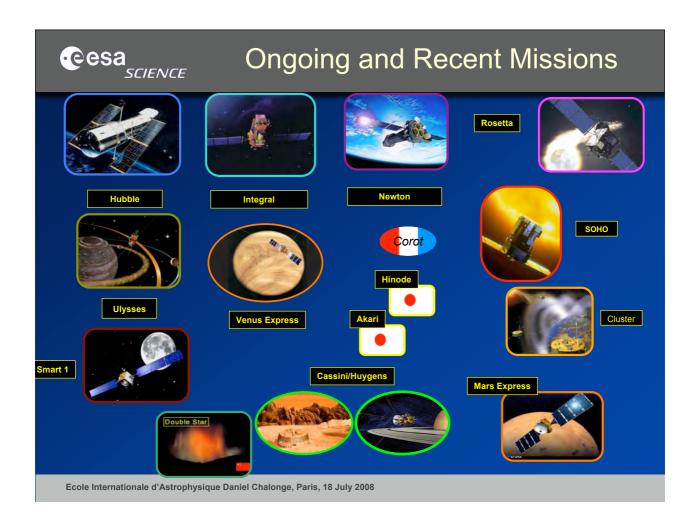


ESA's Cosmic Vision 2015-2025 Programme

Martin Kessler
Research and Scientific Support Department,
ESA Directorate of Science and Robotic Exploration


Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

Outline

Cosmic Vision 2015 – 2025

- · Recent and present missions
- Establishing the themes
- Implementation approach
- · Payload development approach

Planck

- Image the temperature and polarisation anisotropies of CMB over the whole sky.
- Uncertainty on the temperature limited by "natural causes" (foreground fluctuations, cosmic variance).
- Temperature sensitivity (per pixel) of ΔT/T~10-6
- Measure polarisation (Stokes I, Q, U) in CMB bands, with good cross-polar characteristics.
- 1.5 metre aperture telescope to provide ~5' resolution for high-frequency channels.
- Extreme attention to systematic effects:
 - wide frequency coverage (25 950 GHz) with two instruments (HFI and LFI)
 - L2 orbit.
 - redundancy built in at many timescales, from one minute to half a year.

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

What comes next?

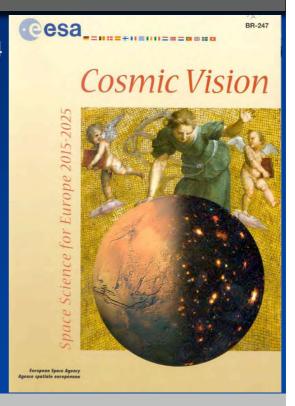
New long-term plan for the Directorate:

Cosmic Vision 2015 - 2025

2004 - 2005	Establishing themes
2007	1st Call for Mission Proposals
2008 - 2009	Assessments (competitive)
2010 - 2011	Definition (competitive)
2011	Selections
~2011	2nd Call for Mission Proposals
2017 & 2018	Initial Launches

Science Community Chooses the Programme ...

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008


Establishing the Themes

esa SCIENCE

Cosmic Vision 2015-2025: Themes

- Call for Science Themes in Spring 2004
- Responses (150) analysed by ESA's advisory structure in July 2004.
- Workshop with community in Paris in September 2004 (400 participants).
- Spring 2005: the Cosmic Vision Plan was presented to the community.
- Presentation to SPC in May 2005.
- "Glossy brochure" in October 2005.

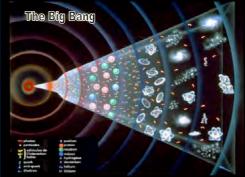
Plan covers one decade, with **3 Calls** for Missions planned.

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

eesa SCIENCE

Four "Grand Themes" identified

- 1. What are the conditions for life and planetary formation?
- 2. How does the Solar System work?
- 3. What are the fundamental laws of the Universe?
- 4. How did the Universe originate and what is it made of?



What does the programme mean for the 'person on the street'?

