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Clarifying Inflation Models

~-Effective Theory

-Precise Inflaton Potential
from Effective Field
Theory and the WMAP
data

-Quantum Corrections: to

the Inflaton Potential,
to the Primordial Power

-NO fine tuning

Inflation as known today should be
considered as an Effective Theory

That is, is Not a fundamental theory but a
theory on a condensate (the inflaton field) which
follows from a more fundamental theory (the
GUT model)

The Inflaton field may NOT correspond to any
real particle (even unstable) but is just an

effective description while the microscopic
derivation should come from the GUT

Inflation is to the microscopic GUT theory,
like the effective Ginsburg-Landau the:ory of
superconductivity is to the microscopic BSC
theory,
or like the O(4) sigma model is to QCD
To provide a clear understanding of Inflation

and the Inflaton Potential from

Effective Field Theory and the WMAP data



This clearly places Inflation within the
perspective and understanding
of effective theories in particle physics,
and sets up a clean way to directly

confronts the inflationary predictions

with the forthcoming CMB data
and select a

definitive model

GRAND UNIFICATION SCALE

10185 GeV < E < 1016 GeV

Three experimental supports:

(1) Unification of couplings

(2) Neutrino Oscillations

(3) Inflation



L IMPLICATIONS FOR GRAND UNIFICATION:T

GRAND UNIFICATION SCALE:
Three experimental supports:

(1) Unification of couplings in the Standard
Model with the Renormalization group For the
Standard  Model, couplings get unified
approximately at E ,,1016 GeV,

(2) Neutrino Oscillations: and Neutrino masses
currently explainedk

M >> MFermi
and AMV Is the difference of neutrino masses for
the different flavors.

250 GeV,

Mreemi ~o

The observed values for Amv.., 0.009-0.05 eV
naturally call for a mass scale M close to the

» 15.16
GUT scale M ~ 40 V §
The inflaton potencial relation V(¢)= M v rcé )
Ressembles the moduli potential from supersymmei‘ry

breaking: U;usy ($)= 'm's'v,y nr ( g]ﬂa}

Our approach, combined with My, Implies

wp 75~ 1016 GeV The SUSY breaking scale msis at the

GUT scaler ~mGUT '

(3) Inflation

@ We find that the mass scale of the inflaton

1013 GeV can be related with Mgyr by a
see-saw relation

mn ~ Meor
M Plamck

® The Inflaton describes a condensate in a
GUT theory (fermion-antifermion ) pairs.

® There is no solid basis to identify such a
condensate field with a given fundamental
Jield in a SUSY or SUGRA model.

® Moreover, the number of susy models is so
large: there is no way to predict the which is
THE correct model.



IMPLICATIONS FOR STRING THEORY)|

To generates Inflation Needs first to generate a mass
scale like the inflaton mass m.

Such scale is NOT present in the string action neither
in the effective fields (dilaton, graviton, antisymmetric
tensor).

Without the presence of the mass scale m and Mgy,
there is NO hope in string theory to describe a correct
inflationary  cosmology describing the CMB
Sfluctuations.

Such scale should be generated dynamically perhaps
from the string vacuum, but this is still an open
problem far from being solved.

Since No microscopic derivation of inflation from a
GUT model is available so far, it would seem too
ambitious at this stage to look for a microscopic
derivation of Inflation from string theory.

The derivation of Inflation reproducing observed CMB
Sfluctuations is at present too hard.

An effective description of Inflation in String theory
(string matter plus background) could be at reach
H J de Vega and N Sanchez, PRD 50, 7202 (1994
M.P Infante and N Sanchez, PRD 61, 0831515 (2000)
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e The Effective Field Theory (EFT) Approach

relies on the separation between the energy
scale of inflation and the higher energy scale of
the earlier stage (cutoff scale) which here is the
Planck scale.

Scale of inflation: Hubble parameter during the
relevant stage of inflation (wavelengths of
cosmological relevance cross the horizon).

EFT expansion: defined by the dimensibnless
ratio H(q)o)/ Mp;, .

Reliability of the expansion : improves upon
dynamical evolution since the scale of inflation
diminishes with time.

EFT expansion is an excellent one since the
amplitudes of tensor and scalar perturbations Ar
and Ag respectively are given

Ar = \2H , H =2mAz\2e,
n Mpy, Mpy,

g&v<<1. @ WMAPdata Ap=0.47 x 10™*
provide strong observational support to the
validity of an effective field theory for inflation
well below the Planck scale and to the (H/Mpy)
expansion.



QUANTUM CORRECTIONS)

— mw Ny — 4 € 310
M\@HNAGOV - <Agcv ﬁu. + w Anmﬂ.vm EWN Aﬂ? - Wmc + .QQ — €y +\Nl
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’The Wilkinson Microwave Anisotropy Prbe (WMAP) has provided a full-sky map of the
temperature fluctuations of the CMB

o Inflation provides a natural mechanism for the generation of scalar density fluctuations that
seed large scale structure, explaining the origin of temperature anisotropy in the CMB

’ Wavelength that are of cosmological relevance today re-enter the horizon during the matter
dominated era when the scalar (curvature) perturbations induce temperature anisotropies that
are imprinted in the CMB

O Generic inflationary models predict gaussian adiabatic perturbations with a spectrum that is
almost scale invariant

’ Inflationary dynamics is typically studied by treating the inflaton as an homogeneous classical
scalar field whose evolution is determined by a classical equation of motion. The inflaton
quantum fluctuations provide the seeds for the scalar density fluctuations of the metric

o Important aspects of the inflationary dynamics, as the resonant particle production and the non
linear back-reaction that it generates, requires a full guantum treatment for their consistent
description

¢ Setting m = 0 in polynomial potentials implies a mzn-generic .choici. tZIAMP
disfavors such a choice and supports a generic quartic polynomial poten

:

: m>108 GeV
A purely quartic potential is disfavored ummalp Lower Bound for m: nm

‘Spectral Indices data wemel) Should help soon to make a clear selection between

inflationary models

‘ A measured I < 0.1 m excludes Chaotic Inflation

i brid
n, value above or below unit gy exclude either New or Hybr
5
respectively

inflation

2

Mpermi wummlp Implies m,~ 10'6 GeV
M

:

The SUSY breaking scale m, wmalp is at the GUT scale m,~ Mgyy
Meor

, me
Then the mass scale of the inflaton 10’3 Gev is related — Mp

‘ Our approach, combined with Am, ~



The Energy Scale of Inflation

fGrand Unification Idea (GUT) T

# Renormalization group running of electromagnetic,
weak and strong couplings shows that they all meet at

Eopr ~ 2 x 1016 GeV

# Neutrino masses are explained by the see-saw
. 2 . .
mechanism: m,, ~ 4=t with Mz ~ 1016 GeV.

o Inflation energy scale: M ~ 106 GeV.

Conclusion: the GUT energy scale appears in at least three
Independent ways.

] . L] — 4
Moreover, moduli potentials: V,,,qui = Mgy v (ﬂfpl)

ressemble inflation potentials provided Mgygy ~ 101°GeV.
First observation of SUSY In nature??

. -



De Sitter Geometry and Scale Invariance

-

The De Sitter metric is scale Invariant:
ds® = e 77) (dn)? — (d@)*] .
n = conformal time.
But inflation only lasts for N efolds !
Corrections to scale invariance:
Ins — 1| as well as the ratio r are of order ~ 1/N,
ns = 1 and r = 0 correspond to a critical point.
It is a gaussian fixed point around which the inflation model
hovers in the renormalization group (RG) sense with an

almost scale invariant spectrum during the slow roll stage.
The quartic coupling:

4 ) )
G4 M o a(inflation end)
A= N (Mpl) ? N = log a(horizon exit)

Lruns like in four dimensional RG in flat euclidean space. J

=




WMAP Supports Single Field Inflationary Models

Causal
| Seed model
» Flat universe: Q,,=1.02 +0.02 (- )
) ) 60 T /
 Gaussianity: -58 < f,, < 134
40}
« Power Spectrum spectral 20¢ Erimordial
ocurvature

index nearly scale-invariant:

n, = 0.99 + 0.04 (WMAP only)2e03
M, =0.95+ 0.02(WMAP, 2dF) 2006~ —»

0

+1)/(2 m) (uK)?

. Ad]a R P og e B WMAP TE
batic initial conditions * _ | ___datain
bins of
« Superhorizon fluctuations .| S A Al=10
. R 0
(TE anticorrelations) VA
Primordial Adiabatic
i.c.
primordial power Spectrum. 10e Sww-sui appie e o ‘
Negotds ~ 50 is the number of efolds before the end of inflation when modes Of COBMOIOGICHS 1EIGvamer: v =y
crossed the Hubble radius.
e e ["Brogress permit to start to discriminate among different inflationary - models, placing stringent
constraints on them/ T he upper bound on fle ratio 7 of tensor to scals fluctuations obtained by WMAL 14, o] rules
Slies the presence of a mass term in the inflaton potentia 5, 9].

for inflation in the grounds of

Ut the massiess ¢- model and necessarily im
well motivated potentia
potentia h to

/ Besides its simplicity, the tinomia potential is a physically
the Ginsburg-Landau approach to effective field theories (see for example ref.[11]). This
d ) duce the WMAP data [4,5

describe the physics of inflation and accurately repro ,
< slow-roll expansion plus the WMAP data constraints the inflaton potential to have the form [9]

V(¢) = Nefous M* w(x) » )

nsionless, slowly varying field

(1.1)

where ¢ is the inflaton field, x is a dime

— ¢
L x= \/Ne!olda Mp ! M; (1-2)

which is determined by the amplitude of the scalar adiabatic

w(x) ~ O(1) and M is the energy scale of inflation
fluctuations [4] to be

g M~ 0.00319 Mpt = 0.77 x 10'°GeV .

