The Effective Theory of Inflation, Dark Matter and Dark Energy in the Standard Model of the Universe

H. J. de Vega

LPTHE, CNRS/Université Paris VI

Standard Model of the Universe: ACDM

ΛCDM = Cold Dark Matter + Cosmological Constant Explains the Observations:

- 5 years WMAP data and previous CMB data
- Light Elements Abundances
- Large Scale Structures (LSS) Observations
- Supernova Luminosity/Distance Relations (Acceleration of the Universe expansion)
- Gravitational Lensing Observations
- Lyman α Forest Observations
- Hubble Constant (H₀) Measurements
- Properties of Clusters of Galaxies

Standard Model of the Universe: Concordance Model

 $ds^2 = dt^2 - a^2(t) d\vec{x}^2$: spatially flat geometry.

The Universe starts by an INFLATIONARY ERA.

Inflation = Accelerated Expansion: $\frac{d^2a}{dt^2} > 0$.

During inflation the universe expands by at least sixty or so efolds: $e^{66} \simeq 10^{29}$. Inflation lasts $\simeq 10^{-34}$ sec and ends by $z \sim 10^{27}$ followed by a radiation dominated era.

Energy scale when inflation starts $\sim 10^{16}$ GeV (\Leftarrow CMB anisotropies) which coincides with the GUT scale.

Matter can be effectively described during inflation by an Scalar Field $\phi(t, x)$: the Inflaton.

Lagrangean:
$$\mathcal{L} = a^3(t) \left[\frac{\dot{\phi}^2}{2} - \frac{(\nabla \phi)^2}{2 a^2(t)} - V(\phi) \right].$$

Friedmann eq.:
$$H^2(t)=\frac{1}{3\,M_{Pl}^2}\left[\frac{\dot{\phi}^2}{2}+V(\phi)\right],\,H(t)\equiv \dot{a}(t)/a(t)$$
.

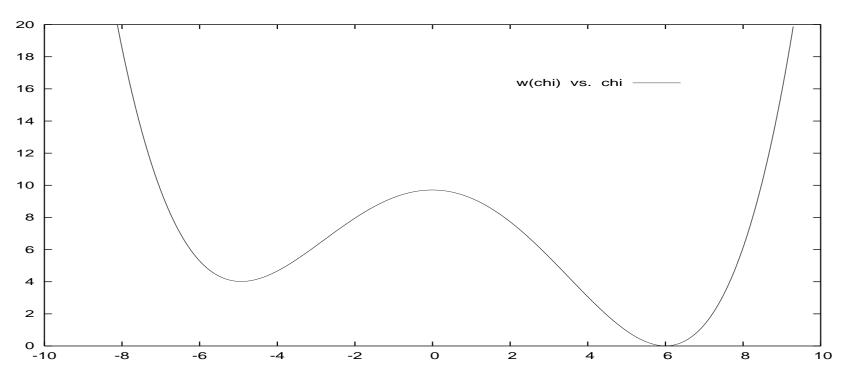
The Theory of Inflation

The inflaton is an effective field in the Ginsburg-Landau sense.

Relevant effective theories in physics:

- Ginsburg-Landau theory of superconductivity. It is an effective theory for Cooper pairs in the microscopic BCS theory of superconductivity.
- **●** The O(4) sigma model for pions, the sigma and photons at energies $\lesssim 1$ GeV. The microscopic theory is QCD: quarks and gluons. $\pi \simeq \bar{q}q$, $\sigma \simeq \bar{q}q$.
- The theory of second order phase transitions à la Landau-Kadanoff-Wilson... (ferromagnetic, antiferromagnetic, liquid-gas, Helium 3 and 4, ...)

Slow Roll Inflaton Models



V(Min) = V'(Min) = 0: inflation ends after a finite number of efolds. Universal form of the slow-roll inflaton potential:

$$V(\phi) = N M^4 w \left(\frac{\phi}{\sqrt{N} M_{Pl}} \right)$$

 $N\sim 60$: number of efolds since horizon exit till end of inflation. M= energy scale of inflation.

SLOW and Dimensionless Variables

$$\chi = \frac{\phi}{\sqrt{N} M_{Pl}}$$
 , $\tau = \frac{m t}{\sqrt{N}}$, $\mathcal{H}(\tau) = \frac{H(t)}{m \sqrt{N}}$, $\left(m \equiv \frac{M^2}{M_{Pl}}\right)$

slow inflaton, slow time, slow Hubble.

 χ and $w(\chi)$ are of order one.

Evolution Equations:

$$\mathcal{H}^{2}(\tau) = \frac{1}{3} \left[\frac{1}{2N} \left(\frac{d\chi}{d\tau} \right)^{2} + w(\chi) \right] ,$$

$$\frac{1}{N} \frac{d^{2}\chi}{d\tau^{2}} + 3\mathcal{H} \frac{d\chi}{d\tau} + w'(\chi) = 0 . \tag{1}$$

1/N terms: corrections to slow-roll

Higher orders in slow-roll are obtained systematically by expanding the solutions in 1/N.

Primordial Power Spectrum

Adiabatic Scalar Perturbations: $P(k) = |\Delta_{k\ ad}^{(S)}|^2 \ k^{n_s-1}$. To dominant order in slow-roll:

$$|\Delta_{k \ ad}^{(S)}|^2 = \frac{N^2}{12\pi^2} \left(\frac{M}{M_{Pl}}\right)^4 \frac{w^3(\chi)}{w'^2(\chi)}$$
.

Hence, for all slow-roll inflation models:

$$|\Delta_{k \ ad}^{(S)}| \sim \frac{N}{2\pi\sqrt{3}} \left(\frac{M}{M_{Pl}}\right)^2$$

The WMAP5 result: $|\Delta_{k~ad}^{(S)}| = (0.470 \pm 0.09) \times 10^{-4}$ determines the scale of inflation M (using $N \simeq 60$)

$$\left(\frac{M}{M_{Pl}}\right)^2 = 0.85 \times 10^{-5} \longrightarrow M = 0.70 \times 10^{16} \text{ GeV}$$

The inflation energy scale turns to be the grand unification energy scale!!

We find the scale of inflation without knowing r !! The scale M is independent of the shape of $w(\chi)$.

spectral index n_s , its running and the ratio r

$$n_{s} - 1 = -\frac{3}{N} \left[\frac{w'(\chi)}{w(\chi)} \right]^{2} + \frac{2}{N} \frac{w''(\chi)}{w(\chi)} , \quad r = \frac{8}{N} \left[\frac{w'(\chi)}{w(\chi)} \right]^{2}$$
$$\frac{dn_{s}}{d \ln k} = -\frac{2}{N^{2}} \frac{w'(\chi) w'''(\chi)}{w^{2}(\chi)} - \frac{6}{N^{2}} \frac{[w'(\chi)]^{4}}{w^{4}(\chi)} + \frac{8}{N^{2}} \frac{[w'(\chi)]^{2} w''(\chi)}{w^{3}(\chi)} ,$$

 χ is the inflaton field at horizon exit.

 n_s-1 and r are always of order $1/N\sim 0.02$ (model indep.) Running of n_s of order $1/N^2\sim 0.0003$ (model independent).

D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Phys. Rev. D 73, 023008 (2006), astro-ph/0507595.

