TO SCALE-INVARIANT PRIMEVAL PERTURBATIONS

> > P. J. E. PEEBLES Joseph Henry Laboratories. Physics Department. Princeton University

> > > THE ASTROPHYSICAL JOURNAL, 292:371–394, 1985 May 15 Davis, Efstathiou, Frenk & White 1985

THE EVOLUTION OF LARGE-SCALE STRUCTURE IN A UNIVERSE DOMINATED BY COLD DARK MATTER

MARC DAVIS,^{1,2} GEORGE EFSTATHIOU,^{1,3} CARLOS S. FRENK,^{1,4} AND SIMON D. M. WHITE^{1,5} Received 1984 August 20; accepted 1984 November 30

THE ASTROPHYSICAL JOURNAL, 304: 15-61, 1986 May 1 (), 1986 The American Astronomical Society, All rights reserved. Printed in U.S.A.

Bardeen, Bond, Kaiser & Szalay 1986

THE STATISTICS OF PEAKS OF GAUSSIAN RANDOM FIELDS

J. M. BARDEEN¹ Physics Department, University of Washington J. R. BOND¹

Physics Department, Stanford University

N. KAISER¹ Astronomy Department, University of California at Berkeley, and Institute of Astronomy, Cambridge University

AND

A. S. SZALAY¹ Astrophysics Group, Fermilab Received 1985 July 25; accepted 1985 October 9 NATURE VOL. 311 11 OCTOBER 1984

-REVIEW ARTICLE-

Formation of galaxies and large-scale structure with cold dark matter

George R. Blumenthal' & S. M. Faber'

* Lick Observatory, Board of Studies in Astronomy and Astrophysics, University of California, Santa Cruz, California 95064, USA

Joel R. Primack^{†§} & Martin J. Rees^{‡§}

† Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, USA ‡ Institute of Theoretical Physics, University of California, Santa Barbara, California 93106, USA

Blumenthal, Faber, Primack & Rees 1984

Institute for Computational Cosmology 517

Cold dark matter candidates:

- Axion $m_a \sim 10^{-5} \text{ eV}$
- Sterile neutrino $m_v \sim 100 \text{ MeV}$
- Neutralino (lightest stable susy particle) $m_X > 100 \text{ GeV}$

Testing ΛCDM on very large scales (and very early times)

The microwave background radiation Seo 000 Jears are the bid Band

John Mather 2006 Nobel laureate

0 5 10 15 20

t=380 000 yrs

t=0

Plasma

The microwave background radiation BEO 000 years are the bid Band

z = 1000

 $Z = \infty$

1992

The CMB

The cosmic microwave background radiation (CMB) provides a window to the universe at t~ 3×10^{5} yrs In 1992 COBE discovered temperature fluctuations (Δ T/T~10⁻⁵) consistent with inflation predictions

Institute for Computationa

1992

The CMB

George Smoot - Nobel Prize 2006

1992

2003

The CMB

WMAP temp anisotropies in CMB

Cosmoloav

The cosmic power spectrum: from the CMB to the 2dFGRS

ACDM provides an excellent description of mass power spectrum from 10 -1000 Mpc

CMB:

• Convert angular separation to distance (and k) assuming flat geometry

• Extrapolate to z=0 using linear theory

Sanchez et al 06

The 2dF Galaxy Redshift Survey 221,000 redshifts

Sloan Digital Sky Survey

~500,000 galaxy redshifts

Cosmology

Institute for Computational Cosmology

dalla Vechia, Jenkins & Frenk

Comoving coordinates

t = 0.06 Gyr

The Millennium simulation

UK, Germany, Canada, US collaboration

Simulation data available at:

http://www.mpa-garching.mpg.de/Virgo

Pictures and movies available at:

www.durham.ac.uk/virgo

Nature, June/05

Cosmological N-body simulation

- 10 billion particles
- 500 h⁻¹ Mpc box

•
$$m_p = 8 \times 10^8 h^{-1} M_o$$

•
$$\Omega$$
 =1; Ω_m =0.25; Ω_b =0.045;
h=0.73; n=1; σ_8 =0.9

Carried out at Garching using
 20 × 10⁶ gals brighter than LMC

(27 Tbytes of data)

Virgo consortium for supercomputer simulations

Core members and associates

- Carlos Frenk ICC, Durham (P.I.)
- Adrian Jenkins ICC, Durham
- Tom Theuns ICC, Durham
- Gao Laing ICC, Durham
- Simon White Max Plank Institut für Astrophysik (co-P.I.)
- Volker Springel Max Plank Institut f
 ür Astrophysik
- Frazer Pearce Nottingham
- Naoki Yoshida Tokyo
- Peter Thomas Sussex
- Hugh Couchman McMaster
- John Peacock Edinburgh
- George Efstathiou Cambridge
- Joerg Colberg Pittsburgh
- Scott Kay Oxford
- Rob Thacker McGill
- Julio Navarro Victoria
- Gus Evrard Michigan
- Joop Schaye Leiden