Following the spirit of the Ginsburg-Landau theory of phase transitions, the simplest choice is & quartic trinomial for

the inflaton potential [9, 10]):
T % TLCON £ V- i APV
i w(x)—woizx +3\/;x +32x. (1.3)

)




INFLATION IS AN ATTRACTOR OF THE
DYNAMICAL EQS OF MOTION

THE SLOW ROLL REGIME IS AN ATTRACTOR

@ STARTINGWITH &%, V(®)

THAT IS, THE KINETIC ENERGY 1S OF THE
SAME ORDER OF THE POTENTIAL ENERGY,

THE INFLATON FIELD ALWAYS REACHS THE

@ SLOW LOW REGIME
AFTER A FEW NUMBER OF EFOLDS
(typically 1 efold)

SLOW ROLL HAS A LARGE BASIN OF
ATTRACTION
e B
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Ginsburg-Landau Approach

- We choose a polynomial for w(y). A quartic w(y) is -
renormalizable. Higher order polynomials are acceptable
since inflation is an effective theory.

w(X)ZwoiX?2+G3X3+G4X4 , G3=0(1) =Gy

V(g)=NMw (52 ) = Vot B 6*+g0° + A"
2 4
M? M _ G M
m=L g:%(MPZ) Gs , A= (MPZ)
Notice2that )
MY . 1a-5 M\ . 1n—10 -
(%) =107, (%) 10710, N=50,

# Small couplings arise naturally as ratio of two energy
scales: inflation and Planck.

# The inflaton is a light particle:
L m= M?/Mp; ~0.003M , m=25x108GeV J



Trinomial Inflationary Models

-

#® Trinomial Chaotic inflation:
w(x) =3 x>+ 3 \/gx3+3y—2><4-
# Trinomial New inflation:
w(x) = —5 x>+ 3 \/gx3+3%x4+§F(h)-

h = asymmetry parameter. w(min) = w’(min) = 0,
y = quartic coupling, F(h)=8h*+4h%+1+ 80| (h2+1)

N

H. J. de Vega, N. G. Sanchez, Single Field Inflation models
allowed and ruled out by the three years WMAP data.
Phys. Rev. D 74, 063519 (2006), astro-ph/0604136.

o -
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where the coefficients wg, h and y are dimensionless and of order one and the signs + .correspond t.o large and
field inflation, respectively (chaotic and new inflation, respectively). Inserting eq.(1.3) in eq.(1.1) yields,

™o me s A )
® r V(¢)—Voi—2—¢2+ 3 ¢+4¢- 7/ ®

where the mass m? and the couplings g and X are given by the following sge-saw—like relations»,‘

2 4
me M () e lam) %:NM‘iﬂ
- ' 2N \Mp 8N \Mpy S

10-%) and A ~ ©(10~12) without any fine
ly follow from the form of the inflaton po

where N = Neyo4s. Notice that y ~ O(1) ~ h guarantee tl}at g~ o(

as stressed in ref. [9]. That is, the smaliness of the couplings direct

eq.(1.1) and the amplitude of the scalar fluctuations thgt fixes M [9].

'S ' of egs.(1.3)-(1.4) corresponds to a quadratic potential whil.e the strong co

ic potential. The extreme asymmetric limit |h| ) y}elds a massive

he product |h| M? must be kept fixed since it is determined by the am]
e

limit y — oo yields the massless quart
without quadratic term. In such limit t
of the scalar fluctuations. == 7 ”
e study here new inflation with the trinomial potential eqs.(1.3)-(1.4) _and hybrid inflation [see bel(;)w], dt
{odels fulfill the observational constraints. We compute in both scenarios n;, r and the running ln, / |
functions of the parameters of the models, derive explicit formulae.for n,, rand dn ,/ dlnk andsprovx?; re el\lfla(;n(
Moreover, we plot the ratio r and the running dn,/dIn k as functions of the scalar index ns. utlc_e : i‘ viar
now known [5]-[8], these plots allow us to predict the values of 7 and dn,/dInk for the different inflationary

cgmdered. —

"We study here new inflation with the trinomial potential eqs.(1.3)-(1.4) and hybrid inflation [see by
odels fulfill the observational constraints. We compute in both scenarios n,, » and the running
nctions of the parameters of the models, derive explicit formulaefor ng, r-and:dn;/dlnk and provide
loreover, we plot the ratio r and the running dn,/dInk as functions of the scalar index n,. Since the
ow known [5}-[8], these plots allow us to prédict the values of » and dn,/d1nk for the different inflat;

)nmdered,

The three years WMAP data indicate a red tilted spectrum (n, < 1) with a small ratio r < 0.28 of t
actuations [5]. More precisely, the three years WMAP data [5] as well as ref. [6] yield

[ n,=095+002. )

/e find that for n, = 0.95 and any value of the asymmetry h [see figs. 4 and 5], new infla
otential egs.(1.3)-(1.4) predicts —ir

with

—

003<r<0.04 and -—0.00070 < dn,/dlnk <
=0,000 5SS

trinomial potential inflation for n, = 0.9

- ooz,

/e find for the lower border of the three years WMAP data band:

(trinomial potential new inflation for n, = 0.93: 0.003 <7 <0015 and - 0.0011 <dn, /dInk<
e 3

loreover, in new inflation with the trinomial potential, we find that n, is bounded from above by
new inflation : Ny < Ny mazimum = 0.961528... . )

or n, = 0.961528. .. we have in this model r = 4769... (see figs. 4 and 6). Interestingly enoug
¥o values (two branches) of r for one value of n, in the interval 0.96 < n, < 0.961528... [see fig.
nar = 0.114769. .. is the maximun r in the first branch. The va.!ues 0.16 > r > 0.114769... correspo

(1
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FIG. 4: New Inflation. = as a function of n, for the asymmetry of the potential || = 0,0.15,0.4,0.7 and 20. For a given
Ty, T MONC otonically and slowly d with i ing [A]. r = r(n.) is not too sensitive to h. The maximun value of
ny is nI¥™T = 0.961528.. . and the corresponding r iS rmar = 0.114769.... The maximun value of 7 is T4bs maz = 0.16
and corresponds to the quadratic potential setting y = 0 in eq.(3.2). For n, = 0.95 (the three years WMAP value), we find
0.03 < r < 0.04.
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FIG. 5: New Inflation. The running dn,/dInk as a function of n, for the asymmetry of the potential |hl = 0,0.15,0.4,0.7 and 20.
The running turns out to be always negative in new inflation. For n, < 0.96, the running dn, /dInk decreases with increasing
|h]. The opposite happens for n, > 0.96. In the last case the dependence on h is weak. We find dn,/dInk = —0.00077...
at the branch point n, = 0.961... for all j2|. The point n, = 1— 7’7 = 0.96, fﬁ; = —-,7’-; = —0.0008 is reached for all
values of A and corresponds to the jal p ial eq.(5.2). For n, = 0.95 Zthe three years WMAP value), we find

—0.00070 < dn,/dInk < —0.00055.
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FIG. 24: Regions described in the (r,n,)-plane by new and single field hybrid inflation for n, < 1. The hybrid inﬂationﬁrder
corresponds to u® = 1.7 A. Forn, > 1, all values of (r,n,) can be described by hybrid inflation (at least for r < 0.2, n, < 1.15).
The excluded region cannot be described by single field inflation (neither hybrid inflation, nor new inflation). Two or more
fields inflation could describe such regions.
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New vs. chaotic inflation and reconstruction program:

confronting WIVAP 3

Implement eff. field theory + slow roll as 1/Ne expansion to systematically
explore a large ““family’’ of inflaton potentials.

ns = 0.958 +0.016 (assuming » = (0 with no running)

r < 0.28 (95% CL) no running
r < 0.67 (95% CL) with running

10
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WMAP bounds on r clearlF disfavour chaotic inﬂatf‘onf. Now THELoT y fu res
[onr and prepares the way for the expected data on the ratio of tensor /scalar fluctuations r < 0.
In the inflationary models of hybrid type, the inflaton is coupled to another scalar field o with

through a potential of the type [16]

2 2 4 4A 2
_m’ 9o 9 42 2, Mo (2 270} _
2 4
_m® 1 9.9 9y 2, Mo _4
—"—2'¢ +Ao+2(90¢ #0)00+16A0001

where m? > 0, Ao > 0 plays the role of a cosmological constant and g2 couples gg with ¢.

The initial conditions are chosen such that g0 and do are very small (but not identically ?ero) &
is driven by the cosmological constant Ao plus the initial value of the inflaton ¢(0). The xnﬂ?,to:
with time while the scale factor a(t) grows exponentially with time. The field g0 has an effective

mg = g5 6% — g -

Since the inflaton field ¢ decreases with time, m2 becomes negative at some moment (.lurin
moment,'spinodal (tachyonic) unstabilities appear and the field oo starts to grow exponentially.

both fields ¢ and og are comparable with & and &o and close to their vaccum values. .
_We find that the time when the effective mass of the field oo eq.(1.9) becomes negative dep

~ s FRUERYE JEEU SR SO« PR

where the 6% correspond to the error bars in the amplitude of adiabatic perturbations[8]. From figs. 9, 12 and 15
we can understand how the mass ratio ﬁ;—l varies with n, and 7. We find a limiting value =9 = 10° M’ﬂ"_}; ~ 1 for the
inflaton mass such that mg ~ 10~5 Mp; is a minimal inflaton mass for chaotic inflation, and a maximal mass for
new inflation in order to keep ns and r within the WMAP data.

New inflation arises for broken symmetric potentials (the minus sign in front of the ¢? term) while chaotic inflation
appears both for unbroken and broken symmetric potentials. For broken symmetry, we find that analytic continuation
connects the observables for chaotic and new inflation: the observables are two-valued functions of y = k N. (N
being the number of efolds from the first horizon crossing to the end of inflation). One branch corresponds to new
inflation and the other branch to chaotic inflation. As shown in figs. 4-7, 9, 12 and 15, n,, 7 and |6£52d|2 for chaotic
inflation are connected by analytic continuation with the same quantities for new inflation. The branch point where

the two scenarios connect corresponds to the monomial +¢? potential (k =y = 0).

/ ¥ The potential which best fits the present data for n, < 1 and which best prepares the way to the expected data
(a small r < 0.1) is given by the trinomial potential eq.(1.1) with a negative ? term, that is new inflation.
In new inflation we have the upper bound —

r<

2| oo

This upper bound is attained by the quadratic monomial. LOn the contrarj, Jn chaotic inflation for both signs of the

@erm, 7 1s bounded as
0.16::é <r<1§zo.32 )
N N .
CHaoTi ¢

TINFLARTION

G



Monte Carlo Markov Chains Analysis of Data: MCMC.

- .

MCMC is an efficient stochastic numerical method to find
the probability distribution of the theoretical parameters that
describe a set of empirical data.

We found n, and r and the couplings y and » by MCMC.
NEW: We imposed as a hard constraint that » and n, are
given by the trinomial potential.