Ginsburg-Landau Approach

We choose a polynomial for $w(\chi)$. A quartic $w(\chi)$ is renormalizable. Higher order polynomials are acceptable since inflation is an effective theory.

$$\begin{split} w(\chi) &= w_o \pm \frac{\chi^2}{2} + G_3 \; \chi^3 + G_4 \; \chi^4 \quad , \quad G_3 = \mathcal{O}(1) = G_4 \\ V(\phi) &= N \; M^4 \; w \left(\frac{\phi}{\sqrt{N} \; M_{Pl}}\right) = V_o \pm \frac{m^2}{2} \; \phi^2 + g \; \phi^3 + \lambda \; \phi^4 \; . \\ m &= \frac{M^2}{M_{Pl}} \quad , \quad g = \frac{m}{\sqrt{N}} \left(\frac{M}{M_{Pl}}\right)^2 \; G_3 \quad , \quad \lambda = \frac{G_4}{N} \; \left(\frac{M}{M_{Pl}}\right)^4 \\ \text{Notice that} \end{split}$$

$$\left(\frac{M}{M_{Pl}}\right)^2 \simeq 10^{-5}$$
 , $\left(\frac{M}{M_{Pl}}\right)^4 \simeq 10^{-10}$, $N \simeq 60$.

- Small couplings arise naturally as ratio of two energy scales: inflation and Planck.
- The inflaton is a light particle:

$$m = M^2/M_{Pl} \simeq 0.003 M$$
 , $m = 2 \times 10^{13} \text{ GeV}$

The number of efolds in Slow-roll

The number of e-folds $N[\chi]$ since the field χ exits the horizon till the end of inflation is:

$$N[\chi] = N \int_{\chi_{end}}^{\chi} \frac{w(\chi)}{w'(\chi)} d\chi$$
 . We choose then $N = N[\chi]$.

The spontaneously broken symmetric potential:

$$w(\chi) = \frac{y}{32} \left(\chi^2 - \frac{8}{y} \right)^2$$

produces inflation with $0 < \sqrt{y} \ \chi_{initial} \ll 1$ and $\chi_{end} = \sqrt{\frac{8}{y}}$.

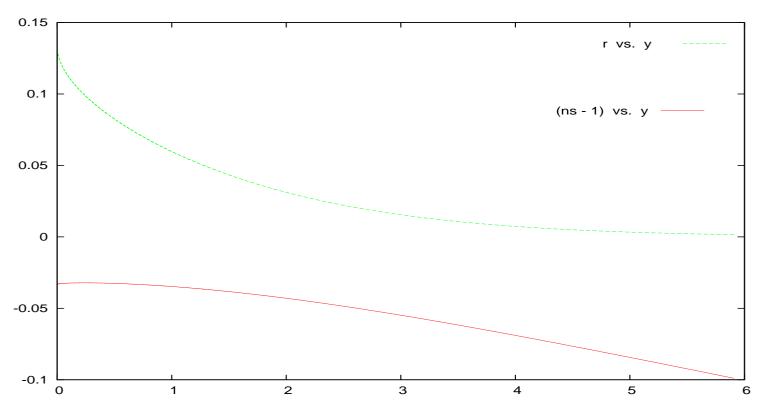
This is small field inflation.

From the above integral: $y = z - 1 - \log z$ where $z \equiv y \chi^2/8$ This defines $\chi = \chi(y)$. $[1 > z > 0 \text{ for } 0 < y < \infty]$. Spectral index n_s and the ratio r as functions of y:

$$n_s = 1 - \frac{y}{N} \frac{3z+1}{(z-1)^2}$$
, $r = \frac{16y}{N} \frac{z}{(z-1)^2}$

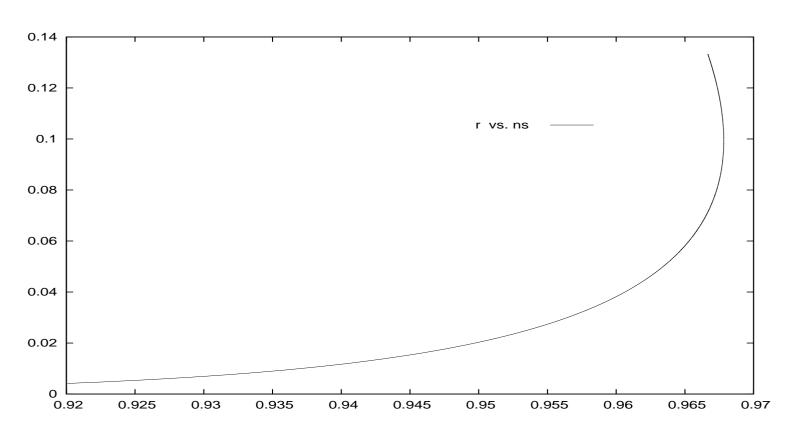
Binomial New Inflation: (y = coupling).

x decreases monotonically with y : (strong coupling) $0 < r < \frac{8}{N} = 0.133...$ (zero coupling).



 n_s first grows with y, reaches a maximum value $n_{s,maximum} = 0.96782\ldots$ at $y = 0.2387\ldots$ and then n_s decreases monotonically with y.

Binomial New Inflation



$$r = \frac{8}{N} = 0.133...$$
 and $n_s = 1 - \frac{2}{N} = 0.967...$ at $y = 0$, $N = 60$.

r is a double valued function of n_s .

Trinomial Inflationary Models

Trinomial Chaotic inflation:

$$w(\chi) = \frac{1}{2} \chi^2 + \frac{h}{3} \sqrt{\frac{y}{2}} \chi^3 + \frac{y}{32} \chi^4.$$

Trinomial New inflation:

$$w(\chi) = -\frac{1}{2} \chi^2 + \frac{h}{3} \sqrt{\frac{y}{2}} \chi^3 + \frac{y}{32} \chi^4 + \frac{2}{y} F(h) .$$

h = asymmetry parameter. $w(\min) = w'(\min) = 0$, $y = \text{quartic coupling}, \ F(h) = \frac{8}{3}\,h^4 + 4\,h^2 + 1 + \frac{8}{3}\,|h|\ (h^2 + 1)^{\frac{3}{2}}$.

H. J. de Vega, N. G. Sanchez, Single Field Inflation models allowed and ruled out by the three years WMAP data. Phys. Rev. D 74, 063519 (2006), astro-ph/0604136.

Monte Carlo Markov Chains Analysis of Data: MCMC.

MCMC is an efficient stochastic numerical method to find the probability distribution of the theoretical parameters that describe a set of empirical data.

