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Need to go beyond standard
perturbation theory

o (Linear) perturbation theory proved extremely successful
in dealing with CMB data

o The study of the LSS requires better schemes, owing to
the crucial role played by the gravitational instability,
which makes the underlyéing dark matter density field
unavoidably non-linear, hence non-Gaussian, on a
relevant range of scales.

o Renormalized Perturbation Theory (Crocce &
Scoccimarro 2005, 2006)

o Renormalization Group (McDonald 2006; Matarrese &
Pietroni 2007)
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Future surveys vs. BAO

Acoustic peaks are a small effect:
require large surveys to be detected.

P(K)/Pref(k)

ACDM (Q,=0.35) |

Goal: predict the LSS power spectrum to % accuracy
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Standard approach: Perturbation Theory
1-loop PT

Jeong & Komatsu 2006

0.2

Weovenumber b M = l:::_1

0.04 0.06 0.08 0.1 Scoccimarro 2004
k [ h/Mpc |

= Non-linearities become more and more relevant in the redshift
range 0<z<1, which is crucial for Dark Energy studies.
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Present status: N-body simulations
VS. ﬂttlng funCtlonS Huff et al. 2006

Fitting schemes (e.g. Peacock &
Dodds 96) evolve the power
spectrum by a non-linear and
non-local mapping of the linear
one, by a smooth interpolation
(based on outcomes of N-body
simulations) between large
scales, where linear theory
applies, and very small scales,
where stable-clustering is
expected to hold. The halo-model
assumes that all the matter
self-organizes in clumps (“halos”)
by gravitational instability N g e
(= Press-Schechter theory).

L]

(h/Mpc)

v ~10% discrepancies between fitting functions and N-body
simulations
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RG and LSS

Apply standard Renormalization Group techniques to the
study of the dynamics of (cold) dark matter by self-
gravity, to accurately follow the (mildly) non-linear
regime (6~1).

The general idea is that of describing how, starting from
large scales (or early times), where linear theory holds
true, statistical quantities change when shorter and
shorter scales are gradually included.

Fully general method: it can be applied in principle also
to DM + baryons and/or away from the fluid (single-
stream) regime, i.e. it can be extended to highly non-
linear scales.
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Dark Matter hydrodynamics

= DM phase-space distribution function obeys the collisionless
Boltzmann (Vlasov) equation (using conformal time)

) . :
i 1 P Vf—amVo -V =0

oOT am

where p=am dx/dt and ¢ is the peculiar gravitational
potential, which obeys the cosmological Poisson equation

s Taking moments and neglecting the velocity dispersion tensor (single-
stream approximation) yields a pressureless (dust) fluid picture.

= Invalid after shell-crossing, i.e. beyond the mildly non-linear regime.
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Cosmological Euler-Poisson system

[ @ sxp.m) = 5.7 =91 + 8, 7) mass-density

f #p Pl f(x.p.7) = p(x, 7)s(x.7) streaming velocity

arn

3. Pilj . . .
f ’p ég.}ié ACSY RPENIC SO LIC SR ICSPRLFICOl  Velocity dispersion
tensor
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Go to Fourier-space

m Defining the velocity divergence (remind: cosmic velocity fields are
always irrotational) §(x,z) = V - v(Xx,7) one gets, in Fourier-space

r."}{k

oT

|

) 4 Ok, 1)+ / d’k1d’ka 6p(k — ky — ka)a(ky, k2)8(k1, 7)6(ka, T)

+ H Ok, "I —|— —{ "UH r‘rl k, 7))+ / f"f'.iklf'!':'}'l'{g op(k — ky — k; 1I 3 ( 1\1_ ko)B(kq, 7 IHIR_: 7)=10

= . s I\ . I-\-'}
= mode-mode coupling is controlled \K1,K2)

by two functions
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Linear Perturbation Theory

s Expected to hold at early times and/or on large
scales.

m Consists in dropping mode-mode coupling in fluid
equations: a=p=0

NV a ( T } N T

La ( fir } )

md(k. 7)

f;.f T

do(k, 1)