Our analysis differs in this crucial aspect from previous
MCMC studies of the WMAP data.

We ignore running of the spectral index since

dng/dInk ~ 0.0004 in slow roll.

Adding the running made insignificant changes on the fit of
ns and r.

o -



MCMC Results for Trinomial New Inflation.
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Probability Distributions. Trinomial New Inflation.
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Probabillity distributions: solid blue curves
Mean likelihoods: dot-dashed red curves.
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r VS. n, data within the Trinomial New Inflation Region.
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Marginalized probability distributions. New Inflation.
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Probability Distributions. Trinomial Chaotic Inflation.
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n r

S

Probability distributions (solid blue curves) and mean

likelihoods (dot-dashed red curves).

The data request a strongly asymmetric potential in chaotic

Inflation almost having two minima. That is, a strong
Lbreakdown of the y — —x symmetry. J




MCMC Results for Trinomial New Inflation.

 Bounds: r > 0.016 (95% CL) , > 0.049 (68% CL) -
Most probable values: ng ~0.956 , r ~0.055.
The most probable trinomial potential for new inflation is
symmetric and has a moderate nonlinearity with the quartic
couplingy ~2.01...and A ~ 0.3.
The y — —x symmetry is here spontaneously broken since
the absolute minimum of the potential is at y # 0.

> 8\’
w(x) = 55 (X — g)
C. Destri, H. J. de Vega, N. Sanchez, MCMC analysis of
WMAP3 data points to broken symmetry inflaton potentials

and provides a lower bound on the tensor to scalar ratio,
astro-ph/0703417.
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WMAP 3 years data plus others.

Angular Scale
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FAST ROLL INFLATION,

INITIAL CONDITIONS
AND
QUADRUPOLE SUPPRESSION

Norma G. SANCHEZ




Scalar curvature and tensor (gravitational wave) quantum fluctuations uring the inflationary s
determine the power spectrum of the anisotropies in the cosmic microwave background (CMB) providing the st?eds for
large scale structure (LSS) formation @Curvature and tensor fluctuations obey a wave equation, and the c!xoxce of a
particular solution entails a choice of initial conditions[1}-[9]. The power spectra of these fluctuations depepd in ggnfex:al
on the initial conditions that define the particular solutions.@These are usually chosen as Bunch-Davies[10] initial
conditions. which select positive frequency modes asymptotically with respect to conformal tim.e. The quantum states
in the Fock representation associated With these mmaj conditions are known as §'uncE-5a.v1e.s states, the vacuum
state being invariant under the maximal symmetry group O(4, 1) of de Sitter space-time. In earlier studies alterr}atlve
initial conditions were also considered[11]. e requirement that the energy momentum tensor T ™ €
constrais the asymprotic benaviour of the Bogoliubov coefficients that encode different initial condxt.nqns[l?].
The availability of high precision cosmological data motivated a substantial ‘effort to sf.ud.y the ef.fect of Eilfferent
initial conditions upon the angular power spectrum of CMB anisotropies, focusing primarily in the high-1 region near
. the acoustic peaks[13]. However, the exhaustive analysis of the three year WMAP data[ll'l]-'[lﬁ] render much less
statjstical signi ce to possible effects on small angular scales from alternative initi condltE)_IEs.
Although there are no statistically significant departures from the slow ro inflationary scenario at small angular
scales (I > 100), the third year WMAP data again confirms the surprinsingly low quadrupole C, [14]-[16] and suggests
that it cannot be completely explained by galactic foreground contamination. Th value of the quadrupole
been an intriguing feature on large angular scales since firs nd confirmed b

0.2 companlon.article (23], we reported on our stud the effect of general initial conditions on the powefr"gp ‘. ™\
curvature and gravitational wave perturbations. (General initial conditions are related to the Bunch-Davies initial

) 'v'v. E A . 5

C muifzpo}es;ga_l in_the region of {] ular pov Lespor
=—Th 1ol [23] we formulate the problem of initial conditions established at the beginning of slow roll, in terms of
~{a scattering by a potential in the wave equations for the mode functions of curvature and tensor perturbations.

Such potential is localized in conformal time prior to slow roll and determines the initial conditions for the mode

n L IR B LN RS R R Ry ey 00 BEIES B RE

functions, /Tmplementing methods from potential scattering allowed us to establish thai such potential yieldS
transfer function D(k) that automatically satisfies the stringent constraints from renormalizability and backreaction.

The results of this previous study reveal that an attractive potential localized just prior to the onset of slow roll
and with a scale determined by the ener% scale durine slow roll Inflation yield a suppression of the qua(-lrppole for

curvature perturbations consistent with the data ~ 10 — 20% and predicts a small quadrupole suppression for tensor

InTHiS article we discuss the origin of this attractive potential within the effective field theory of inflation. We argue §
that such potential is_a generic feature of a brief fast roll stage that merges smoothly with slow roll inflation. This §
stage is a consequence of an initial condition for the classical inflaton dynamics in which the kinetic and potential}§
energy of the inflaton are of the same order, namely, the energy scale of slow roll inflation. During the early fast §
roll stage the inflaton evolves rapidly during a brief period, but slows down by the cosmological expansion settling
in the slow roll stage in which the kinetic energy of the inflaton is much smaller than its potential energy. The scalef

of the attractive potential is determined by the energy scale during the slow roll stage, which_in_the effective field”
tﬁeorx'des’c’riptioni%g 25! 1s oi tEe order o! EE’e grand umﬁcatxon scale; M ~ IOE:GeV, well bglow the Planck scale
Mp; ~ 10°°G:eV, and no other energy scales are involved. Hence, we emphasize that there is no need to advocate

“Transplanckian physics in this context.

Brief summary of results :

e e

In this ombine the dynamical origin of the potential within the effective field theory of inflation, with
the results obtained in ref.[23] and show that the early fast roll stage leads to a suppression of the CMB quadrupole .
Our main results are the following:

¢ Within the effective field theory of inflation with the same inflaton potentials that fulfill the slow roll conditions,

we find that an initial state of the inflaton with almost equipartition between kinetic and potential inflaton

atd ) energies yields an_gtiractive potential for the mode functions of the fluctuations. This potential emerges from
a brief stage in which the inflaton rolls fast, hence we call this the fast roll stage. This early stage only lasts
approximately one e-fold and merges smoothly with the slow roll stage. This fast roll stage prior to slow roll is a

generic feature of an initial condition for cosmological dynamics.in which there is an approximate equipartition




@

(3)

@® We have investigated a large variety of inflationary model
imate equipartition between inflaton kinetic and potential energies.

qyadrupole (tensor fluctuatiq

s

between the kinetic and potential energy of the inflaton. The iIMM&fW the fluctuations prior to the
ﬁ‘%&ﬂa&tg&p are chosen to be the usual Bunch-Davies condition fit

ast roll dynamics of the i

nch s. However, the potential that results trom the
Bu i iti

nflaton lea

s with initial inflaton dynamics featuring an approx-

This study leads us o conclude quite
2.0l Lhe potential durin, i -delermined by the Hubble scale during the
e effect of thig potentia ast_rg 1fion of the scale Tactor lead

o oAl AeT )

th for curvature and tensor

humerical study of different inﬁationary scenarios within the effective field theory ap-
’ : ad

0 sion_ 5+ B quadrupol ression of the B-mode
(%) is CM wevector Q vi'hoiiep"ysica wave-

length’is of the order ‘of the Hubble radius today and exits the horizon during slow roll inflation just 1 —2 e-folds
after the brief fast roll stage. The suppression on higher zmultipoles reduce considerably following a 1/1? law.

quadrupole jf
after the end o

the wavevector kq whose wavelength corresponds to the Hubble radius today exits 9- -folds
f the fast roll sta, e, which lasts 1 e-fold. The quadrupole corresponds to the wavevector 750
that exits the horizon Ny o 55 i i

efolds before the end of inflation, hence our results successfully explain the CMB
quadrupole suppress h

1on within the effective field theory _if inflation lasts at most Nioy < Ng + 4 = 59 efolds,

This result establishes an upper bound to the number of efolds during mflation:
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INITIAL CONDITIONS OF INFLATIONARY FLUCTUATIONS FROM THE SCATTERING B’

i
POTENTIAL

In the compani'on article [23] we have systematically analyzed the consequences of generic initial conditions different
from Bunch-ng_les, under the.conditions that these are UV allowed and yield small backreaction effects. Here we
address the origin of these initial conditions, beginning by gathering relevant ingredients from{23].

As shown in[23] in a cosmological space-time geometry cogsMic TiME

where ¢ and g stand for ¢osmic and conformal time respectively, the wave equations for the mode functions of gaussian
curvature and tensor perturbations are of the form of the Schrédinger equation in one dimension

CURVATURE AnD z WAVE
TENtoR séwcmm&& [+ - W] st m) =0 ) EQuation “Pim )

with 7 the coordinate, k2 the energy and W(n) a potential that depends on the coordinate 7). In the cases under
consideration

Wxr(n) = 2""/z for curvature perturbations ,

PaTEnTiAL| Wi = 22
W ( % ) Wr(n) = C”/C for tensor perturbations .

where prime stands for derivative with respect to the conformal time and

z=af(t) % , (2.3)

& stands for the derivative of the inflaton field ® with respect to the cosmic time 2.
It is convenient to explicitly separate the behavior of W(n) during the slow roll stage by writing 1

¢ :
. 1 stow ROt g

24C) \ o =y {5 pART ¢ ERe®

(neeot® ob* !

where

IN TERMS OF vr=3+3e-1+0 (f5) for curvature pérturbations
Ste oL p= {
w R PA““‘ “ vy = % 46+ 0 (ﬁ;) for tensor perturbations .

Here ¢, and 7, stand for the slow roll parameters
®? M3, [V'(@)]° 1 ( 1 ) , V"(®) ( 1 )
v = ——s—35 = 2 | 57=% —_ = —_ , ',=M — L =0 = ,
5L0wW Roul: CTAIMRHTT 2 [V(@)] o (N?) o\~ =P Vi) N

® .
.E N Tﬂl fv Qnd N ~ 55 stands for the number of efolds from horizon exit until the end of inflation [24].
’ AR R 'k R The slow roll dynamics acts through the term [(¥2 — 1/4)/(n?)] which is a repulsive centrifu al barrier.