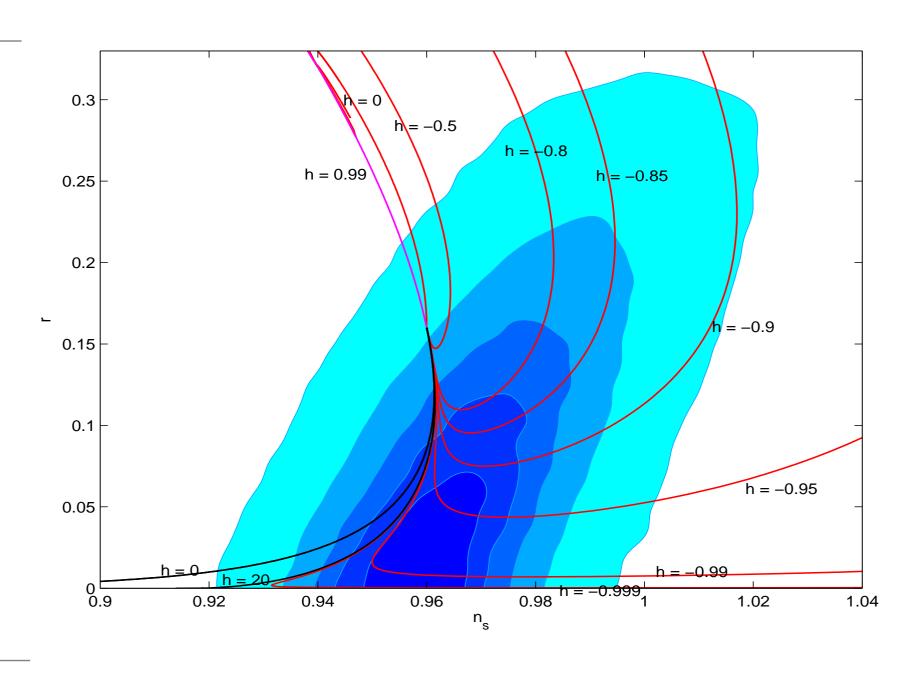
We found n_s and r and the couplings y and h by MCMC. NEW: We imposed as a hard constraint that r and n_s are given by the trinomial potential.

Our analysis differs in this crucial aspect from previous MCMC studies of the WMAP data.

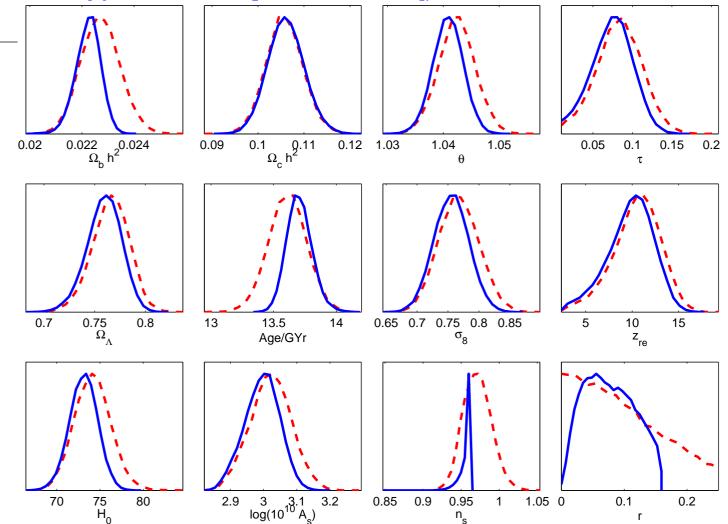
We ignore running of the spectral index since $dn_s/d\ln k \sim 0.0003$ in slow roll.

Adding the running made insignificant changes on the fit of n_s and r.

MCMC Results for Trinomial New Inflation.



Marginalized probability distributions. New Inflation.



Imposing the trinomial potential (solid blue curves) and just the Λ CDM+r model (dashed red curves). (curves normalized to have the maxima equal to one).

MCMC Results for Trinomial New Inflation.

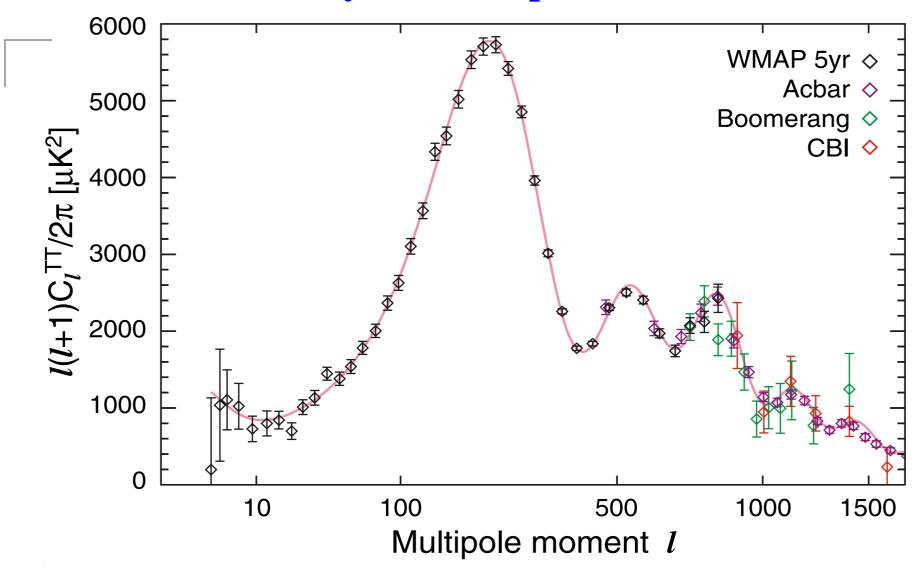
Bounds: $r>0.016~(95\%~{\rm CL})~~,~~r>0.049~(68\%~{\rm CL})$ Most probable values: $n_s\simeq 0.956,~r\simeq 0.055 \Leftarrow {\rm measurable}!!$ The most probable trinomial potential for new inflation has a moderate nonlinearity with the quartic coupling $y\simeq 1.5\ldots$ and h<0.3.

We can choose h=0 and we then we find $y\simeq 1.322\ldots$ The $\chi\to -\chi$ symmetry is here spontaneously broken since the absolute minimum of the potential is at $\chi\neq 0$.

$$w(\chi) = \frac{y}{32} \left(\chi^2 - \frac{8}{y} \right)^2$$

C. Destri, H. J. de Vega, N. Sanchez, MCMC analysis of WMAP3 data points to broken symmetry inflaton potentials and provides a lower bound on the tensor to scalar ratio, Phys. Rev. D77, 043509 (2008), astro-ph/0703417. Similar results from WMAP5 data. Acbar08 data slightly increases $n_s < 1$ and r.

WMAP 5 years data plus further data



Theory (Λ CDM) and observations nicely agree except for the lowest multipoles: the quadrupole suppression.

Quadrupole Suppression and Fast-Roll

Slow-roll inflation is generically preceded by a fast-roll stage where $\dot{\phi}^2 \sim V(\phi)$. Fast-Roll typically lasts 1 efold. The slow-roll regime is an attractor with a large basin of attraction.

During fast-roll curvature and tensor perturbations feel a potential equal to the slow-roll potential plus an extra attractive piece. This new piece suppresses the low multipoles as $1/\ell^2$.

If the quadrupole modes (\sim Hubble radius today) exited the horizon about the end of fast-roll, then the quadrupole modes get suppressed $\sim 20\%$ in agreement with the observations. Upper bound on the total number of inflation efolds: $N_{total} < 82$. Favoured value: $N_{total} \simeq 66$.

C. Destri, H. J. de Vega, N. Sanchez, arXiv:0804.2387, Phys.Rev. D78, 023013(2008), D. Boyanovsky, H. J. de Vega, N. Sanchez, Phys.Rev.D74,123006 and 007(2006).