"Finding Earth and Humanity's place in the Universe"

- How did we get from the Big Bang to the 'here and now'?
- Are there worlds elsewhere?

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

Implementation Approach

Cosmic Vision: Programme Slices

- 2-3 programme slices of a 3~4 year period each are foreseen for missions to be launched in 2015 – 2025
 - implements major Cosmic Vision 2015 2025 objectives,
 - · keeps flexibility of planning,
- Cosmic Vision plan concentrates on implementation of:
 - large missions ('L' missions, ~ 650 M€)
 - medium missions ('M', ~ 300 M€).
- Balance of scientific disciplines will depend on mission mix (size, number and sequence of missions) and inclusion of international cooperation.
- Mission frequency (in steady-state situation): 1 launch every 18 months.

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

esa SCIENCE

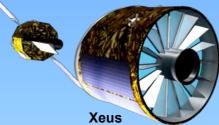
Cosmic Vision: 1st Call for Missions

- First "Call for Missions" issued in Q1 2007
 - 2 launch opportunities, for 2017/2018
 - 950 M€ envelope
 - Foreseen as 1 Medium (2017) plus 1 Large (2018) mission
 - · Other mixes of mission sizes possible
 - Payload funded separately by ESA member states
- 50 proposals received by June 2007 deadline
- Selection process by advisory structure on behalf of scientific community during summer 2007
 - Final recommendation from SSAC in October 2007

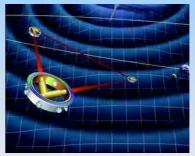
Cycle 1 Selection Outcome

- Seven missions selected for assessment in 2008 2009
 - 2 L-class missions
 - Compete with LISA
 - Down-select to 2 at end 2009
 - Select 1 in 2011 for implementation for launch in 2018
 - 5 M-class missions
 - Down-select to 2 at end 2009
 - Select 1 in 2011 for implementation for launch in 2017
 - A number of highly-ranked science mission themes requiring technology development to enable readiness at the time of the next Call for Mision proposals (~ 2011).

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008



L class missions


Outer Planet Mission, ESA/NASA/JAXA collaboration

Laplace *mission to the Jupiter system*

X ray observatory
ESA/JAXA/... collaboration

LISA
Gravitational waves measurement
ESA/NASA collaboration

M class missions

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

esa SCIENCE

Euclid: Concept Convergence

- M mission addressing dark energy
 - Science concept derived in January-April 2008 from two CV proposals:
 - DUNE (lead by A. Refregier),
 - SPACE (lead by A. Cimatti).
 - Concept Advisory Team
 - Chaired by Malcolm Longair
 - Endorsed by ESA AWG.
- ESA Imposed boundaries on Euclid technical baseline:
 - to control size and budget of mission:
 - 1.2 m telescope diameter maximum
 - · Limited number of NIR detectors

Euclid Concept

- Euclid will survey the entire extragalactic sky (20 000 deg²) to measure simultaneously two principal Dark Energy probes:
 - Weak Lensing
 - Diffraction limited galaxy shape measurements in one broad visible band
 - Redshift determination by photo-z measurements in 3 Near-Infrared bands to H(AB)=24 mag for a 5σ point source detection
 - Baryonic Acoustic Oscillations
 - Spectroscopic redshifts for about 33% of all galaxies brighter than H(AB)=22 mag, with σ_z <0.001


Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

esa SCIENCE

Euclid's Science Objectives

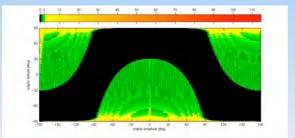
Issue	Euclid's Targets
What is Dark Energy	Measure the DE equation of state parameters w_n and w_a to a precision of 2% and 10%, respectively, using both expansion history and structure growth.
Beyond Einstein's Gravity	Distinguish General Relativity from the simplest modified-gravity theories, by measuring the growth factor exponent γ with a precision of 2%.
The nature of dark matter	Test the Cold Dark Matter paradigm for structure formation, and measure the sum of the neutrino masses to a precision better than 0.04eV when combined with Planck.
The seeds of cosmic structure	Improve by a factor of 20 the determination of the initial condition parameters compared to Planck alone.