We anticipate that the potential Y 31! is localized in the fast roll stage l‘ior to slow roll (during which cosmolf);
relevant modes cross out of the Hubble radius) where V(rﬁ vanishes. inciuﬁmg the potential V(n) the equatic

the quantum fluctuations are -
—cuFAS T

FLUCTURTIGNS e m—
€duQtioN B ﬂz‘—v(ﬂsuc;n)ﬂ- ) RolL

During the slow roll stage V(x) = 0 and the mode equations simplify to

e 2 T Slow RolL
')’('1)3 (2 ( [dif;z—+k2-”ﬂ;‘]5(k,n)=o. >‘-

To leading order in slow roll, v is constant and for general initial conditions the solution is,

S(k;n) = A(k) go(k;n) + B(k) fu(ksm)

where two linearly independent solutions of eq.(2.8) are,

wlkin) = & &+ yZag HO (<kn) ,

(4



(J’

where two Imearl  independent s

solutions of eq.(2.8) are,

g (ki) = 3 iv+% V= HM(—kn) , . (2.10)
fulksn) = [gu(kim)]", (2.11)

H (l)(g) are Hankel funcﬂggﬂsﬁ These solutions are normalized so that theu' Wronsklan is given by
T Wiotiom Atk = htbin) ki) 0o m) Fls) = i (212)

The mode functions and coefficients A(k), B(k) will feature a subscript index R, T, for curvature or tensor pertur-
bations, respectively.

For wavevectors deep inside the Hubble radius ]k nl > 1, the mode functions have the Bunch—Da.vies asxmgtotic

kebaxder :
sonen [ o e ) COURTIONS

and for 7 — 0™, the mode functions behave as:

-1
I'(v) 2 \"?
ki) "E (-——) : 2.14
a2 2 (A | (2.14)
The complex conjugate formula holds for f,{k;7).
In particular, in the scale invariant case v = § which is the leading order in the ] expansion, the mode
functions egs. lﬁ 10) simplify to —

R [ B AU IV
INVARIANT PARTICLLAR
(V=32 CASE)

b A

Y(?) A loco.l;%e,&. o He godmn(! TUL%):IN\Q»
The mode equation (2.7) can be written as an integral equation,

3 e v\e,f oL
&}'wk@“

7 t}
S(k;m) = gu (ki m) + 1 g0 (ki) /_ aillsn) V) (ki) df i g3 (ki) ] g (ks 1) V(') S(k; o) dof

This solution has the Bunch-Davies asymptotic condition

S(k e—ikr]

3N —00) = .

’ ) V2k

We formally consider here the conformal time starting at 7 = —oo. However, it is natural to consider that

inflationary evolution of the universe starts at some negative value 7; < 7, where 7 is the conformal time when

Viy)=0 e

Since V(n) vanishes for.g > 7. the mode functions S(k;n) can be written for 7 > 7 as linear combinations of

mode functions g, (k; %) and g3 (k;7),

c
,g.;,_z_ r S(k;n) = A(k) g (k;n) + B(k) gp(ksn) . n>7 D

where the coefficients A(k) and B(k) can be read from eq.(2.16),

RoGolivao V Aw = 14i | ® g5 ksn) Vi) S(kin) dn

. L) * 0—00
coeecficigN TS B#) = i [ alksm) Vi) S(kin) do
ST

conbure
)The coefficients A(k) and B(k) are therefore calculated from thunamxcs before slow roll [recall that V(7)

FRQ M Jor g2 7 dyring glow roll.]
e constancy of the Wronskian W{g,(7), g5(n)] = —i and eq.(2.18) imply the constraint,
TRE AP - 1BEE =1
D’“ A“\(‘Thls relation permits to represent the coefficients A(k) (L) as [23) ( J‘

p— om0




This relation permits to represent the coefficients A(k); B(k) as [23|

_,L A(k) = T+ N(k) €04%) ; B(k) = /N(k) e"’s(i_)— (2.20)
where N(kh fa.p(k) are 1cal,

aTng WIlLUNGD avigsulal conditionsfor n —» —oo, the action of the potential generates a mixturg of the
two linearly. independent mode functions that result in the mode functions eq.(2.18) for 7 > # when the potential
vanishes. This is clearly equivalent to starting the evolution of the fluctuations at_the beginning of slow oll g =4
with initial conditions defiped by the Bog plinhov coefficients A(k) apd B k) given by eg !
As shown in ret [03] the power spectrum of curvature and tensor perturbations ior the general fluctuations eq.(2.18)
takes the form,

o- k3 <) |2 \ Fo)
fONIER C Pr(k)"E #s(o“ﬂz_(_z'ﬁl 10 = PR ()1 + Dk} FOR GENE RAL

SPELTRUM ns0- K 1Sr(kin)p? or
\ Pr(k) " 5—”;5(01]—(3@—[ I0)s = Py (¥)[1 + Dr K] - ) (2.21)
where Dg (k) and Dr(k) are the transfer functions for the initial conditions of curvature and tensor perturbations
introduced in ref.[23]:
Dr(k) = 2|Br(k)]* = 2 Re [Ar (k) By (k) i#"~%] = 2 N (k) — 2 V/Nr(k)[1 + Nz (k)] cos [o,? - (un - %)]
Dr(k) = 2|By(k)|* - 2 Re [Ag{k) By(k) i2=3] = 2 Np(k) — 2 \/Np(k)[1 + Nt (k)] cos [0{ s (uq- - %)](2.22)
here O = 0p(k) — 0.4 (k). The standard slow roll power spectrum is given by [3, 7]:
. ENTI D) B (k)T '
e = (o) g ()
TRANSEERT . -Fyudcrion OF TNITAL CONDITIONS
k
Dy, D (k)
)
Swow RolL rato 6
' 2
TENSOR -” P = Ab _IE.)M R _4%::1':165., . (2.23)
T g ko . ] i . - AI‘
As shown in ref. [23], the relative change in the Cls for the general fluctuations eq.(2.18) with respect to the standard
slow roll result is gi\?en by
CRANGE W oy ag | A0 [T Dz fla)ds (2.24)
™E ' - il SR L G
where = = k/« and
K=ag Ho/3.3 . . (2.25)
E D(k z) is the transfer function of initial conditions fpr the corresponding p .
fie) = =" L)l (2.26)
and the Mm! are g_ghericalBessel functiops. [26]. We derived in ref.[23] an estimate of the corrections, for the maximal
asymptotic decay of the occupa ion numbers
)
Ni = N, (fl:-)“ s 0<ikl . (2.27)
R £ \'ﬂ‘{’;vgwith the result, -
2 —_—
AC 4 3.3p ) cosf (2.28)
CRANGE amm)p 29 w3V (he) T 5

v P T s - v RSP ~ ) 2
where we have taken v = 3/2 and cos 0 & cosf (see ref.[23] for details). The ~1 /12 behavior is a result of the 1/k
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=V 33p coog e e e
"_'-N \/-—(aoﬂo) l—1)(1+2) '7 : i (2-23)4 .

where we have taken v = 3/2 and cos 0 ~ cos0 (see ref.[23] for details). The ~ l/lz behavmr isa result of the 1 /lc2
fall off of D(k), a consequence of the renormalizability condition on the occupation number; For the ua.dru D
relevant wave-vectors correspond to z ~ 2, namely kq ~ ag Hy. It is convenient to wrrte - '

(2.29)

kg =@a, Hi=aq Hy,

where a;. and H; arethe scale factor and the Hubble parameter during the slow roll stage of inflation when the >
wavelengt correspondr__g to today’s Hubble radius exnts the honzon o

INFLATION.

( THE ORIGIN OF THE POTENTIAL V() : A FAST ROLL STAGE BEFORE SLOW Roub

The mode functlons of perturbations obey the general evolution equation (2.1) where W(q) is glven by eq.(2.2) and
’the slow roll part is explicitly separated in .eq.(2.4). A full expression for W(z) ‘and therefore’ for the potential V(n)
"xs obtamed from the Friedmann equation and the evolution equation of the inflaton

HNFU\]‘mM . H?= 3;2 [1Q2+V(<I>)] | FRiEDMAN EQ, (3
EQS Y'O’F HoTION - S+3H &+ V(@) =0, INFMT‘ON EQ. 02

: The exact potentral is obta.lned by using the equations (3.1)-(3.2). For this purpose it is convenient to introduce a

: 'drmensronlgsg variable p as

$2 o
y VAG\Q‘\G E y252—w>-l—1{—2=3[1— 3—%5] , O<y <3, ‘ (3.3)
in, terms of whrch thwm@ 1) and (3.2) are written in the srmple form,
e 'R
s “"“E R [ = sign(®) Mpy H VE 1yl | ;?5 = i A

| = | : 4
7 Gu- donng SLow ﬂo(.(. ) ( %SLO(J ROu.

% Wl‘, durm 2 = ¢, [see eq.(2. 6)] but in- ‘general, in a stage in which the slow roll :
approximation is not. valid, the kinetic term of the inflaton is not small ‘The slow roll para.meters eqs.(2:6) are

&K1, NS 1-to correctly describe the slow roll stage Buk begides the slow poll stage. in which 2 & 1, there is.a =

rio ich 52 is not small b ~ “in this case the kmetlc term of the inflaton is ol the same order

as i 18, energy- of the inflaton is distributed between potential energy- .
“ “with. approxrma.te egmegrtztzon o GU T !-5 % ~ Q ( 4 ) (N FA s 1' R ° CL o

2. (1) y = (9( ) << 1 corresponds

Thus, there_gre- | by the dig
n whlch <I>2 ~ V(<I>) describes a fast roll reglme ]

to the usual slow roll regrme<I>2<<V(<I>), (u) n contrast, y2>
Inﬂatlon requires:

v !! t)
4 << us, t range of t.he vanable y"' for mﬂatronary evolutron is 0 < y < '

2 o ' : '
(2)3 ®; 1 F&AQS:L By A._ Fast Roll Dynamlcs )

toV($

* V( e C Jalne &scrrp 1on.of nflation (the same inflaton potentia glves TISes 1O The WO diteren ,reglme \
fast roll and slow_roll regimes. The dynamics in the-effective field theory of inflation giving rise to a fast Toll stage }'
followed by the slow roll stage is srmple consider an initial condition on the inflaton field and its first derivative that
corresponds to an initial value of y2 ~ 1.-The potential and kinetic energy of the inflaton in this state are of the same |-
order, this is the beginning of the_fast roll stage. The strong friction term in’the equation of motion for the inflatonf
{ €q.(3:1) results in that if uutlally ® + 0 and large, the kinetic energy of the inflaton dissipates away and @ dlmlnlshe :

his means that when. y? begins with a large value y? ~ 1 the dynamics drives it towards smaller values v