The Energy Scale of Inflation

Grand Unification Idea (GUT)

- Penormalization group running of electromagnetic, weak and strong couplings shows that they all meet at $E_{GUT} \simeq 2 \times 10^{16}$ GeV.
- Neutrino masses are explained by the see-saw mechanism: $m_{\nu} \sim \frac{M_{\rm Fermi}^2}{M_R}$ with $M_R \sim 10^{16}$ GeV.
- Inflation energy scale: $M \simeq 10^{16}$ GeV.

Conclusion: the GUT energy scale appears in at least three independent ways.

Moreover, moduli potentials: $V_{moduli} = M_{SUSY}^4 v\left(\frac{\phi}{M_{Pl}}\right)$ ressemble inflation potentials provided $M_{SUSY} \sim 10^{16}$ GeV. First observation of SUSY in nature ??

De Sitter Geometry and Scale Invariance

The De Sitter metric is scale invariant:

$$ds^{2} = \frac{1}{(H \eta)^{2}} \left[(d\eta)^{2} - (d\vec{x})^{2} \right] .$$

 $\eta = \text{conformal time.}$

But inflation only lasts for N efolds!

Corrections to scale invariance:

 $|n_s-1|$ as well as the ratio r are of order $\sim 1/N$,

 $n_s = 1$ and r = 0 correspond to a critical point.

It is a gaussian fixed point around which the inflation model hovers in the renormalization group (RG) sense with an almost scale invariant spectrum during the slow roll stage.

The quartic coupling:

$$\lambda = \frac{G_4}{N} \left(\frac{M}{M_{Pl}}\right)^4$$
, $N = \log \frac{a(\text{inflation end})}{a(\text{horizon exit})}$

runs like in four dimensional RG in flat euclidean space.

Dark Matter

DM must be non-relativistic by structure formation (z < 30) in order to reproduce the observed small structure at $\sim 2-3$ kpc. DM particles can decouple being ultrarelativistic (UR) at $T_d \gg m$. Consider particles that decouple at or out of LTE

(LTE = local thermal equilibrium).

Distribution function: $f_d[a(t) P_f(t)] = f_d[p_c]$.

 $P_f(t) = p_c/a(t) =$ Physical momentum.

 $p_c =$ comoving momentum.

DM decoupling at LTE: $f_d(p_c) = 1/[\exp[\sqrt{m^2 + p_c^2}/T_d] \pm 1]$

In general (out of equilibrium): $f_d(p_c) = f_d\left(\frac{p_c}{T_d}; \frac{m}{T_d}; ...\right)$

Velocity fluctuations:

Velocity Dispersion of Dark Matter particles

Using entropy conservation: $T_d(t) = \left(\frac{2}{g_d}\right)^{\frac{1}{3}} T_{\gamma} \left[1 + z(t)\right]$

 $g_d =$ effective # of UR degrees of freedom at decoupling,

$$\sqrt{\langle \vec{V}^2 \rangle}(z) = 0.08875 \, \frac{1+z}{g_d^{\frac{1}{3}}} \, \frac{\text{keV}}{m} \, \left[\frac{\int_0^\infty y^4 \, f_d(y) \, dy}{\int_0^\infty y^2 \, f_d(y) \, dy} \right]^{\frac{1}{2}} \, \frac{\text{km}}{\text{s}}$$

Energy Density: $\rho_{DM}(t)=g\int \frac{d^3P_f}{(2\pi)^3}\,\sqrt{m^2+P_f^2}\,\,f_d[a(t)\,P_f]$

$$\rho_{DM}(t) = m \ g \ T_d^3(t) \ \int_0^\infty y^2 \ f_d(y) \ \frac{dy}{2\pi^2} \ \text{for} \ m \gg T_d(t).$$

Today $\Omega_{DM} = \rho_{DM}(0)/\rho_c = 0.105/h^2$ and therefore:

$$m = 6.46 \text{ eV } g_d/[g \int_0^\infty y^2 f_d(y) dy]$$

For Fermions decoupling at LTE:

$$f_d(y) = 1/[e^y + 1]$$
 and $m = 3.593 \text{ eV } g_d/g$.

The formula for m

m increases:

- a) if the DM particle decouples earlier because g_d increases.
- b) if it decouples out of LTE, $f_d(y)$ can favour small momenta and increase $1/[\int_0^\infty y^2 f_d(y) dy]$.

Special Cases of the formula for m:

Particles decoupling non-relativistically ⇒ Lee-Weinberg (1977) lower bound.

Particles decoupling ultrarelativistically \Longrightarrow Cowsik-McClelland (1972) upper bound.

Out of equilibrium Decoupling

Thermalization mechanism: k-modes cascade towards the UV till the thermal distribution is attained.

[D. Boyanovsky, C. Destri, H. J. de Vega, PRD69, 045003(2004). C. Destri, H. J. de Vega, PRD73, 025014 (2006)]

Hence, before LTE is reached: lower momenta are more populated than at LTE.

An approximate description:

$$f_d(y) = f_{equil}(y/\xi) \ \theta(y_0 - y), \ \xi < 1 \text{ out of equilibrium}$$

Modes with $p_c > y_0 T_d$ are empty. $[y = p_c/T_d]$.

For fermions:
$$m = 6.46 \text{ eV } (g_d/g) F(\infty)/[\xi^3 F(y_0/\xi)]$$

$$F(s) \equiv \int_0^s f_{equil}(w) \ w^2 \ dw$$
 , $F(\infty)/[\xi^3 \ F(y_0/\xi)] > 1$.

Phase-space density invariant under universe expansion

$$\mathcal{D} \equiv \frac{n(t)}{\langle \vec{P}_{nbus}^2(t) \rangle^{\frac{3}{2}}} \stackrel{\mathrm{non-rel}}{=} \frac{\rho_{DM}}{m^4 \, \sigma_{DM}^3} \quad , \quad \sigma_{DM} \equiv \sqrt{\langle \vec{V}^2 \rangle} =$$

computed theoretically from equilibrium distributions.

$$\rho_{DM}=1.107 \times \mathrm{keV/cm^3}=$$
 observed value today.

$$\frac{\rho_{DM}}{\sigma_{DM}^3} \sim 10^3 \frac{\text{keV/cm}^3}{(\text{km/s})^3} \left(\frac{m}{\text{keV}}\right)^3 g_d \begin{cases} 0.177 & \text{Fermions} \\ 0.247 & \text{Bosons} \end{cases}.$$

 $g_d = \#$ of UR degrees of freedom at decoupling.

Observing dwarf spheroidal satellite galaxies in the Milky

Way (dSphs) yields:
$$\frac{\rho_s}{\sigma_s^3} \sim 5 \times 10^3 \; \frac{\rm keV/cm^3}{(km/s)^3}$$
 Gilmore et al. 07.

Theorem: The phase-space density \mathcal{D} can only decrease under self-gravity interactions (gravitational clustering) [Lynden-Bell, Tremaine, Henon, 1986].

$$N$$
-body simulations results: $\frac{\rho_s}{\sigma_s^3} \sim 10^{-2} \; \frac{\rho_{DM}}{\sigma_{DM}^3}$.