+ H 0(k, ”i+—”u)‘( r‘ill\ 7)=20

1 growing mode
oT

—3 decaying mode
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Trad ItIOI‘la| Pe rtu rbat|on Th eo F)/ fastest growing mode only

Assume EdS, {23, = 1, then solutions have the form ok, 7) = Z a"(7)
—1

Ok, 7) = —H(7) Y a™(7)8n(k)

=

fastest growing mode only

on (k)

3

=

with

The Kernels £}, and GG, satisfy recursion relations, with Fy = G| = 1 ,and 01 = t/; = 0¢:

n—1

Z Gm (ql ----- qm)
— (2n+3)(n—1)

x [(2]’1 + ]-)O‘»'(kla kB)Fn—m (qm-l—ls sy qn) + ‘2-’9(](1 k2)Gn—m (qm-l—ls sy qn)]

where ki =qi1+...+9m, kx=dm+1+...+dn



Traditional Diagrammar  Fry.es
Goroff et al,'86

Wise, 88
Q ,/’ Scoccimarro, Frieman, ‘96
L A Heavens, Matarrese &
o — Verde, 1998
4P—.\q_2 . = (ip(k—ql—...—%)ngs)(ql,...,%)
.
AN An infinite number of basic vertices!
q very redundant!!
______ oo = Pl(gnr)
Example: |-loop correction to the density power spectrum:
q1
qJ_ .r.h R
q - [ ) qz
—>@--——»-———-@»— -+ —@ O — + - —-@»—
— +_ - -
4z ‘\
q - L e .- q -* L @
bispectrum: e w1 e T e
J}* .: tlts” " (L o N '"l;‘ P



Compact Perturbation Theory

Crocce, Scoccimarro ‘05

The hydrodynamical equations for density and velocity perturbations,

y )
D ivinran =0, v (v-T)v = Vo,

oT
can be written in a compact form (we assume an EdS model):

(5(1{:-‘81} + Qab) ‘;b(‘r?* k) — ET?AJ"'abc(k: _kla _k2) {PI}(T?? kl) kp:::'('\r?" k2) (1)

pr(n k) _ o(n . k) — loe a_( t -l
where \ oo(n.k) ) 75\ —0(n.k)/H =208 —\ -3/2 3)2

and the only non-zero components of the vertex are

‘ ks + ks) - k
v121 (k1. ko, k3) = v112(k1, ks, ko) = 0p(ks + ko + k3) Uzt ks) b

22

ko + k3|? ks - k3

v222(K1, K2, K3) = op(ky +ka +k3) 2 )2
212 12




Extend to non-EdS cosmologies

Bouchet et al. 92
Bernardeau 94
Catelan et al. '94
Nusser & Colberg ‘98

s Where D, is the linear growth factor of density
fluctuations in the given cosmology

m In doing this we are neglecting the effect of decaying
modes in the non-linear regime (Crocce & Scoccimarro
'05)

m Initial time n=0 corresponds to z=z,, and is chosen so
that perturbations are well inside the linear regime.

n We take z,,=80
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An action principle
Matarrese & Pietroni ‘07

Eq. (I) can be derived by varying the action S w.r.t. the field x

- - —1 ‘A / ~f (AT (A
S = f d'f'hdf?z Xa Yqp Fb — f di’? e'l Jabe Xa Fb Pe

where the auxiliary field x.(7, k) has been introduced and gas(71,7)2) is the retarded propagator:

(0ap0y + Qab) Goe(n.1") = dac0p(n —1")

so that (r,? K) = gar(n,n" ) (I} k) is the solution of the linear equation

B 1 ( 3 2 )

—‘f2(731 n2) . . — = ‘
Explicitly, one finds:  g(71.7)2) B +Ae m =72 5\ 3 2
m < n9
1 -
SRR
growing mode decaylng mode 2\ T 3

N
( —"?{f? )

Pt

)

Initial conditions: ‘Pb(""? k) oxup = (



A generating functional

The probability of the configuration ¥ (7r), given the initial condition ¥4 (7)), is
P[Qu(”f)* ‘rju(r]z)] =0 [\rjtz(fif) — Pa [Uf« &jcz(i’]z)]]
fixed extrema solution of the e.o.m.