Even if imtially y* > 1 produces a non-inflationary stage [see'eq.(3.5)], this only:occurs for a short period.of t'.rmer- -
until 32 <1 where the evolutxon becomes. inflationary.  The inflaton friction’ term continues to dissipate- away the o
O(1/N) < 1 the dynamits enters the slow. roll inflationary-regime in éarnest.

kinetic energy ‘and:when y* =

© We have Testricted the above discussion to the case of homogeneous inflaton fields; ‘where the eniergy .is carried by:}f |
the zéro mode of the inflaton up to small quantum ﬂuctuatrons However, a fast. roll sta,ge pl‘lOl' to slow roll has :._E_




Notlce that the same descnptlon of inflation (the same inflaton potentlal) gives rises to the two diferent regimes: '} - .
Jast roll W The dynamics in the effective field theory of inflation giving rise to a fast roll stage = \ =
followea by the slow roll stage is simple: consider an initial condition on the inflaton field and its first derivative that ~ | -
corresponds to an initial value o 1. The potential and kinetic energy of the inflaton in this state are of the same . -
order, this is the beginning of W stage. The sjmrm in the equation of motion for the inflaton . -
€q.(3.1) results in that if untlally and large, the kinetic energy of the inflaton dissipates:away and 3 dlmxmshw

‘This means that when y2 begins w1th a large value » e d namice drives it towards smaller values.

Even if 1mt1a.lly y pro luces a non-mﬁatxonary stage [see eq (3 5)], this. only occurs “for a short. penod of time
' untll ¥* < 1 where the evolutlon becomes inflationary. The inflaton friction term continues to dlss1pate away the
{_kinetic energy and when y = (1 /N ) < 1 the dynamics enters the slow roll inflationary regime in, osb s o ”

We have restncted the: above discussion to the case of homogeneous inflaton fields, where the energy is carrled by
- the zero' mode of the inflaton up to small quantum fluctuations. However, a fast roll stage prior to slow roll has <
" also been studled in ref.[27], where a large amplitude inhomogeneous condensate (tsunami inflation) was ‘considered. -

- In that case modes with wavevectors of the order of the inflaton mass were initially excited with large amplitude,
*'the resulting non-perturbative. evolution of this initial state also leads to a fast roll stage which smoothly merges . ..
with the standard de Sitter regime[27]. The rapid redshift of non-homogeneous modes leads to the formationof an. .~
. effective homogeneous condensate after a few e-folds. Therefore, a fast roll regime prior to the standard slow roll

" regime is a rather generic feature, either a result of an almost equipartition between kinetic and potential energies for'
a homogeneous 1nﬂaton condensate, or from an inhomogeneous non-perturbative condensate.

I B. Curvature perturbations during the fast roll stage ' LL ‘vf

vo“

‘ <
.For curvature perturbatlons, from eq.(2.1) FAST Rolt ;kz“s “ R)
z a“ 50

roraL . = . zd_”
PO'\‘(NT\'FL. Wa =5 gz~ P20

where un =3 +3 ¢ — 1y [See €q.(2.5)] and z is defined by eq. (2.3).
" In order to compute Wr(n), it is more convenient to pass to cosmic tlme, in terms of which,

FELT 8y THE- Fluctuations  W(%)

: With the notation deﬁned by eqs.(2.6) and (3.3) we find, . S
EXGCT , ; e o -

Y - [ e = B [2- 14+ 20 - 3= v bl sign(@) + )] - (39)
o P 7 “In order to clearly exhibit the natural scale of the potential Wr (17) it is convenient to use the variables [24]

v VE =Y, |

SV= Nm MP, w(x) <I> NMpx , H=mh (= (3 10)
where N~ _§_1s thg_m&ber of efolds durmg slow .roll ang_wq(the inflaton mass) deﬁnes the scale of the Hubble
parameter during the stage of slow_roll inflation.

Thxs rescalmg bmlds in the natural scales and results in thatge(x) ~ 1‘ h ~ 1 during the slow roll stage of mﬂatlon.
0re a5 shown in ref. [24], the hrerarchy of slow roll parameters 1s actually a hierarchy in powers of 1/N, for

me‘kmwy w POwWERS |

oF Yn ‘"**@( Y e

In terms of these vanables we obtain for the exact potentral

(.....a eans«ouAf

- .' 0(4;,) 9,('5")‘ (3.15

d displaying that for $E 0! 1) the last two terms in Wz (n) eq. ) are of orde _
The above expressions in terms of the variable y are exact and allow to analyze, "’35’?‘ 21

reglmes for inflation different from slow roll. Recall the expressuon for W(7) in terms of the slow roll parameters as’

given by : : - ,

Wr(n)=a? B?m?N? [24 26, —3ng+ 262 ~d e nu +0f +¥H] (3.13)

I . . . - N .
~ e 9 U w'n™ mlis avnwaneian io avant and annrentiate in the slow
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(3 13) ?}”

Wn(q)-—a’ h2m?N? [2+2c.,-—31m+2c —4¢ rm+rm+1/:ﬂ] ,

-where, ng =1y~ €y, Yr =P, —3 € n+3 c,,, Yy = 35 ‘—“—"-5—- “This expression is exact and appropriate in t.he slow

roll approximation, but it is not convenient in regimes dlﬂ'erent from slow roll.
In the slow roll approximation,
S

P=e=0/N) <1 ; C(q)=-”H_(11:u_), (3.14)

and we recover .
a———— n SR
L SV e v e O

As shown in €q.(3.5) the range of the variable y? for inflationary evolution is 0 < y? < 1, which in turn implies:

RANGE EoR [~ ok )
'“FLA?\@NAQ-? i h2>2 \/—<h<\/— EVQLU]’(@“(‘”S)

The. expression of the potential eq.(3.12) in terms of the variable y? is very: mstructlve Gene operti

such W of the Fotentlal can_be analyzed from this expressmn reyv di es. - In the fast roll

" - stage (¥° w’/h2 )} = O(1) and the dominant part of W (7) is given by the polynomial in y, the ‘terms in the
: denvatlves w' and w” are of order 0(1 /VN) and O(1 /N ) respectively, na.mely

FF\ST ROU. lap 7r01= c?a?lz Ty 424t +o j- (3.17)

. The rocts of Wﬁ !m are up to corrections O (71!7)
RooTS ok EZ =ﬁ4: 3 _031386... , 2= 7*;/3—3 =3.13859... . ’

"R g,y

g9
The potentlal V-R (17) is obtamed by subtractmg the slow Toll contnbutlon from W(q), namely ’
, e 2496 -3 v+ 0 : '
\) ("L) : l  Velo)= Wn('l) b n;’ +0(h) (318)
7 in the fast roll st.age i g S sl ,
: ;;FAST ROU. VR(’I) C’H2 [2 7y +2y +0 (\/Tv')]— 2+9.€" ?"“Lo(ﬁ?)“' ) e 19)

Thus, the full range 0< y < 3, the range y < 1 for whlch mﬂatxon occurs and the roots of: [;Z{m allow to 1dent1fy :

three di flerent ;eg][ggs
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|

1

e 0<y* <yi,m thls regnon the potentlal Vn(ﬂ) is repulswe and small Thls regxme mcludes slow roll mﬂatnon ) f
|

|

1

g

|

1

|

i

|

|

|

1
|

o |
[?-‘) |

’3) “ 1 * 1<y’ <3< y?,_ descnbw a fast roll but non-mﬂa.txonary regime in whxch the potentxals W-R (r]) and Vr (1) are )

attractwe

In summary, when: the: initial value of yris > 1 the dynamlcs drives it monotomcally towards smaller values The 7
inflaton friction term continues to dlsslpate away the kinetic energy and when y < y?, the potentlal Ve ) becomes )

~ for y? O(N) <1

oy_ < ¥ <l corresponds to a fast mll mﬁatlonary reglme m whxch Wr (q) is attractxve and consequently Vn(ﬂ) )
is attractlve : B M ST reetp e |

repulsive but:small and finally when. y? 2 “the dynamics enters the slow rgll inflationary regime in earnest. SEE
Unless the 1nitial conditions on the inllaton determine tha y yZ.,-there is always a period ol fast. ol inflatio G
during which: the potential - V(n) for botk curvature Dd.tensor perturbations is attractive. #s we:will see be ow; i

MUTDNtions to the a.n ular power .

this attractive fast ro gotent, |

qgectrum :




C. TenSdr perturbatiohé,vdqﬁng the fast roll stage § [

FAST RolL e

¢ mode functions for tensor perturbatlons ravi "n's obéy eq.(?.l) with

At Congovmﬁ time 9 [0 =00/c0__D

Again, it is convenient to pass to cosmic time in‘terms of whlch

i cosvm L Watn) = () B2 4+ 5] = C°la) H? 2= 47).
dveme '
: -where we used the equation of motion (3.4).