Mass Estimates of DM particles

Collecting all formulas yields for relics decoupling at LTE:

$$m \sim \frac{2}{g^{\frac{1}{4}}} \text{ keV }, \quad g_d \ge 500 \ g^{\frac{3}{4}} \ ,$$

Hence, $T_d > 100$ GeV. [g = 1 - 4].

 g_d can be smaller for relics decoupling out of LTE

Let us consider now WIMPS (weakly interactive massive particles): $m \sim 100$ GeV, $T_d \sim 10$ MeV. We find:

$$\frac{\rho_{wimp}}{\sigma_{wimp}^3} \sim 10^{21} \frac{\text{keV/cm}^3}{(\text{km/s})^3} \left(\frac{\sqrt{m T_d}}{1 \text{ GeV}}\right)^3 g_d$$
.

Eighteen orders of magnitude larger than the observations in dShps.

D. Boyanovsky, H. J. de Vega, N. Sanchez, Phys. Rev. D 77, 043518 (2008), arXiv:0710.5180.

Dark Energy

 $76 \pm 5\%$ of the present energy of the Universe is Dark! Current observed value:

 $\rho_{\Lambda} = \Omega_{\Lambda} \ \rho_c = (2.39 \text{ meV})^4 \ , \ 1 \text{ meV} = 10^{-3} \text{ eV}$ Equation of state $p_{\Lambda} = -\rho_{\Lambda}$ within observational errors. Quantum zero point energy. Renormalized value is finite. Bosons (fermions) give positive (negative) contributions. Mass of the lightest particles ~ 1 meV is in the right scale. Spontaneous symmetry breaking of continuous symmetries produces massless scalars as Goldstone bosons. A small symmetry breaking provide light scalars: axions, majorons... Observational Axion window $10^{-3} \text{ meV} \lesssim M_{\text{axion}} \lesssim 10 \text{ meV}$. Dark energy can be a cosmological zero point effect. (As the Casimir effect in Minkowski with non-trivial boundaries). We need to learn the physics of light particles (< 1 MeV), also to understand dark matter!!

Summary and Conclusions

- Inflation can be formulated as an effective field theory in the Ginsburg-Landau spirit with energy scale $M \sim M_{GUT} \sim 10^{16} \ {\rm GeV} \ll M_{Pl}.$ Inflaton mass small: $m \sim H/\sqrt{N} \sim M^2/M_{Pl} \ll M.$ Infrared regime !!
- The slow-roll approximation is a 1/N expansion, $N \sim 60$.
- MCMC analysis of WMAP+LSS data plus the Trinomial Inflation potential indicates a spontaneously symmetry breaking potential (new inflation): $w(\chi) = \frac{y}{32} \left(\chi^2 \frac{8}{y}\right)^2$.
- Lower Bounds: $r>0.016~(95\%~{\rm CL})~,~r>0.049~(68\%~{\rm CL}).$ The most probable values are $r\simeq 0.055 (\Leftarrow {\rm measurable}!!)~n_s\simeq 0.956~{\rm with~a~quartic}$ coupling $y\simeq 1.3$.

Summary and Conclusions 2

- The quadrupole suppression may be explained by the effect of fast-roll inflation provided the today's horizon size modes exited 0.1 efolds before the end of fast-roll inflation.
- Quantum (loop) corrections in the effective theory are of the order $(H/M_{Pl})^2 \sim 10^{-9}$.
- D. Boyanovsky, H. J. de Vega, N. G. Sanchez,

Quantum corrections to the inflaton potential and the power spectra from superhorizon modes and trace anomalies, Phys. Rev. D 72, 103006 (2005), astro-ph/0507596.

Quantum corrections to slow roll inflation and new scaling of superhorizon fluctuations. Nucl. Phys. B 747, 25 (2006), astro-ph/0503669.

Future Perspectives

The Golden Age of Cosmology and Astrophysics continues.

A wealth of data from WMAP (6 yr), Planck, Atacama Cosmology Tel and further experiments are coming.

Galaxy formation. Gigantic black-holes ($M \sim 10^9~M_{\odot}$) as galaxy nuclei, early star formation...

The Dark Ages...Reionisation...the 21cm line...

Nature of Dark Energy? 76% of the energy of the universe.

Nature of Dark Matter? 83% of the matter in the universe.

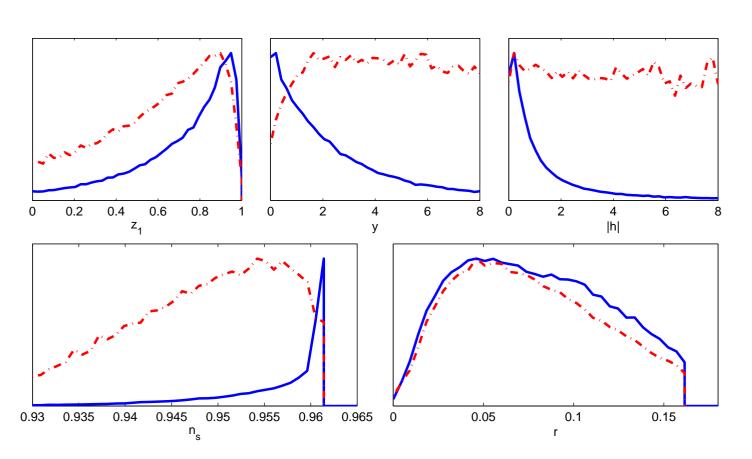
Light DM particles are strongly favoured $m_{DM} \sim 2$ keV.

Sterile neutrinos? Some unknown light particle??

Need to learn about the physics of light particles (< 1 MeV).

THANK YOU VERY MUCH FOR YOUR ATTENTION!!

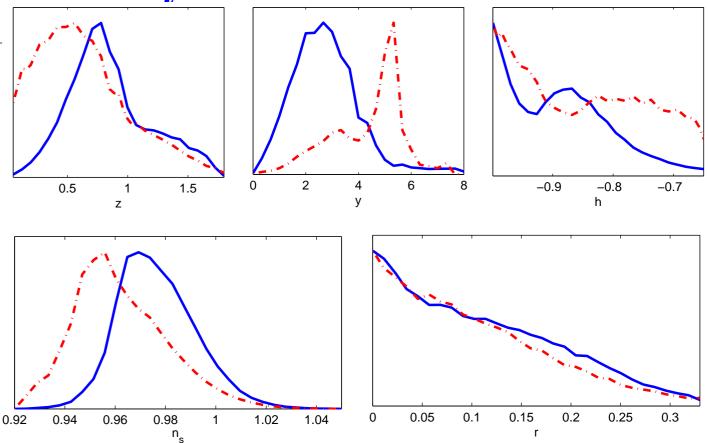
Probability Distributions. Trinomial New Inflation.



Probability distributions: solid blue curves Mean likelihoods: dot-dashed red curves.

$$z_1 = 1 - \frac{y}{8(|h| + \sqrt{h^2 + 1})^2} \chi^2$$
.

Probability Distributions. Trinomial Chaotic Inflation.



Probability distributions (solid blue curves) and mean likelihoods (dot-dashed red curves).

The data request a strongly asymmetric potential in chaotic inflation almost having two minima. That is, a strong breakdown of the $\chi \to -\chi$ symmetry.