Y 2
/1, T V- r 9 4y s y 2 ) Uy Fy )
~ / D ‘;-:'UD)KE) €Xp {! / '(--Z?,) Xa [(Oab(—)?; - Q(‘Lb)'\f"b — e ;'abr':";'-fb";'-fr"}}
4

only tree-level (saddle point)

The generating functional at fixed initial conditions is

Z|Jg, Ap; pc(ni)] = ] ‘Da:a(?.?f)efip{f / dn(Japa + Amb)} Plpa(ns); Pa(mi)]

};h'



We are interested in statistical correlations, not in single solutions:

Z[Jus Ap; K's] = /Dapc(-ryi)lfi-’[pc(m);K’.S]Z[J(L,Ab;pc(rh-)}

where all the initial correlations are contained in

, ; , 1 ,
Wipe(n:); K's| = exp {_'&Qa(né: k) IKa(k) — S@a(niska) Kap(ka, ki )y (s kp) + -+ }

In the case of Gaussian initial conditions: ([f(k));& = Pgb(k) — uaubPO(k)

Putting all together...

|Z[J. Al = fﬂp Dy exp {fr'l-;,rlr'h;g

1

—SXE

2

-1 . _
'Plgt "y +ixg 1ty

— /f'h,} ey xpp —Jp — Ax]}

where the initial conditions are encoded in the linear power spectrum: P (1. /s k) = (2(n)P° (k)g’ (1))

Derivatives of Z w.r.t. the sources | and A give all the N-point correlation functions (power
spectrum, bispectrum, ...) and the full propagator (k-dependent growth factor)




Compact Diagrammar

——————— propagator (linear growth factor): —1 Gab(Na, 1Nb)

L ¢ .
b power spectrum: BPob(Nas myi k)

- - 3 TF o~
interaction vertex: —i el yape(ka, kb, ke)

Example: |-loop correction to the density power spectrum:

1
+
|
|
+
N
|

All known results in cosmological perturbation theory are expressible in
terms of diagrams in which only a trilinear fundamental interaction appears




Beyond perturbation theory: the renormalization group

Inspired by applications of Wilsonian RG to field theory : the RG parameter is momentum

(step function)

Modify the primordial power spectrum as: PS (k) = PO(A‘) @()\ — k)

then, plug it into the generating functional: 2 |J, A] — Z)\[J. A|

1 _ -1 o _ )
ZyJ, A = /’DQ'D)" exp {/(imd-;;g {— - X8 prlet v +ixg™? L,:ﬁ] — -r./(f.u ey xpp — Jp — Ax]}

[
-

this object generates all the N-point functions for the Universe in which
there were no primordial perturbations with £ > \

The evolution from A = 0 to A = o0 can be described non-perturbatively by RG equations:

d _ 7118 —1pL,—17 527
oxZx = | dndi [m (9 PXyg )ab MMJ




Generating functionals

Next, define the generator of connected n-point
functions:

HT\ [j . :"‘1] = —1 1{2},;‘3;2 Z A [._/T \ 1"‘1]

And, through functional Legendre transform, the
effective action (or generator of 1PI diagrams):

[0, X5| = W[ Ap] — / dn d®k (J, 0, + Apys)
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The propagator

S2W[J, Al _

(3) : . _ AL, WilJ, A] = —ilog Zy[J, A
d (k+ k)Ga\,ab(k: Na, T}b) - 5‘}“(1{’ T)‘a)fSAb(k’; T)‘b) )\[ ] ¢108 )\[ ]

g 0°W, 1 T 0* W,

— = | dp.dny d3q 5(\ — (—1PL—1)

X 0.0, 6A, 2 / nednad’q 0(A —q) (g7 P9 ) 5J. 6Ay 0N, A,

Thick lines indicate full

propagators; dark RG Kernel

blobs 1PI 3- and 4-point

functions; the crossed / "

box is the RG kernel:
d!dj\a --r = ”2a --C‘-\ ))'T--by.
/ :