- In the slow roll hmlt y=6=0(f) <1, Vr(q) 0 and eq.(2.7) becomes a Bessel equat.non,

;;»’M Sww ROLL (owt ﬂ’[_ E

E24] stksn =0

where

i,?iSQON NQQ (=% +0 Nz) » ;'()':“3‘" and ‘V"(q)‘:O

: _'v'Notlce that u dlﬂ'ers from the index vz of the sca[a.r fluctuations:at order O (J[see eq. (2 5)].
; D errara——

v Izu)rmg the fast rol staEe previous to the slow roll regime, y >0 is not small and introduces an attractive potential
T\,

| FAST ROLL __.[ vam = Wr(n) - 3% < s | ("L) :;é-Q
' ' 7)7' ('Z)<O

,]Sl.ow RC u. '))T (Q) =0

FAs'r Rol(,

FAST RO LL ' — : |
'Dy N A M‘ t S “D. Fast roll in new and chaotlc mﬁatmn j IN F"AT‘ON

We consider models both of new mﬂa.tlon (gma]] mﬂaton field) and chaotnc inflation (la.rge mﬂaton field) to investi=
gate the fast roll- dynamics prior to slow roll and its imprint on the quadrupole mode as well as in the higher-l-modes.:
Let‘. us focus ﬁrst on new mﬁatlon with the mﬂaton potentlal

- 2 2 3 e
NE‘ w INF LAT(OI) V(<I>) V(O)[l A M’;’ %,—] ; V(O) 3H2 M2, 1 (3.21)
where ‘H; 1s the Hubble parameter durmg slow roll inflation. We note that durmg slow toll A —5’-’- = —n;/4 and '

,take A —%1 = 0 008 as an.example for. numencal st.udy We solve the equatxons (3. 1) w1th the lmtnal condmons i

- ®(0)/Mp =03 <I>2(0)/[2 Vo] -.-1 ; a(O) =1. These initial conditions entaj i inetic and =
po ergy of the inflatog he initial time. Fig. 1 displays yz(n) (left panel) and y 2(N,) (right panel)
with N. the number of e-folds from the begmmng o the evo!utlon at t=0. " : :

ﬂ\S" L Sl B FQQ‘
U BN ool
N u&:’u b N\ swow how

Hn e Ne

“FIG. 1. ¢ (n) vs. " (lel't) and y (N,) vs. Ns (right) for initial conditions with kinetic and po'ten'tialr inflaton 'e’n'ergyrof the ’

- same order X
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same order.,

These conditions initially yield ¥2 > 1 which produces 'nron-mﬂatlohary dynamics, but after a very short time (about
fold) y? drops below one an% so mﬂatlonary dynamlcs begms in the tast roll 1 reslme = 01 1), and after about
ol o

txon beging

P :
parameter is dlsplayed in fig. 3. Flgures (l) and’ (2) show two distinct tlme scales no ~=1/H; at which the -
potential is localized and features its minimum, this is the beginning of the fast roll stage, and 7 ~ —0.3/ H; at which
the potential vanishes, y? s ¢, and slow roll begins. The brief fast roll stage is clearly seen from these figures to’ -
correspond to-the first e-fold of evolution. Fig. :(3) confirms-that the fast ro]l stage lasts approximately one e-fold
-:and ‘that 7 corresponds. to about 56-57 e-folds before the end of inflation, namely: 1 —.2-e-folds: before the modes
“corresponding to today’s Hubble radius exit the horizon during inflation:

For these parameters, the height of the potent:als are approximately |Vr|~ 10 H,2 i lVT| ~ 1 2 H?. The widths of

:the potentlals are approximately the same in both cases [A/ ol ~ A Hy ~0.2, see fig: 2. .

?orau'mt ear
8y TENSO
mamsmw

FIG. 2: The potentials Vi (n)/ H? (left panel) and V7(n)/H? (right panel) felt by curvature and tensor perturbations respec-
hvely vs Hin,. H. being the Hubble parameter durmg the slow roll stage (see fig.3). :

“f otic i mﬂatlon with s;mllar results: if the initial
kinetik;_w the inflaton is of the same order as the potential energy, a fast roll.stage _always present.  The
fj evolution of y° and the potentials for curvatureandtensor erturbatlons, Vr(n) and VT (1;) are again similar to those

; for new inflation and they ar ys attracliye during the fast roll stage. = r

An initial state, for:the inflaton (inflatqn classical d ics): AP DTORILALE caLaTiion between Kinetic and

potential energles is ‘a. more _general initialization of cosmologlca.l dynamics in the effective field theory than slow roll

which requires that t.he mﬂat.on kinetic energy is much more smaller-than its potential energy. ThereforeI we conclude

WUR DRV POLE J | Iv. QUADRﬁPOLE'sﬁPPRESSIONvﬁ S J Pfﬂ.e ﬁl ONJ

In the Born a\pproxxma.tlonl the Bogoliubov coeﬂicmnts eqs (2.19) are glven by [23],

i{@) ’Zﬁ Ay =1+ [ V(gigy(kmnzan, B0 = [ V(e dn. 4y

-00

~The transfer function of initial conditions given by eq.(2. 22) ‘can be computed in “the Bom approximation, which is
appropriate in this situation, using eqs.(4.1) for the Bogoliubov coefficients A(k) and B(k),
o It T!. ﬂ L

TRANSFERT

funetion S c,wm-m N 5

{2} The fractional change in "the is ‘obtaj i i iﬁhli &gans!er function in: the expression: (2:24). We take
the lower limit in the integral in eq.(4.2) to be 19 ~ —1/H;. at which the fast roll stage begins. The results of the

@) numerical integrations for the quadrupole [ = 2 and the higher multipoles are shown in fig.4.

D=1 / dn V(n) [sm(2k 17)( k21q2) + 2 cos(2kr,)]
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7 The results displayed in this figure are strikingly similar to those found in the exam'plé studied in‘sections V.Band .- £
V.C of ref.[23] lending support to the conclusion that the quadrupole suppression as.a consequence of the attractive

fast roll potential V(n) is robust.
om eq.(2.29), the relevant dimensionless ratio - H that governs the multipole suppressmn AC[ /Ci, is

Ko G
H; ~ 33’

where a,,. is the scale factor when the mode corresponding to the quadrupole wave vector kq exits the Hubble radius
during inflation.
We have fixed the initial value for the evolution to be at 5 = 1o with C(no) = 1, thus a,, > 1 is the logarithm of
the number of e-folds between the initial time of the evolution and horizon crossing of kg. The left panel of fig. 4
clearly shows that the largest suppression for the quadrupole corresponds to smallest values of a,,, with-a 10 — 20% :
.suppression for 2 < x/H; < 3. This precisely corresponds to 2— 3 e-folds between the onset of the fast roll stage at 9o = =
- ‘and horizon crossmg of the mode corresponding to today’s Hubble radius. The fast roll stage 1tself only lasts about ©
. one e-fold and is followed by slow roll. ST

4.3)

(. Thus, we conclude that there is a substantial suppression of the quadrupole ~ 10 — 20% consistent with the \
‘observations, if k¢ exits the horizon within a couple of e-folds after the beginnmg of the slow roll stage, preceded by
1 a short fast roll stage. Therefore, the observed quadrupole suppression is successfully -explained by the inflationary f:

] Sefas t roll followed by slow roll - lf mﬂat.lon lasts not much more tha.n ap roxlmately Niop ~ 59 e-folds )

4
‘and the fractional change for the quadrupole of tensor modes is smaller by almost an ordet of magmtude as gleaned :
from the potentials displayed in fig. 2. This is a general prediction, again a consequence of a fast roll stage prior.to

°A numerical analysis reveals that AC}/C; ~ l/l! in agreement with the result of eq.(2:28), therefore the suppression
in the higher multipoles falls below the band of irreducible cosmic variance and it is too small to be observable within

the present data.
~A numericalMt-to the curvature gotentlal Vg (1) yields : EXPLICH T
— o ey Vel s, ) G ))("l) i

ANALYTVG - — )/

EXPRESSTONS - vewzvegyelr > () 4o

e with. 9 ~ =1/H;.and |A/ng| ~ 0.2. With this analvti i i fit. we ‘obtain the
following asymptotic behavior of the transfer unctnon Dn(k) and distribution function Nn(k) for- large momenta:

;fﬂﬂ.ﬁﬂsﬁe&f koo VR(M0) (1 oo V2 () | MR ER MO Qe |
»wucﬂe %‘i)!b Da(k) "2 =g | \Na () 2" S NF'iuuc,mN Nplie)

<7 clearly mdlcatmg that these initial conditions are indeed ultra.vxolet allowed and consistent w1th the form eq.(2.27).
. VYr(n) to We notice from figs. 1 and 2 that indeed Vg (n) vanishes when the slow roll re E&me y% & lis reached.

. From eq. (3 18) with y2(0) ~ 1, C(no) = 1 and taking the initial conditions on the inflaton with approx1mate
i equlpartltlon between potenmal arid kinetic energies, implies that H 2(1102 ~ 2 H: !2 xleldmé

N —

 Vr(p)~=10H} , V(o) ~=-2H}, ) A . (4.6)

which is consistent w1t,h fig. 4.- Comparing with the form eq.(2.27), and takmg as an example N,~0.01, indicates '
= that tlle charactenst.lc asymptotlc k-scale B at wlnch the ‘asymptotic. form eq.(2 w10 H;, namely a =
c his shows: that the energy scales involved 1n the quadrupole

e ition for observable suppression of the qua.drupole is that the modes w1th physxcal wavelengths

of the order of the Hubble radius today must cross the horizon during inflation just 1 — 2 e-folds after the beginning

“:-of theslow roll stage This condition is easily understood from the approximate form eq.(4:5) of the transfer function

" -D(k). Since D(k) is strongly suppressed for k2 3> |V|, the potential V(n) will substantially influence the modes with

- wavevector k'if k* < |V(ng)| ~ 10 HZ. Since k = a,, H;, then clearly only 1 =2 e-folds of evolution between the end -
of fast roll and the. honzon crossing lead to substantial effects on the mode functions from the V(n) potential..

- o4& We have also studied chaotic inflationary scenarios thh initial conditions on the mﬂaton characterized by y? ~ 1

.o Enamely with inflaton’ kinetic energy of the same order as the inflaton potential energy. We find similar results on
the fractional variation of low multipoles, the duration: of the fast roll stage and the ‘scalé of the fast roll potentials f .-
Vz(n) , Vr(n) as for new inflation. o
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robust, they "do piot depend on the 1nﬂatlonf_x_rx Ml but solely on W and on gpproximate |

: equlpartmon between- the kinetic and potential energies in the initial ‘condition: for:the classical dynamics of the -
-inflaton.” This initialization of the inflaton dynamics and inflationary potentials: thatfulfill. the slow roll conditions.
Vgenerally guarantee that the dynamical evolution of the inflaton features an initial fast roll stage that merges with the

“ usual slow roll mﬂa.tlonary stage. In turn, the fast rqll stage results-in an attractive potential in the wave equa.tlons
for the. mode fupctions of curvature an tensor perturbatxons and a consequen?. suEEresswn ol the quadrugole moment e
in the ir_power spectra.. i

‘ J 3 ;’ =

v * V. |THE EVOLUTION OF PERTURBATIONS AS A SCATTERING PROBLEM. "

, The equwalence between the ‘equations for the mode funcmons and the Schrodmger équation witha potentlal allows:'
~us to bring to-bear the powerful results of potential scattering theory to provide general statements on the propertles. :
" of the: solutions.

- Therefore, we conclude that the 'phenomene assowwme as.a ptecursor to slow Toll are - ".