Gauge Invariant Curvature Perturbations

$$\mathcal{R}(\boldsymbol{x},t) = -\psi(\boldsymbol{x},t) - \frac{H(t)}{\dot{\Phi}(t)} \phi(\boldsymbol{x},t)$$

 $\phi(\boldsymbol{x},t) = \text{inflaton fluctuations. } \psi(\boldsymbol{x},t) = \text{newtonian potential.}$

These fluctuations around the FRW geometry are responsible of the CMB anisotropies and the LSS formation.

Gauge invariant potential

$$u(\boldsymbol{x},t) \equiv -z(t) \, \mathcal{R}(\boldsymbol{x},t) , \ z(t) \equiv a(t) \, \frac{\Phi(t)}{H(t)}$$

In Fourier space: $u(\mathbf{k}, \eta) = \alpha_{\mathcal{R}}(\mathbf{k}) S_{\mathcal{R}}(k; \eta) + \alpha_{\mathcal{R}}^{\dagger}(\mathbf{k}) S_{\mathcal{R}}^{*}(k; \eta)$ $\alpha_{\mathcal{R}}^{\dagger}(\mathbf{k})$ and $\alpha_{\mathcal{R}}(\mathbf{k})$ are creation and annihilation operators.

The mode functions obey a Schrödinger-like equation,

$$\left[\frac{d^2}{d\eta^2} + k^2 - W_{\mathcal{R},\mathcal{T}}(\eta)\right] S_{\mathcal{R},\mathcal{T}}(k;\eta) = 0.$$

Scalar Curvature and tensor fluctuations

$$W_{\mathcal{R}}(\eta) = \frac{1}{z} \frac{d^2 z}{d\eta^2}$$
 for scalar, $W_{\mathcal{T}}(\eta) = \frac{1}{a} \frac{d^2 a}{d\eta^2}$ for tensor.

$$W_{\mathcal{R},\mathcal{T}}(\eta) = \frac{\nu_{\mathcal{R},\mathcal{T}}^2 - \frac{1}{4}}{\eta^2} + \mathcal{V}_{\mathcal{R},\mathcal{T}}(\eta)$$
.

Like a centrifugal barrier plus $\mathcal{V}_{\mathcal{R},\mathcal{T}}(\eta)$.

scalar:
$$\nu_{\mathcal{R}} = \frac{3}{2} + 3 \epsilon_V - \eta_V$$
 , tensor: $\nu_T = \frac{3}{2} + \epsilon_V$

$$\epsilon_V = \frac{1}{2N} \left[\frac{w'(\chi)}{w(\chi)} \right]^2 \quad , \quad \eta_V = \frac{1}{N} \frac{w''(\chi)}{w(\chi)} .$$

 $V(\eta) = 0$ during slow-roll, $V(\eta) \neq 0$ during fast-roll.

During slow-roll: $S(k; \eta) = A(k) g_{\nu}(k; \eta) + B(k) f_{\nu}(k; \eta)$

$$g_{\nu}(k;\eta) = \frac{1}{2} i^{\nu + \frac{1}{2}} \sqrt{-\pi \eta} H_{\nu}^{(1)}(-k\eta) , f_{\nu}(k;\eta) = [g_{\nu}(k;\eta)]^*$$

 $H_{\nu}^{(1)}(z)$: Hankel function.

Scale invariant limit:
$$g_{\frac{3}{2}}(k;\eta) = \frac{e^{-ik\eta}}{\sqrt{2k}} \left[1 - \frac{i}{k\eta}\right]$$
.

The effect of $\mathcal{V}_{\mathcal{R},\mathcal{T}}(\eta)$ during the fast-roll

The initial conditions on the modes $S(k;\eta)$ plus $\mathcal{V}_{\mathcal{R},\mathcal{T}}(\eta)$ determine the coefficients $A_{\mathcal{R},\mathcal{T}}(k)$ and $B_{\mathcal{R},\mathcal{T}}(k)$.

We choose Bunch-Davies initial conditions:

$$S_{\nu}(k;\eta) \stackrel{\eta \to -\infty}{=} \frac{1}{\sqrt{2 \, k}} e^{-ik\eta}$$

$$\mathcal{V}_{\mathcal{R},\mathcal{T}}(\eta) = 0 \longrightarrow A(k) = 1, \ B(k) = 0$$

 $\mathcal{V}_{\mathcal{R},\mathcal{T}}(\eta) \neq 0$ is analogous to a one dimensional scattering problem in the η -axis.

- D. Boyanovsky, H. J. de Vega, N. Sanchez, CMB quadrupole suppression:
- I. Initial conditions of inflationary perturbations,
- II. The early fast-roll stage, Phys.Rev. D74 (2006) 123006 and 123007, astro-ph/0607508 and astro-ph/0607487.

Primordial Power Spectrum

$$P_{\mathcal{R}}(k) \stackrel{\eta \to 0^{-}}{=} \frac{k^{3}}{2 \pi^{2}} \left| \frac{S_{\mathcal{R}}(k; \eta)}{z(\eta)} \right|^{2} = P_{\mathcal{R}}^{sr}(k) \left[1 + D_{\mathcal{R}}(k) \right],$$

$$P_{T}(k) \stackrel{\eta \to 0^{-}}{=} \frac{k^{3}}{2 \pi^{2}} \left| \frac{S_{T}(k; \eta)}{a(\eta)} \right|^{2} = P_{T}^{sr}(k) \left[1 + D_{T}(k) \right].$$

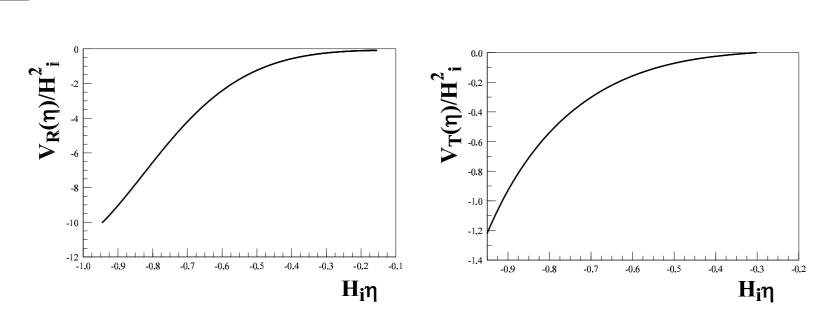
Standard slow roll power spectrum:

$$P_{\mathcal{R}}^{sr}(k) = \mathcal{A}_{\mathcal{R}}^{2} \left(\frac{k}{k_{0}}\right)^{n_{s}-1}, P_{T}^{sr}(k) = \mathcal{A}_{T}^{2} \left(\frac{k}{k_{0}}\right)^{n_{T}}$$

$$D(k) = 2 |B(k)|^{2} - 2 \operatorname{Re} \left[A(k) B^{*}(k) i^{2\nu-3}\right]$$

 $D_{\mathcal{R}}(k)$ and $D_T(k)$ are the transfer functions of curvature and tensor perturbations taking into account the effect of the fast-roll stage.

Potential felt by the Scalar and by the Tensor Fluctuations



 H_i = Hubble at the beginning of slow-roll.

Both $\mathcal{V}_{\mathcal{R}}(\eta)$ and $\mathcal{V}_{\mathcal{T}}(\eta)$ are ATTRACTIVE potentials.