Virgo junior associates

Simulation data available at:

http://www.mpa-garching.mpg.de/Virgo

Pictures and movies available at:

www.durham.ac.uk/virgo

The Millennium simulation

UK, Germany, Canada, US collaboration

Simulation data available at:

http://www.mpa-garching.mpg.de/Virgo

Pictures and movies available at:

www.durham.ac.uk/virgo

Nature, June/05

Cosmological N-body simulation

- 10 billion particles
- 500 h⁻¹ Mpc box

•
$$m_p = 8 \times 10^8 h^{-1} M_o$$

•
$$\Omega$$
 =1; Ω_m =0.25; Ω_b =0.045;
h=0.73; n=1; σ_8 =0.9

Carried out at Garching using
 20 × 10⁶ gals brighter than LMC

(27 Tbytes of data)

The mass power spectrum

The non-linear mass power spectrum is accurately determined by the Millennium simulation over large range of scales

z = 0 Dark Matter

Populating the MS with galaxies

125 Mpc/h

Semi-analytic modelling
Find dark matter halos
Construct halo merger trees
Apply SA model (gas cooling, star formation, feedback)

Springel etal 05

Croton et al 06

G lary light

10¹⁴M_o

Dark matter

Galaxies

Real and simulated 2dF galaxy survey

Cosmology

The final 2dFGRS power spectrum

2dFGRS P(k) well fit by ΛCDM model convolved with window function

The 2dF Galaxy Redshift Survey

A collaboration between (primarily) UK and Australia 250 nights at the AAT

> → 221,000 redshifts to b_j<19.45 median z=0.11
> Survey complete and catalogue released in July/03

Sloan Digital Sky Survey ~500,000 galaxy redshifts

The mass power spectrum

The non-linear mass power spectrum is accurately determined by the Millennium simulation over large range of scales

CMB anisotropies and large-scale structure

CMB anistropies and large-scale structure

Baryon wiggles in the galaxy distribution

Power spectrum from MS divided by a baryon-free LCDM spectrum

Galaxy samples matched to plausible large observational surveys at given z

Springel et al 2005

The final 2dFGRS power spectrum

2dFGRS P(k) well fit by ΛCDM model convolved with window function

The final 2dFGRS power spectrum

Baryon oscillations conclusively detected in 2dFGRS!!!

Demonstrates that structure grew by gravitational instability in ΛCDM universe

Also detected in SDSS LRG sample (Eisenstein etal 05)

Cole, Percival, Peacock, Baugh, Frenk + 2dFGRS '05

SDSS LRG correlation function

Again, CDM models fit the correlation function adequately well (although peak height is slightly too large; assuming $n_s=1$, h=0.72)

 $Ω_{b}h^{2} = 0.024,$ $Ω_{m}h^{2} = 0.133 \pm 0.011,$ ⇒ $Ω_{b}/Ω_{m} = 0.18$

Eisenstein et al. 05

Baryon oscillations in the power spectrum

- Comoving sound horizon at t_{rec}
- (depends mostly on $\Omega_m h^2$ and weakly on $\Omega_b h^2$)
- "wavenumber" of acoustic oscillations:

$$s = \frac{1}{H_0 \Omega_m^{1/2}} \int_0^{a_r} \frac{c_s}{(a + a_{eq})^{1/2}} da$$

- Comoving distance/redshift: $\frac{dx}{dz} = \frac{c}{H_0 \Omega_m^{1/2}} \frac{1}{\sqrt{(1+z)^3 + (\Omega_m^{-1} 1)(1+z)^{3(1+w)}}}$
- Apparent size of standard ruler depends on cosmology ⇒ dark energy eqn of state w
 - (e.g. Eisenstein & HU 1998; Blake & Glazebrook 2003, 2005; Seo & Eisenstein 2003; 2005.....) Institute for Computational Cosmology

What are the prospects for determining k_A in realistic surveys?

What is the optimal strategy?