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

Euclid Mission Profile

CDF study case

Launcher


SOYUZ ST 2-1b from Kourou

Sky coverage

Panoramic survey over the full extragalactic sky 20 000 sq. degrees

Two galactic polar caps, latitude | b | > 30° Solar aspect angle adjusted for scan optimisation

Observation mode

Continuous scanning vs. step&stare (trade-off)

Orbit

Large amplitude Lissajous around SEL2 Free insertion, 30-day transfer time DeltaV budget: 50 m/s

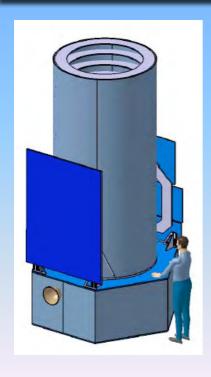
Orbit maintenance: 1 manoeuvre/month

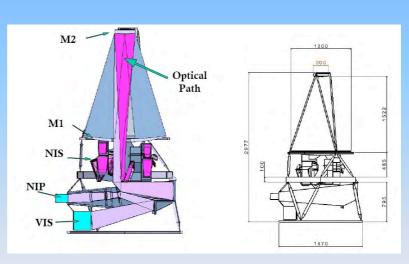
Spacecraft

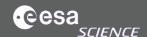
Body-mounted solar array 3-axis stabilised platform

Relative pointing error: 25 marcsec with FGS
Attitude control - proportional cold gas system
Hydrazine propulsion for orbit manoeuvres

Satellite mass (wet): 1540 kg


Communications


Housekeeping in X-band Science telemetry in K-band 700 Gbits/day after compression 4 hours/day link with Cebreros 35-m antenna


Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

eesa SCIENCE

Euclid PLM

Euclid Payload

CDF study case

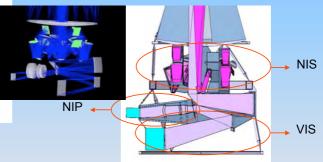
Telescope

1.2 meter Korsch TMA

Thermal

Passive cooling 170 K CCD 140 K NIR detectors

Power


One power conditioning unit per instrument Total payload: ~200 W peak

Data-handling

Spectroscopy target selection Full frame images lossless compression NIR detectors noise reduction

3 instruments

Visible Imaging VIS: 0.21" PSF at 800 nm, 0.1"/pixel NIR Photometry NIP: 0.33"/pixel, 3 bands (Y, J, H) NIR Spectroscopy NIS: 0.9-1.7 μ m, set of 3 cameras, multi-objects (micro-mirror array), R~400 Each of them with a field of view ~0.48 deg²

Observation mode

Step and stare case fully investigated Continuous scanning requires de-scan mechanism for infrared channels

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

eesa SCIENCE

Science Programme Implementation

Three step process from the Mission candidate selection to the launch

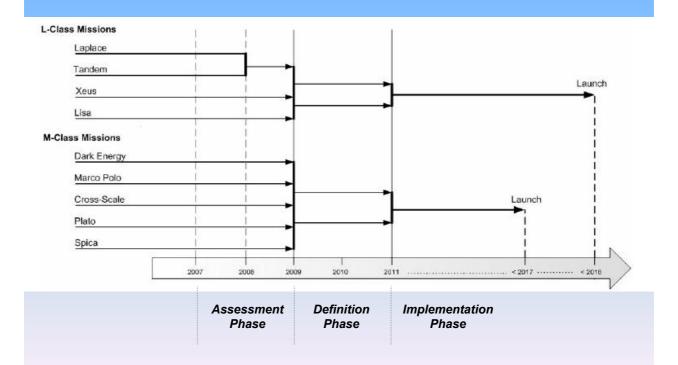
Assessment Phase

Nominal duration is ~ 2 years. Mission studies, Phase 0/A level

Enables mission down-selection for the Definition Phase: Mission concept, programmatic assessment, technology readiness evaluation