Potential felt by tensor fluctuations much smaller:

$$\mathcal{V}_{\mathcal{T}}(\eta) \sim \frac{1}{10} \ \mathcal{V}_{\mathcal{R}}(\eta)$$

Change in the C_l due to fast-roll

$$C_{l} \equiv C_{l}^{sr} + \Delta C_{l} \quad , \quad \frac{\Delta C_{l}}{C_{l}} = \frac{\int_{0}^{\infty} D_{\mathcal{R},\mathcal{T}}(\kappa x) f_{l}(x) dx}{\int_{0}^{\infty} f_{l}(x) dx}$$

$$\kappa \equiv a_{0} H_{0}/3.3 = a_{sr} H_{i}/3.3 \quad , \quad f_{l}(x) \equiv x^{n_{s}-2} [j_{l}(x)]^{2} .$$

Since $\mathcal{V}_{\mathcal{R},\mathcal{T}}(\eta)$ are quite small we can compute the transfer functions in the Born approximation:

$$D_{\mathcal{R},\mathcal{T}}(k) = \int_{-\infty}^{0} d\eta \mathcal{V}_{\mathcal{R},\mathcal{T}}(\eta) \left[\sin(2k\eta) \left(1 - \frac{1}{k^2 \eta^2} \right) + \frac{2}{k\eta} \cos(2k\eta) \right] / k$$

and then,
$$\frac{\Delta C_2}{C_2} = \frac{1}{\kappa} \int_{-\infty}^0 d\eta \; \mathcal{V}_{\mathcal{R},\mathcal{T}}(\eta) \; \Psi(\kappa \; \eta)$$

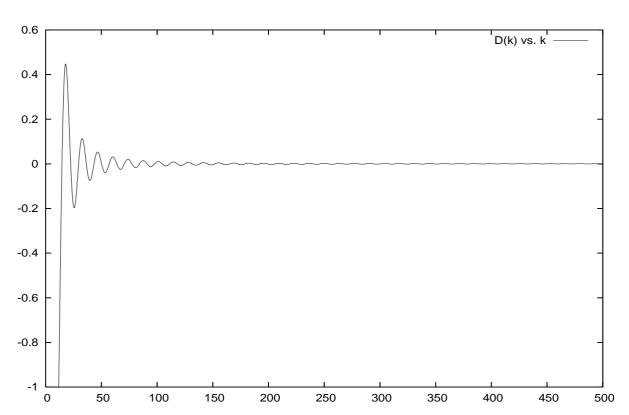
where $\Psi(\kappa \eta) > 0$ for $\eta < 0$.

ATTRACTIVE $\mathcal{V}_{\mathcal{R},\mathcal{T}}(\eta) < 0$ implies $\Delta C_2 < 0$.

— QUADRUPOLE SUPPRESSION.

In general,
$$0 > \frac{\Delta C_l}{C_l} = \mathcal{O}\left(\frac{1}{l^2}\right)$$
.

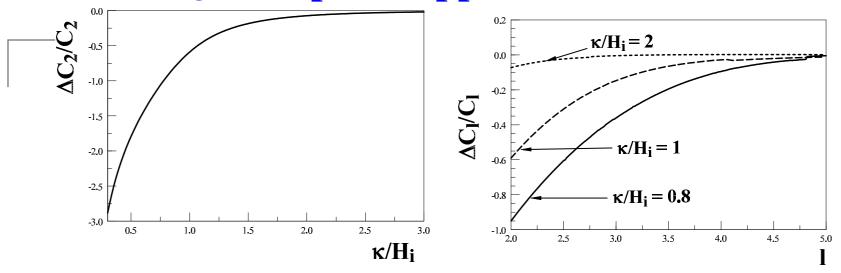
The Transfer Function D(k) for the scalar fluctuations.



The transfer function $D_{\mathcal{R}}(k)$ computed in the Born approximation for trinomial new inflation $y \simeq 2, \ h = 0$.

$$P_{\mathcal{R}}(k) = P_{\mathcal{R}}^{sr}(k) \left[1 + D_{\mathcal{R}}(k) \right]$$

Quadrupole Suppression vs. Fast-Roll



 $\frac{\kappa}{H_i} = \frac{a_{sr}}{3.3}$. The Quadrupole is suppressed 20% for

The quadrupole modes should exit the horizon $\simeq 1$ efolds after inflation starts. That is 0.1 efolds before fast-roll ends.

Quadrupole Suppression Explanation:

Inflation starts with fast-roll: 0 efolds.

Today Horizon size modes (quadrupole) exit the horizon by 1 efolds.

Fast-roll ends and slow-roll begins: 1.1 efold.

Inflation ends by a number of efolds $N_T \simeq 66$

Loop Quantum Corrections to Slow-Roll Inflation

$$\frac{1}{\phi(\vec{x},t)} = \Phi_0(t) + \varphi(\vec{x},t), \quad \Phi_0(t) \equiv \langle \phi(\vec{x},t) \rangle, \quad \langle \phi(\vec{x},t) \rangle = 0$$

$$\varphi(\vec{x},t) = \frac{1}{a(\eta)} \int \frac{d^3k}{(2\pi)^3} \left[a_{\vec{k}} \chi_k(\eta) e^{i\vec{k}\cdot\vec{x}} + \text{h.c.} \right],$$

 $a_{\vec{k}}^{\dagger},\ a_{\vec{k}}$ are creation/annihilation operators, $\chi_k(\eta)$ are mode functions. $\eta=$ conformal time. To one loop order the equation of motion for the inflaton is

$$\ddot{\Phi}_0(t) + 3H \dot{\Phi}_0(t) + V'(\Phi_0) + g(\Phi_0) \langle [\varphi(\boldsymbol{x}, t)]^2 \rangle = 0$$

where $g(\Phi_0) = \frac{1}{2} V'''(\Phi_0)$.

The mode functions obey:

$$\chi_k''(\eta) + \left[k^2 + M^2(\Phi_0) \ a^2(\eta) - \frac{a''(\eta)}{a(\eta)}\right] \chi_k(\eta) = 0$$

where
$$M^2(\Phi_0) = V''(\Phi_0) = 3 H_0^2 \eta_V + \mathcal{O}(1/N^2)$$

Quantum Corrections to the Friedmann Equation

The mode functions equations for slow-roll become,

$$\chi_k''(\eta) + \left[k^2 - \frac{\nu^2 - \frac{1}{4}}{\eta^2}\right] \chi_k(\eta) = 0$$
 , $\nu = \frac{3}{2} + \epsilon_V - \eta_V + \mathcal{O}(1/N^2)$.

The scale factor during slow roll is $a(\eta) = -\frac{1}{H_0 \eta (1 - \epsilon_V)}$.

Scale invariant case: $\nu = \frac{3}{2}$. $\Delta \equiv \frac{3}{2} - \nu = \eta_V - \epsilon_V$ controls the departure from scale invariance.