Eq.(2.1) has the form of the radlal Schrédinger equation in the radial variable r = -7, 0<r< 0 ‘for the L-wave; ..
P e BRI,

bemg L a real number, L = v — - ."We recognize in eq.(2.7) the centrlfua.l barrier : =
cswmmem, S S ek QAR 10 2)) ,;Eu_l, R
BA&Me R _r . 2

Thus, in the slow roll regime:

X\
Eq (2 ) ta.kes t.hen the form ¢ N\ ‘__, Z

, N
SCH R@Q\M(‘:E R» * o [_‘?2_ Tk~ L+ - V({f.,(k r)=0. (5.1)
m,em\ on -- - — |

The scattermg solutxon of eq. (5 1) w1th unit outgomg amplitude is defined by

PRPTINEE ,r,,_’+°?,,,,‘kr R 92)
e : - _ cldrz T e )
The scattermg solut,lon of eq. (5.1) w1th unit outgomg amghtude is deﬁned by '
| J'OS'\? goLoTioN e s )r—»+oo ke (59

ry (28], it isiidentic'al' to the Bunch-Davies initial '

This solution £ (k) r) is calle the Jost s lutlo in_scatt
; condltwns €q.(2.13) up to a normalization factor \/2& :
When V(r) = 0 the Jost. solutlon is given. by
-—-——uﬁl—-‘“

A e f.,(lc r)v=o = z"+% \/1rk r H(‘)(k r)
Thls function comcxdes w1th eq (2 10) up to: a norma,hza.txon factor V2 k. In part.lcular, :

0 r)v_;":?r(\/'i) (21)%”.' o S ‘ ‘,' (5.3)'

..-.. Fot r—0; eq.(2. 7) has two lmea,rly mdependent solutlons of the form r*"” and r%’“’ since v > 0 the first solution
‘dominates the behaviour-of fi.(k,r) for r—0.. . . :
. The Jost function of scattermg theory is deﬁned as the ratio

:rosr wmneﬂ p,(k)_h Rk _VE (L) *r(k) e

r=0 fy(k t‘)v_o I‘(V) r=+0\ 2

Scattermg solutxons and the: primordml pOWer‘ o
-m

By o mstructxon, the solutxon S(k n) fulfils the B\mch-Davxes asymptotic condltlon

e~ikn

"

(5.5)

M,
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This solution S(k;n) is proportional to the scattering Jost solution as
1
S(k;n) = WS fo(k,7) with r=—9>0 . (5.6)

It can be shown on general grounds that f,(k,7) is an analytic function of k for Imk > 0 and k # 0 [28]. Moreover,
kv- : Jo(k,7) as well as k¥ S(k;n) are analytic in a neighbourhood of and including & = 0.
For n — 07, eq.(2.7) admits two independent solutions: (-n)%~* and (—n)3**. Since v > 0, the first solution is

the irregular one for 7 — 0~ and it dominates over the regular solution (—n)¥+~.
The 7 — 0~ behaviour of the modes in the V() = 0 case is given by eq.(2.14), while in the general case V(1) # 0 we

have
20— T(v 2 \“"3 '
)™ 2 (i5) 20 &)

whete F,(k) stands for the Jost function. It follows that F, (k) is analytic for Imk > 0 and [28]
Jim F,(k)=1. (5.8)

The primordial power, spectra are given by eqs.(2.21). Eq.(2.23) for Bunch-Davies (BD) initial conditions is valid
:}v}:no V(n) = 0 and the mode functions behave as in eq.(2.14) for 7 — 0~. From eqs.(2.14) and (5.7) we find for

PR\\«@RQ VAL ~

|S(k; )|?

PoweER SPECTRUM g &P - 0T 5:)
. Therefore, e_dhhivce e
—p | R =IRWP=14D0) . (.10
P”(k) = v A

Namely, |F,.(k)|2 yields the change in the primordial poy rum due to the potential V(n). This is an important
result, which allows o obtain general information on the fer function of initia itions D(k) Trom established
_esulis.of potential.scalleriig.., o ' S

We obtain the Jost function F, (k) from the 5 — 0~ behavior of eq.(2.16) with the result

0
R0 =1+ VR [ Sy d(-kn) Vi) (ki) - (5.11)

where J, (z) is Bessel’s function.
In the scale invariant case v = % the Jost function takes the simpler form

I CARTVCULAR »

ScaLe !M\ﬁﬂ&\‘ﬁﬁf —1—i 2 ° Sin(kn)—cos .
CCA$§ s k=1 \/;/_wd"[ kn (’“7)] V() S(kin) (5.12)

The large k behavior of the Jost solutions and Jost functions follows by solving eqs.(2.16) and (5.11) by iteration.
To domdnant order we find that the Jost solution is given by the V(n) = 0 solution q.(2-10) while the Jost function

equals unity [see eq.(5.8)].
The logarithm of the Jost function has the following asymptotic expansion around k = 00 [29],

AsYmeYoTIe (: N 0}
BEMAVIOUR, 2 leRM=-D G

where the ¢, are real coefficients functionals of the potential V!q). The first coefficients take the form,

0
a= /. dpV(n) , c2=V(f)




(ts

C va(U
log | (4)1 = “+o J VQ) O

Theretore,

2 k2

We see that asymptotically |F,, (ic)]2 <1fora potential which is attractrve at the end of fast roll [V(7) < 0].. Combined
with eq.(5.10) thls result shows in general that an attractive pot.entral V(n) suppresses the primordial power:.
S

Computing the 7 — 0~ behavror of S(k n) from €q.(2.18) permits to relate the ‘Bogoliubov coefficients A(k) and

(k) with the Jost functlon as
L A(k)+ A2 B(k) = Rk ) (5.14)

= :where we wsed eqs.(2.10) and (5 7.
i Therefore,

61

F  IRMP-1=2|B®)] = 2Re [AK) B'(H) #*7) = b(k)'.;.f"“

:.vv and ‘we Tecover. the transfer functron for the initial conditions D(k) introduced in ref. [23] Usmg eq.(2. 20) eq.(5.15).
o vreduces ezactly 1o egs. (2.22).. ' :
: For large k, the mode functions S(k;n) as well as the g, (k;7) tend to their plane wave asymptotlc behavrour

S(in) *2 g (ki) "2 r

7 A look at eq;(2.l8) shows that tliis imp]iee B(c0) =0 'AA(oo)‘= 1. More precisely, we find from eq.(2.19),

V 7.‘ ) : - . - ] . d ., j = ;
l‘_ : ( L ' '“A(k) k-+°°1+2kf v(’l) d’} :,‘7 B(k) "7":__-'?"_7_7_2_’_,_:_/_’3—2%71?(") dij- ) (5.16)

Accordmg to. the Rlemann-Lebesgue lemma, B(k) vamshes for k — oo faster than any negatxve power of k. Hence,

71 A% - .,A._.--l- Lo LLA v simre iAo banear o renorantoad

Accordmg to the Rlemann-Lebesgue lemma B(k) vamshes for E — oo faster than-any negative power of k. Hence,
the convergence at large kin the 1nt.egrals for the energy momentum tensor is guaranteed :

: The Bogolmbov coeﬂicrents A(k) and B(k) arr rela.ted f.o the usual t.ransmrssxon E) and reflection (R). coefficients

of scattermg theory by the relatxon, ey i ;
i E:f( OF R = “3
T(")-A( R =g0g IR(k)I +IT(L)l 1_ ) (5.17)

We provrde w1th Table Ta dxctronary to translate from the ﬂnct.uatrons language to the sca.tt.ermg framework

Flnctuations .' ':;Scatte ngProblem
, Te<n<0 | O<r<e Cosv-lot.oc-c:AL
' Bunch-Da.vres mrtlal condltlons : 777 - Jost solutions: - .
o Jostrbi | FLOCTUATIONS,

S = %;%.f,or,d—f;w _ pnmreese | NITRL ooumﬂm :
rSuperhbrizon;modq;s;: R 'j- Jost Functlon N : e :
St o |Ri= e& s (597 A1 | Scn TTERTN G

: 'Power ,spéel;r o Modulus Square of the Jost Function =
o n LU F¢ﬂ ME WORY

TABLE 1 Correspondence between the scalar ﬁuctuatlons as functlons of the conformal time 7 <0 and the radial I
“wave functlons, ofr>0 and angular momentum L =Sv- % v |

ev\\



GENERAL  RESULTS
a QUANRDPOLE , [ o o oot )

We now 1mplement the exact relations between the scattermg problem and the power spectra of perturbations /
derived in the previous subsection to obtain general results for the quadrupole produced by the pot.entlal V(n) . From

eq.(2.24) forl=2 a.nd to. zeroth order in slow roll, the fractional change in the.guadrupole.is.g given by,
C- fo D(xz) fo(z)dz /‘ dz .92
= = —D ) 1
AN@L\} ne V= e =t 7 Da) L) (5.18)

where ]2(::) is the sphencal Bessel function of order two [26] We compute the transfer functron QL@) frwhg_.]ost

~ function using egs.(5.12) and (5.15)in the Born approximation, which turns be ap excellent one for, irpose; since

L in fact the potentlal V(HLWI e Jost functlon in the Born a.pproxrma.tlon to zeroth order in slow roll is given -
by

l—e‘z“‘"’]'

Fg(k)_1+;/ dnV(n) (1-k—) [1+e-2""7 o

 Therefore up to first order in V(n)_(Born approximation) we find

L ', f 'D(k) =P - 1= i " anvin) [éi.n(2k ) (1 - ,;7) fkﬁ,; °°S(2’°*’)])

Insertmg this’ expressmn for D(k) mto €q.(5.18) yields

GE‘NERRL R B 1[ 1 V(o) (e )
Ammmc Rrsm,f

}. SUPPRESSION

EoR ')9(?) o

(5.20)

; '(5.20) x

. \Il(z),lsyg,gf odWsof z. The mtegral meq (5 20) can be computed in terms of elementary functrons by usmg =
the power series expansion [30] SR . : :
w

oy ( 1)k22k+,77_ :
3 ;7) (k+3)(k+4)(k+5) |

“with the result -

LR [+ wrpErsl

Sl L e
5.21
5k+3+35k+4 21k+5] (_')-
e o 2 132 9 245
s 22z 22
z) (17+z) 1og 1+ ” 1052 “T% 05 05 o (5 )

It vamshes for z =5 0 and for £ 00 as, 2

- The functnon \I'(z) is negatwe for z > ,gnd &s_ltwe for, z ,<“ -
T e frow).