Definition Phase

Nominal duration is ~ 2 years. Mission studies, Phase A/B1 level


Enables mission adoption for Implementation Phase: Mission consolidation (technical & programmatic), technology readiness evaluation & preparation

Implementation Phase

Typical duration is ~ 5-6 years,

Industrial team build-up and spacecraft manufacturing, Phases B2/C/D

Mission down-selection process

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

Status

- ESA internal studies:
 - Complete for all the M-missions
 - Ongoing for the L-missions
- ITTs for industrial studies issued for the four M missions plus SPICA telescope study
 - Will start in July-September 2008
 - Completion by mid-September 2009, to enable down-selection.
- Xeus and Outer Planet mission industrial studies planned in 2009
 - Internal studies to be completed by September 2008
 - Down-selection of outer planet mission by end 2008
 - Schedule highly dependent on progress in definition of international collaborations.

Payload Development Approach

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

esa SCIENCE

Payload provided by Member States

- Maintain tradition of delivery of instruments to ESA by Member States
 - Actual contributions depend on specific mission (e.g. Gaia v. BepiColombo)
 - National activities conducted in parallel to ESA system studies
- ESA is in charge of technology developments for spacecraft items which will be produced through ESA industrial contracts.
- Member States in charge of technology developments for payload items which will be provided by the Member States.
- Technology Development Plan:
 - Establised for the entire spacecraft, including science instruments,
 - Aiming at TRL ≥ 5 before implementation phase
 - Payload-related activities to be reviewed and endorsed by the Member States
 - Monitored by SPC.

Technology Readiness

- Strict need if for TRL ≥ 5 for the whole spacecraft including payload before entering implementation phase
 - TRL level 5 definition: breadboard or component validation in relevant environment
- Technology readiness wlll be evaluated for 2009/2011down-selection steps
 - In 2009, if TRL≠5, technical assessment for evaluating the probability to reach TRL 5 by 2011
 - In 2011, for the Mission Adoption: Development risk assessment schedule, cost and technology readiness – before entering the Implementation phase.

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

esa SCIENCE

Payload Development Timeline

- Follow recommendations from recent review (SPRT) of programme:
 - Complete payload phase A/B1 before entering implementation phase
 - Move payload selection (AO) to start of definition phase
 - Perform instrument assessment study before entering definition phase.

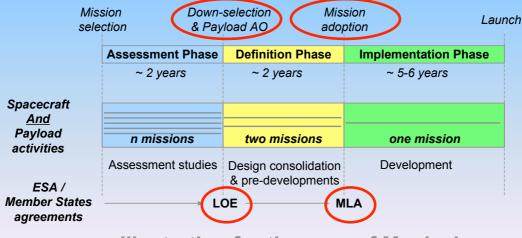


Illustration for the case of M missions

Status of Instrument Studies

- Call for "Declaration of Interest" for Instrument studies issued for all M missions:
 - SPICA/SAFARI instrument team in place,
 - Responses for all missions received by mid-July,
 - ESA evaluation will be made by end July 08,
 - Convergence with Member States expected by end Sept 08,
 - Instrument studies will be made in parallel with industrial studies.
- XEUS and Outer Planet Call for Instrument Studies will be phased with the corresponding industrial ITTs
 - Expected by end 2008,
 - Instrument studies will be made in parallel with industrial studies.

Ecole Internationale d'Astrophysique Daniel Chalonge, Paris, 18 July 2008

Summary

- Cosmic Vision 2015 2025
 - builds on the successes of the previous long-term plans,
 - is community-driven,
 - is based on a portfolio of missions of various sizes selected from successive calls allowing progressive implementation of the scientific priorities embedded in the Cosmic Vision themes for the 2015-2025 time frames.
- Missions chosen in 1st Call are in assessment phase with industrial studies about to start,
 - down-selection for:
 - definition phase foreseen for end 2009
 - and end 2011 for implementation.