N-body simulations of large cosmological volumes

BASICC L=1340/h Mpc N=3,036,027,392

20 times the Millennium volume

Halo resolution: (10 particle limit) 5.5 e+11/h Mpc

130,000 cpu hours on the Cosmology Machine

Angulo, Baugh, Frenk & Lacey '07

Non-linear evolution of matter fluctuations

BASICC simulation dark matter real space

P(k) divided by linear theory P(k), scaling out growth factor

Angulo, Baugh, Frenk & Lacey '07

Non-linear evolution of matter fluctuations

Redshift space distortions

Peculiar motions distort clustering pattern Coherent bulk flows boost large scale power (Kaiser 1987)

Kaiser (1987) related the spherically averaged power spectrum measured in redshift (P_s) and that in real space (P):

$$P_s(k) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right)P(k).$$
 (1)

where $\beta(\Omega_m) = d \log \delta / d \log a / b \simeq \Omega_m^{0.6} / b$ and b is the bias factor.

Motions of particles inside virialised structures damp power at high k

Redshift space distortions

Peculiar motions distort clustering pattern

Boost in power on large scales due to coherent flows

Damping at higher k affects DM but not the halos

In z-space, halo bias is scale-dependent

Galaxy bias in real space

Magnitude limited sample.

Galaxy clustering boosted relative to mass in real space

Galaxy bias in real space

Galaxy bias in redshift space

Galaxy P(k) cannot be reproduced by multiplying mass P(k) by constant factor in redshift space.

⇒ In z-space, galaxies have a scale-dependent bias out to k~0.1

Galaxy bias in redshift space

Comparison of different selections e.g. colour, emission line strength

Projected BAO data for planned surveys at z=1

Projections based on mock catalogues made from large N-body simulation plus semi-analytic galaxy formation model

Constraints on w from Snla, WMAP and 2dFGRS

Headline forecasts for w

		Survey	Error in w
BAO performance for constant w		WiggloZ	50 05 %
-		vviggiez	5.0 - 9.5 /8
Merit]	SPACE 🔀	WFMOS	3.6 - 4.0 %
e of	-	Pan-STARRS	
ung 40 –		0.03 photo-z	1.6 - 3.5 %
	ADEF 1	0.06 photo-z	2.2 - 4.9 %
	DUNE	DUNE	
	-	3% photo-z	1.2 - 2.5%
\sim (MQ - SDSS W	Pan-STARRS	20,000 sq deg	
0 2dF DR4 LRG	-	SPACE	0.25 - 0.5%
current n	nid-term long-term	10 ⁹ galaxies	
27,000 sq deg			
Angulo et al 07			
Institute for Computational Cosmology			

The cosmic power spectrum: from the CMB to the 2dFGRS

CMB:

- Convert angular separation to distance (and k) assuming flat geometry
- Extrapolate to z=0 using linear theory
- ⇒ ΛCDM provides an excellent description of mass power spectrum from 10-1000 Mpc

Cosmology

Sanchez et al 06

The Density Profile of Cold Dark Matter Halos

Halo density profiles are independent of halo mass & cosmological parameters

There is no obvious density plateau or `core' near the centre.

(Navarro, Frenk & White '97)

$$\frac{\rho(r)}{\rho_{crit}} = \frac{\delta_c}{(r/r_s)(1+r/r_s)^2}$$

N-body simulations show that cold dark matter halos (from galaxies to clusters) have:

- "Cuspy" density profiles
- Large number of self-bound substructures (10% of mass)

This has led to two well-publicized "problems":

- The "halo core" problem
- The "satellite" problem

- The dark matter is warm
- The dark matter has a finite self-scattering cross-section
- The primordial density power spectrum has a break (or running spectral index)
- There is no dark matter -- gravity needs modifying
- Astrophysics: baryon effects, black holes, bars
- The comparison of models and data is incorrect

A Cold dark matter universe

N-body simulations show that cold dark matter halos (from galaxies to clusters) have:

- "Cuspy" density profiles
- Large number of self-bound substructures (10% of mass)

This has led to two well-publicized "problems":

• The "halo core" problem

The "satellite" problem

The "halo core" problem

Halo density profiles are independent of halo mass & cosmological parameters

There is no obvious density plateau or `core' near the centre.

(Navarro, Frenk & White '97)

$$\frac{\rho(r)}{\rho_{crit}} = \frac{\delta_c}{(r/r_s)(1+r/r_s)^2}$$

A galactic dark matter halo

60 million particles inside rvir

Springel, Jenkins, Helmi, Navarro, Frenk & White '07

The density profile of galaxy cluster dark halos

Do real dark halos have the profiles found in the simulations?