1PI a b

infinite tower of RGFE’s




Structure of the RG equations (1)

o The RHS of the RG equation is remarkably simple. The
two contributions have the same structure of one-loop
diagrams, where tree-level vertices and propagators

have been replaced by full, A-dependent ones. The same
holds true for any other quantity of interest.
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Structure of the RG equations (2)

o A recipe can then be given to obtain the RG equation for any given
quantity.

v" Write down the 1-loop expression for the quantity of interest,
obtained using any needed vertex (for instance, in the case of G
we have not only the vertex x@®, but also xp@® although it
vanishes at tree-level).

v Promote the linear propagator, the power-spectrum and the
vertices appearing in that expression to full, A-dependent ones.

v Take the A-derivative of the full expression, by considering only
the explicit A-dependence of the step-function contained in the
initial power-spectrum.
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Structure of the RG equations (3)

— The RG equations obtained following these rules are
exact, in the sense that they encode all the
dynamical and statistical content of the path-integral
or, equivalently, of the Euler-Poisson system
supplemented by the initial power-spectrum.
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Approximation ansatz

a Full A-dependent propagators G
a Tree-level vertices

-_ (‘:/\ ab (]‘* Tas 1 ) —

4 / dnedng d>q 0 (A —q) Kealq; e ma)

Yeeg(e; —k. d, k —q) viar(na; —k+4q. —q. k)

(‘:\ ae ( /"' Nas Ne ) (T A, gi ( ‘ k — (1‘ s Nes Md ) (—-7)-\, lb ( [“ Ny M

0 RG Kernel: K. ca(q: Me, 1d) = G, em(q: e, .*f,”P (q) u“(T\ 2(q: 0, nq)
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Lowest order approximation: k»A

a The RG equation for the propagator becomes:

l,:'.)' - - I_‘l)
—(\ b (K N0y M) 7(_6_':-"'-"-—5’1 —/dq\\ q) (\ bk e, )

Ga=0,ab(F: M. 1) = gab(Na. 1) boundary condition

T, "’“’-’(--A-':- Ta, Tb ] — Gab ( Tay 1) J( Xp | — 2 (e'la

where:
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in perturbation theory, it can be obtained by summing the infinite series of
chain diagrams (Crocce Scoccimarro, ‘06)

S S kit 0 N S SN S

physically, it represents the effect of multiple interactions of the k-mode
with the surrounding modes

We can remove the k » A limit and integrate numerically the RG equation. We still
get the same UV cutoff

A ’ ‘ _I 3 - / -
coherence momentum’ f,;, = (o e) " ~ 0.15h Mpc~ '

in the BAO range!



A self-generated UV cutoff

Inserting this result in the expression for the RG kernel, we get:

P P
( !' el T\

- /ooy 1
Kx calq: 1o, na) = ueugP™ (q) exp | — =

The effect of modes with momenta larger than
is exponentially screened.

We can remove the k >> A approximation. Integrating numerically
The RG equation we still get the same UV cutoff.

The UV is much better behaved than one would guess from
“usual” perturbation theory!!

(K, ca (@ Mes na) — weuaP’(q))
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the effect persists even relaxing the k>>A\ condition:

linear theory
1l «—

RG

|-loop pert. th.

-2  -1.s -1 | 0.5

Logio[k - Mpe/h] I S PR



Confirmed by N-body simulations

0.8 -

0.6

G,(k)/D,

0.2 -

|IIII| | 1 lll L]l

0.01 0.05 0.1 0.5 1
k [h Mpe-]

smooth interpolation between the small k (perturbative) and the large k (resummed) results
(from Crocce and Scoccimarro,‘06)



A self-generated UV cutoff

Inserting this result in the expression for the RG kernel, we get:
¢*o3
2

=

Kx, ca(q; mes na) = 6(A — q) Poy(q) exp |—

The effect of modes with momenta larger than 0;1(,8?? — 1!
is exponentially screened.