Explicit solutions in slow-roll:

$$\chi_k(\eta) = \frac{1}{2} \sqrt{-\pi \eta} i^{\nu + \frac{1}{2}} H_{\nu}^{(1)}(-k\eta), \quad H_{\nu}^{(1)}(z) = \text{Hankel function}$$

Quantum fluctuations: $\langle [\varphi(\boldsymbol{x},t)]^2 \rangle = \frac{1}{a^2(\eta)} \int \frac{d^3k}{(2\pi)^3} |\chi_k(\eta)|^2$

$$\frac{1}{2}\langle [\varphi(\boldsymbol{x},t)]^2 \rangle = \left(\frac{H_0}{4\pi}\right)^2 \left[\Lambda_p^2 + \ln \Lambda_p^2 + \frac{1}{\Delta} + 2\gamma - 4 + \mathcal{O}(\Delta)\right]$$

UV cutoff $\Lambda_p = \text{physical cutoff}/H$, $\frac{1}{\Delta} = \text{infrared pole.}$

$$\left\langle \dot{arphi}^{2}\right
angle \ , \ \left\langle \left(
abla arphi
ight)^{2}
ight
angle ext{ are infrared finite}$$

Quantum Corrections to the Inflaton Potential

Upon UV renormalization the Friedmann equation results

$$H^{2} = \frac{1}{3M_{Pl}^{2}} \left[\frac{1}{2} \dot{\Phi_{0}}^{2} + V_{R}(\Phi_{0}) + \left(\frac{H_{0}}{4\pi} \right)^{2} \frac{V_{R}''(\Phi_{0})}{\Delta} + \mathcal{O}\left(\frac{1}{N} \right) \right]$$

Quantum corrections are proportional to $\left(\frac{H}{M_{Pl}}\right)^2 \sim 10^{-9} \; !!$

The Friedmann equation gives for the effective potential:

$$V_{eff}(\Phi_0) = V_R(\Phi_0) + \left(\frac{H_0}{4\pi}\right)^2 \frac{V_R''(\Phi_0)}{\Delta}$$
$$V_{eff}(\Phi_0) = V_R(\Phi_0) \left[1 + \left(\frac{H_0}{4\pi M_{Pl}}\right)^2 \frac{\eta_V}{\eta_V - \epsilon_V} \right]$$

in terms of slow-roll parameters

Very DIFFERENT from the one-loop effective potential in Minkowski space-time:

$$V_{eff}(\Phi_0) = V_R(\Phi_0) + \frac{[V_R''(\Phi_0)]^2}{64\pi^2} \ln \frac{V_R''(\Phi_0)}{M^2}$$

Quantum Fluctuations:

Scalar Curvature, Tensor, Fermion, Light Scalar.

All these quantum fluctuations contribute to the inflaton potential and to the primordial power spectra.

In de Sitter space-time:
$$< T_{\mu\nu} > = \frac{1}{4} g_{\mu\nu} < T_{\alpha}^{\alpha} >$$

Hence, $V_{eff} = V_R + < T_0^0 > = V_R + \frac{1}{4} < T_{\alpha}^{\alpha} >$

Sub-horizon (Ultraviolet) contributions appear through the trace anomaly and only depend on the spin of the particle. Superhorizon (Infrared) contributions are of the order N^0 and can be expressed in terms of the slow-roll parameters.

$$\begin{split} V_{eff}(\Phi_0) &= V(\Phi_0) \left[1 + \frac{H_0^2}{3 \ (4\pi)^2 \ M_{Pl}^2} \left(\frac{\eta_v - 4 \, \epsilon_v}{\eta_v - 3 \, \epsilon_v} + \frac{3 \, \eta_\sigma}{\eta_\sigma - \epsilon_v} + \mathcal{T} \right) \right] \\ \mathcal{T} &= \mathcal{T}_\Phi + \mathcal{T}_s + \mathcal{T}_t + \mathcal{T}_F = -\frac{2903}{20} \ \text{is the total trace anomaly.} \\ \mathcal{T}_\Phi &= \mathcal{T}_s = -\frac{29}{30}, \ \mathcal{T}_t = -\frac{717}{5}, \ \mathcal{T}_F = \frac{11}{60} \\ \longrightarrow \text{ the graviton (t) dominates.} \end{split}$$

-p.46/48

Corrections to the Primordial Scalar and Tensor Power

$$\begin{aligned}
& \left[|\Delta_{k,eff}^{(S)}|^2 = |\Delta_k^{(S)}|^2 \left\{ 1 + \frac{\frac{3}{8} r (n_s - 1) + 2 \frac{dn_s}{d \ln k}}{(n_s - 1)^2} + \frac{2903}{40} \right] \right\} \\
& + \frac{2}{3} \left(\frac{H_0}{4 \pi M_{Pl}} \right)^2 \left[1 + \frac{\frac{3}{8} r (n_s - 1) + 2 \frac{dn_s}{d \ln k}}{(n_s - 1)^2} + \frac{2903}{40} \right] \right\} \\
& \left[|\Delta_{k,eff}^{(T)}|^2 = |\Delta_k^{(T)}|^2 \left\{ 1 - \frac{1}{3} \left(\frac{H_0}{4 \pi M_{Pl}} \right)^2 \left[-1 + \frac{1}{8} \frac{r}{n_s - 1} + \frac{2903}{20} \right] \right\}.
\end{aligned}$$

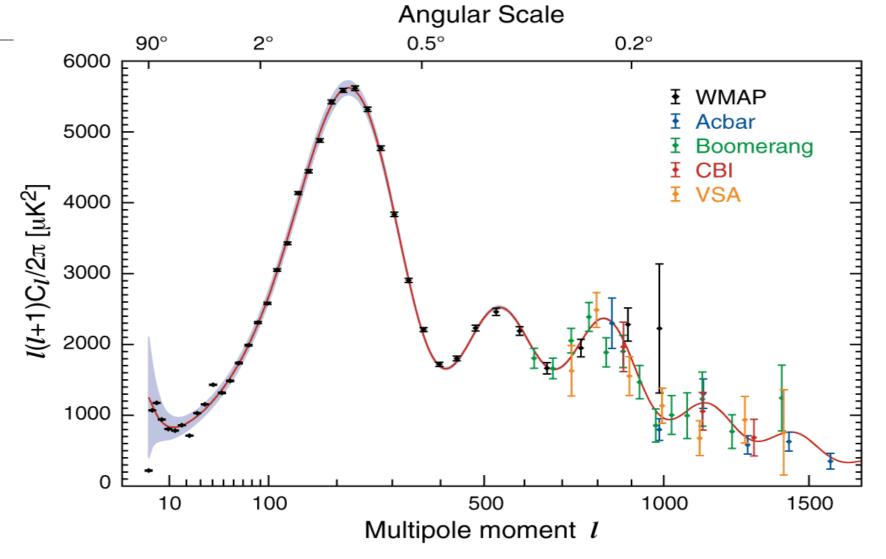
The anomaly contribution $-\frac{2903}{20} = -145.15$ DOMINATES as long as the number of fermions less than 783.

The scalar curvature fluctuations $|\Delta_k^{(S)}|^2$ are ENHANCED and the tensor fluctuations $|\Delta_k^{(T)}|^2$ REDUCED.

However,
$$\left(\frac{H}{M_{Pl}}\right)^2 \sim 10^{-9}$$
.

D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Phys. Rev. D 72, 103006 (2005), astro-ph/0507596.

WMAP 3 years data plus others.



Theory and observations nicely agree except for the lowest multipoles: the quadrupole suppression.