Profiles can be probed by:

Gravitational lensing and/or X-ray emission in clusters

Galaxy rotation curves -> messy

The central density profile of galaxy cluster dark halos

Inner DM density profile inferred from X-ray data (Chandra)

The central density profile of galaxy cluster dark halos

X-ray data

Mass profile of galaxy clusters, from X-ray data & assumption of hydrostatic equilibrium

Excellent agreement with CDM halo predictions

Mass profile in cluster cores from strong lensing

Sand etal 05

- Assume spherical symmetry
- Model potential as power-law DM + galaxy with constant M/L
- Constrain inner slope of DM profile using tangential carCitational

Mass profile in cluster cores from strong lensing

$$\rho(r) \propto r^{-\beta} (r_s + r)^{\beta - 3}$$

 β =1 for NFW

Sand et al find β =0.5, in disagreement with CDM

Cuspy Cold Dark Matter Halos

Mass profile in cluster cores from strong lensing

$$\rho(r) \propto r^{-\beta} (r_s + r)^{\beta - 3}$$

 β =1 for NFW

For this simulation, β =1.2

Sand etal (spherically symm) analysis returns $\beta \sim 0.5!!!$

Reason: Sand et al assume spherical symmetry

Meneghetti, Bartelmann, Frenk & Jenkins '07

The "halo-core problem" ?

The inner profiles of cluster halos seen consistent with the cusps predicted in ΛCDM

A Cold dark matter universe

N-body simulations show that cold dark matter halos (from galaxies to clusters) have:

- "Cuspy" density profiles
- Large number of self-bound substructures (10% of mass)

This has led to two well-publicized "problems":

The "halo core" problem

The "satellite" problem

The satellites of the Local Group

N-body simulations produce 1000s of small subhalos

The Local Group contains only about 40 bright satellites

Substructure in cold dark matter halos

60 million particles inside rvir

Springel, Jenkins, Helmi, Navarro, Frenk & White '07

Feedback in galaxy formation

Effects of reionization

Gas is neutral → cools in small halos

H is reionized at z~(10-6)

Gas heated ~10⁴K → cannot cool in halos with V<40 km/

S

From STSci picture gallery

Baryon habitats

Prevents collapse of baryons in halos with V_{200} < 35 km/s $(M_{200}$ <10¹⁰ M_o)

Crain, Eke, Frenk, Jenkins, McCarthy, Navarro & Pearce 07

Substructure in cold dark matter halos

Only the few small subhalos that formed before reionization can cool gas and make a visible galaxy

60 million particles inside rvir

Springel, Jenkins, Helmi, Navarro, Frenk & White '07

Luminosity Function of Local Group Satellites

- Photoionization inhibits the formation of satellites
- Abundance reduced by factor of 10!
- Median model gives correct abundance of sats brighter than M_V =-9, V_{cir} > 12 km/s
- Model predicts many, as yet ^{≝⁻¹} undiscovered, faint satellites
- Benson, Frenk, Lacey, Baugh & Cole '02 (see also Kauffman etal '93, Bullock etal '01)

Cosmology

The 11 bright satellites within 250 kpc of the Milky Way lie roughly on a great circle on the sky (Lynden-Bell '67, Kroupa, etal '05)

The 11 bright satellites within 250 kpc of the Milky Way lie on a great circle on the sky (Lynden-Bell '67, Kroupa, etal '05)

The 11 bright satellites within 250 kpc of the Milky Way lie on a great circle on the sky (Lynden-Bell '67, Kroupa, etal '05)

Simulations of disc galaxy formation

ΛCDM initial conditions

Smooth Particle Hydrodynamics (SPH)

Cosmology

Okamoto, Jenkins, Eke, & Frenk '05

The 11 bright satellites within 250 kpc of the Milky Way lie on a great circle on the sky (Lynden-Bell '67, Kroupa, etal '05)

Substructure in cold dark matter halos

60 million particles inside rvir

Springel, Jenkins, Helmi, Navarro, Frenk & White '07

Halos have large number of self-bound substructures containing ~10% of the masss and with $dN/dM \sim M^{-1.8}$

-> Substructures may be observable

Gravitational lensing effects γ -ray annihilation emission

Anomalous flux ratios in multiplyimaged quasars \Rightarrow Substructure

Dalal & Kochanek '02, Metcalfe & Zhao '02

 \rightarrow \wedge CDM is an intrinsically implausible model that requires:

- An early epoch of inflation
- Quantum fluctuations in the early universe
- Non-baryonic dark matter
- Dark energy

→ Yet, it agrees with staggering amount of data, from CMB to gals

- Baryon acoustic oscillations detected in 2dFGRS and SDSS
- → Current generation of surveys to detect BAO at z~1 will constrain w but only to ~5%
- Data consistent with cusps in cluster halos
- Satellite problem" probably solved by photoionization

The "golden" era in cosmology is not over

It has probably just begun!