The UV is much better behaved than one would guess from "usual’

perturbation theory (K, ca(q: 1c. ) — SN — q)Poy(q)) !!

(€

(((":?""3 — 1:)2 - (r'e”d —

1)%)



Self-generated UV cutoff

m Same result obtained by Crocce &
Scoccimarro 2005 and already noticed in
N-body simulations

= The high-frequency modes of the initial
(linear) power-spectrum are truncated
down to the present-day non-linearity
scale. The final (z=0) outputs are left
almost unchanged.

Little, Weinberg & Park 1991
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The power spectrum

similar to
L 2-halo term in
the halo model

The full PS has the structure: Pa,b = P S F a,Ig;T

with  PL(k;na,m) = Gac(k;Na,0)Gpa(k; mp, 0) P (k) | similarto
1-halo term in
/ the halo model

Na Tlb
P ) = / dsi / ds2 G ac (k3 May $1)Goa (k3 b, 52)@ea(ks 51, 52)
0 0

fd)\-- (S).-J,---m--.ng

oO—-—{O—+—O—
£

PI PII




again, tree-level vertices... 8
0. »°
o _ ) PI - .
O\Pap, Ak 51, 59) = 471192 /(ﬂe’q(}{/\ — Q’}R{c,)\@’? S1. 8g) X 0.6 h ""'/1..;";/
0.4 ,4"'_ - =~ ~
Prea(la — K[; s1. 82) Yaar (K, =4, =k + q@)Yee(—k, g k —q) o
.- k[h/Mpc]
0.1 0.2 0.3 0.4

accuracy of linear theory up to k~0.12 h/Mpc
is fortuitous: cancellation between two large
non-linear effects

0.05 0.1 0.15 0.2 0.25




comparison with other approaches

Z=2

ACDM model

. . . M 0,=0.73, ,=0.043 h=0.7
0.05 0.1 0.15 0.2
_, «—|-loop PT
z=1 /" «—RG (Matarrese, M.P)

- Linear theory

data from N-body simulations of

. . , _Fr/Ape] Jeong and Komatsu, astro-ph/0604075
0.05 0.1 0.15 0.2 0.25




ACDM model
0,=0.7, 0,=0.046 h=0.72

data from N-body simulations of

u 1.05 » = "
. f(;—r.fhi?.!'fa.lﬁliﬁiﬁi‘ﬁ'pc}:z Huff et al, Astrop. Phys. 26,351 (2007)

--c.-'




a

Short/Mid/Long-Term Goals

Improve solution by including “running” of the trilinear
vertex and write an approximate RG expression for the
effective action (S.M. & Pietroni, in progress)

Make the code publicly available (as soon as the above
step is accomplished and numerical integration is refined)

RG calculation of the bispectrum, accounting for
primordial NG (via a quadratic f,, term in the
gravitational potential) (S.M., M.LPietroni & A. Riotto, in
progress)

Account for non-linear and non-local halo/galaxy biasing;
go to redshift space

Non-linear mapping for density & velocity fields (?)
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Conclusions (1)

o Very important quantifying departures from linear theory
to compare cosmological models with future galaxy
surveys. The 0<z<1 range crucial for DE studies.

o The compact perturbation theory formulated by Crocce
and Scoccimarro is a very convenient starting point for
applying RG techniques to cosmology.

o Exact RG equations can be derived for any kind of
correlation function and for the scale-dependent growth
factor.

o Systematic approximation schemes, based on truncations
of the full hierarchy of equations, can be applied,
borrowing the experience from QFT.
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Conclusions (2)

o A simple approximation scheme already shows the
emergence of an intrinsic UV cutoff in the RG running.

o Excellent agreement of RG power-spectrum predictions
down to z=0 with results of N-body simulations in the
range of Baryonic Acoustic Oscillations.

o Immediate lines of development include: computation of
the bispectrum (including non-Gaussian initial
conditions), improved approximations for the
propagator, bias and redshift-space distorsions.
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