0opp Function: Yex)=-Y

) Vo for negative @ [see eq.(5.20)]. This

he guadrupols z%c,‘ foee e (5.00)]:: 1

i T e e _
————

' The odd fufiction
chatige

(s am
%

0.09
0.08 |
0.07

4 T - rsuoeganded 10505) pUe 53 .
sousnbastoo e oxe yorym. “(&)Ia Q&Qﬁ nqm nouoam;scﬁﬁd u_*a «. :

4" ayy jo uorssoxddns ® & ) > et 1joe13je e jey;}
St : wv. e e et o eer80°0 = (7
m M gege— = Nz =2 w_..m, wnwxew e u«ouﬁn&‘@vaﬁ z o>5~&o=.uo.“.s. wo.non_u:& e se Aaua mhﬁ%% g m_m .
N =0 o
. Amﬂv 0+ . (8

SR ausecrae s arcerssr SINENNINER .Rmﬁ.wvvouo&«.bla-omon%goﬁco&ﬁ%oi. :
- __.?E ()AL Tenuotod o3 yium pagnjoaucd womouny sty [(0g'g) s 23s] = aaneSou Joj 7 sA 39 uonouny ppo 241 ‘¢ "Dld

g e ier e e e B .3._ oo
iy et i o

4100 -
4700

4 €00

,..Q& == (%)

¢v)



(15

¢, lead to-a suppl’esswu UL e qua\u UPVIY av wsas e nmrm -

Nv eRs&" *

The Inverse Problem Reconstructmg the fast roll potenhal V(n) from the prnmordlal power ’

)
PROQLE

. In scattering theory, the potentxal can be obtained from the sc
This is a linear integral equation whlch determines the potential

‘function and-the-bound states[29].
The Gelfand-Levitan equa.tlon can be written as

‘)5“""“““ ___’K,,rr )+ Gu(r,r)+ [ dr" Ky(r,r") Gu(r",7) = (5.23)
ecvne . ' " / &M“

where G, (r,7") is a known function that can be expressed in terms of the Jost functxop as fol}owg ﬁ.“a vjek
» \)G.,(r, N =vre / k dk J, (k 7) Jo(k ) [I’F_(k_)T’“ 4 s,& W (5.24)
o ",
: where the Jﬁ@_m-ﬂﬂﬁﬁd-km and the kernel Kﬁ!r, is obtained by solving eq.(5.23). Once K, (r,7) is

i computed the potential follows as

el A Neemines TTOTTITT ) e pofentiol
Z‘P) . —pl_ V() 2 K,, (r,7) P Yy (5.29)

- Eq.(5: 23) is the Gelfand—Lewtan equatlon in absence of bound states. By ‘bound states we mean solutions of eq.(5.1)
‘which are regular at r'= 0 and decay exponentially for 7 — co.. We will not consider their presence since the analysis

~in'secs. 11 and III of ref. [23] indicates that bound states are absent in the present case.

a,ttermg da.ta, through the Gelfand—LeVItan equation.
V(r) from the knowledge of the modulus of the Jost

j‘)('z ) =» W(? f” dedee mim ed -?r’evw o pnueeéeai,

,Oc wer de .
We have seen in eq.(5.10) that the deviation of the pnmordlal power from slow toll is‘given by the square modulus

of the Jost function. -Eqs.(5.23)-(5.25) show that this deviation from the BD-slow roll primordial power explicitly
- .. determines the potentla.l V(r]) The present quantlta.tlve mformatxon about the devna.tlon of the pnmordla.l power

Although the latest analysis.of the WMAP datacc nﬁrms the basxc paradlgm of slow roll inflation and renders much
less statistical significance to potential departum from its basxc predxctlons the anomalously low quadrupole in the
CMB remains a long-standing challenge. - T e

In this article we proposed a-mechanism that "i"el,ds a supressnon “of the Jow. multipoles both for. curvature and

S W - yisthi - eff eld - : 1 B e main premise.-of our-observation 1s that a

. 'YRore general initialization of the dynamics of the inilaton; allowing for approximate equlpartltlon between
(0) * . initial kinetic and potential energy of the inflaton leads to a brief penod of fast roll dynamics that is the precursor
¥ " "to the usual slow roll stage:: This early fast roll stage resulis in an aitractive potentia Me wave ‘equation for the

"~mode Tunctions of curvature and tensor perturbations.. Implementing: orrowing, thé results from
‘our compamon art1cle[23] we show that thlS attractive otentlal '1e sa ransfer function for initial condltlons D(k)

P 'mltnal st.ate of the mﬂaton for which its kinetic energy is of the same order as the potentla] energy, there emerges
4" ) a. brief: stage prior - to slow roll in-which the inflaton rolls fast. ‘We call this brief, but consequentlal stage, the
' fast roll régime.: The inflaton gotentlal fulfills the slow-roll conditions. and is. the ame hoth i sl 1] 2
" We prove that this bnef fast roll stage generate tive i

driring the vlmn roll staae whlch are dlﬁ'erent from Bunch-Dawes and are: consxsteut with renormal 1zatxon and




1m vne 1asu I'Ul.l reguue. yve prove LUAL LIS l)lltfl LaSy r
mode functions of metric and tensor perturbations, §
during the slow rol

- Bl ivalent to the scattering by /.2 potential
and useful expressions crvables have hoen Jorieei By implementing
the méthods of scattering. (}, ve in general that =L 2lTUPONC IS suppressed by the attractive
Poteral Vi), . Juence of the fast roll stage. P

* Thus, we conclude that"ge‘neﬁé'ﬁlftév;olet-ﬂnite initia'l conditions Imprinted upon gaussian curvature pertur-
bations from a fast roll stage just prior to slow roll inflation Successfully expl in_the low quadrupole. Such

suppression happens” provided” S.glolds.” Therefor
218 the upper bound

this suppression mechanism successfully_exnlai 3.Lh
ﬁtot ~ No + 4= 04, efolds d sults from the following




Quadrupole Suppression vs. Fast Roll

AC,/Cy
t‘;‘fa“g

ACY/C;

k/Hj; |

K Agsr

T =35 - The Quadrupole is suppressed 20% for

asr ~ 4.6 ~ e!'> — the quadrupole modes should exit the
horizon ~ 1.5 efolds after fast-roll starts

Quadrupole Suppression Explanation:

Inflation starts with fast roll: 0 efolds.

Fast-roll ends and slow-roll begins: 1 efold.

Today Horizon size modes exit the horizon by 1.5 efolds.

Inflation ends at the minimal number of efolds plus ~ 1.5 .



Quadrupole Suppression and Fast Roll

-

Slow-roll inflation is generically preceded by a fast-roll stage
where ¢? ~ V(¢). Fast-Roll typically lasts 1 efold.

=

The slow-roll regime is an attractor with a large basin of
attraction.

If the quadrupole modes (~ Hubble radius today) exited the
horizon 1.5 efolds after the beginning of fast roll, then the

guadrupole modes get suppresed ~ 20% in agreement with
the observations.

— Niotal efolds = 60 + 1.o.

D. Boyanovsky, H. J. de Vega, N. G. Sanchez,

CMB quadrupole suppression: I. Initial conditions of

Inflationary perturbations, Il. The early fast roll stage. Phys.
" Rev. D74, 123006 and123007 (2006).



Dark Energy

76 + 5% of the present energy of the Universe is Dark! T

Current observed value:

pA = QA pe = (239 meV)* |, 1 meV = 1073 eV.

Equation of state py = —pa within observational errors.
Quantum zero point energy. Renormalized value is finite.
Bosons (fermions) give positive (negative) contributions.
Mass of the lightest fermion ~ 1 meV is in the right scale.
Spontaneous symmetry breaking of continuous symmetries
produces massless scalars as Goldstone bosons. A small
symmetry breaking provide light scalars: axions, familons,
majorons .....

Observational Axion window 1073 meV < Magion < 10 meV.
Dark energy can be a cosmological analogue to the Casimir
effect in Minkowski with non-trivial boundaries.

We need to learn the physics of light particles (< 1 MeV),
also to understand dark matter !!

-



FINAL—FINAL SUNMMARY AND CONCLUSIONS

v Effective field theory H/Mp <<1, 1/Ne-slow roll expansion robust,
systematic, predictive

v Quantum corrections suppressed by (H/Mp)"2

v' Fast roll stage prior to slow roll —9 modifies b.c. for scalar
perturbations —p quadrupole suppression ~ 15-20% for total Ne ~ 5.

v 1/Ne expansion —P systematic exploration of family of inflaton
potentials+ field reconstruction .

v Small field New Inflation larger region of consistency with WMAP3+L 5SS
data.

v' Potentials with larger overlap with marginalized WMAP 3 data
symmeltry breaking scale ~ 10 Mp, crossing scale ~ Mp.

19



-

Summary and Conclusions

Inflation can be formulated as an effective field theory in
the Ginsburg-Landau spirit with energy scale

M ~ Meayr ~ 101°GeV « Mp;.

Effective theory does work because: H < M < Mp;.
Inflaton mass small: m ~ H/+/N. Infrared regime!

The slow-roll approximation is a 1/N expansion, N ~ 50

MCMC analysis of WMAP+LSS data plus the Trinomial
Inflation potential indicates a spontaneously symmetry

2
breaking potential (new inflation): w(x) = & (X2 - S) .

Lower Bounds: r > 0.016 (95% CL) , r > 0.049 (68% CL).
The most probable values are ny; ~ 0.956 , » ~ 0.055
with a quartic coupling y ~ 2.

-



Summary and Conclusions 2

# The quadrupole suppression may be explained by the
effect of fast roll inflation provided the today’s horizon
size modes exited 1.5 efolds after the beginning of
Inflation.

# Quantum (loop) corrections in the effective theory are of
the order (H/Mp;)? ~ 1077,

D. Boyanovsky, H. J. de Vega, N. G. Sanchez,

Quantum corrections to the inflaton potential and the power
spectra from superhorizon modes and trace anomalies,
Phys. Rev. D 72, 103006 (2005), astro-ph/0507596.

Quantum corrections to slow roll inflation and new scaling
of superhorizon fluctuations. Nucl. Phys. B 747, 25 (2006),
Lastro-ph/0503669.
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