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Title HereWhat’s the matter with the Infrared Background?

What is the extragalactic background light at IR wavelengths?



Title HereWhat’s the matter with the Infrared Background?

- Large discrepancy in 
Absolute photometry
vs. Galaxy counts
vs. TeV blazars

- Is this due to systematic 
errors?

 - or -

- Could there be a diffuse 
component missed by 
galaxy counts, such as
due to reionization or extra
dust components in the 
Solar System or Galaxy?

0                        1                       2                       3                        4                       5

What is the extragalactic background light at IR wavelengths?



Title HereThe IR (DIRBE/IRTS) Excess: Could Exotic Sources Produce it?

Santos et al. 2002   Magliocchetti et al. 2003
Salvaterra & Ferrara 2003    Cooray & Yoshida 2004
Fernandez & Komatsu 2006

Yes…
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Do not need large IRB to explain WMAP reionzation optical 
depth:

τe = 0.087 +/- 0.017
-need nγ = (1.5 to 2) CIGM (τe / 0.09) [γ/baryon]
-while IRTS excess at H-band:  nγ = fesc (1+z) uJ / 0.7 Ea nb ~ 2500 fesc

Population III Stars
-Must convert 5-10 % of Baryons into Pop III stars
     High star formation fraction in collapsed structures
     Many recombinations to suppress Ly continuum

-Hard to avoid metal overproduction
     Stars between 140 – 260 solar masses give

  PISN, eject half the star’s mass in metals

Mini-Quasars
-Need 1/5000th the formation rate of Pop III stars, but
     Overproduce SXB unless very X-ray quiet
     Exceed current estimated black hole densities

Madau & Silk 2004

…but there are difficulties

The IR (DIRBE/IRTS) Excess: Could Exotic Sources Produce it?
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Dwek, Arendt, & Krennrich (2005)

Is the DIRBE/IRTS excess a Zodiacal Light Residual?

23 % residual
From COBE/Kelsall model?

Dust

Zodiacal Light is just scattered sunlight

DIRBE team used a multi-component model
(aka Kelsall model, but model may undercount 
scattered zodi)



Title HereHowever, excess IR Background Fluctuations have been Detected

•  First detection reported by Kashlinksy et al. 
2005, Nature 438 with Spitzer at 3.5 and 4.5 µm  
Interpreted as evidence for a z > 8 first-light   
component responsible for reionization
   (also Kashlinsky et al. 2006 with GOODS)
   

•  Could it be partly due to undetected dwarf 
galaxies at moderate redshifts of 1 to 3
   (Cooray et al. 2006; Chary et al. 2008 using 
fluctuations in GOODS and a stacking analysis 
on multi-wavelength ACS data; Of course, 
Kashlinsky disagrees with this suggestion.
However, fluctuations as z > 8 only inconsistent 
with z~6, 7 UV LFs; Chary & Cooray in prep) 

•  Thompson et al. 2007 report upper limits 
with HST/ NICMOS, which are argued to be 
inconsistent with Kashlinsky interpretation for 
 z > 8 sources
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Title HereAkari Background Fluctuations Coming Soon!

10'

2.4 µm

3.2 µm

4.1 µm



Title HereThe Case for Space

 H-band 9º x 9º image over 45 minutes from Kitt Peak
Wide-field airglow experiment:  http://pegasus.phast.umass.edu/2mass/teaminfo/airglow.html

              Airglow Emission

•  Atmosphere is 500 – 2500 times 
brighter than the astrophysical sky at 
1-2 µm

•  Airglow fluctuations in a 1-degree 
patch are 106 times brighter than 
CIBER’s sensitivity in 50 s

•  Brightest airglow layer at an altitude of 
100 km… can’t even use a balloon



Title HereHow can a rocket experiment compete with these?

IRTS
Akari

HST

Spitzer
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Flights are short

 Apogee ~ 320 km for Terrier Black-Brant
 Useful science time ~ 300 s

May have longer flights in the future
 600 km and 600 s for Talso-Terrier-Nihka-Brant, no recovery
 12hr-24hr  “orbital” sounding rocket being discussed

Unique Capabilities
No atmosphere, cold optics → specialized instruments

Developed sub-systems provided
 Custom attitude control system points to < 2“
 Telemetry system provides 30 Mbps
 Wide range of available launch sites 

(4 sites in US+Alaska; Marshall Islands in South Pacific)

Programs can be small
 CIBER NASA APRA proposal costs = $1M in total
 (With 2 10242 and 2 2562 arrays, that’s 45¢ per pixel)
 supports research of 2 graduate students, 1.5 postdocs

Features about the Sounding Rocket Program



Title HereCIBER Science Goals

Low-Resolution Spectrometer
λ = 0.8 – 2.0 µm λ/Δλ ~ 20
4° x 4° FOV  60” 
pixels   

• Search for Ly cutoff feature in 0.8 
– 1.2 µm region

  Dual Wide-Field Imagers
λ= 0.8 µm & 1.6 µm λ/Δλ = 2
2° x 2° FOV  7” pixels

• Measure power spectrum from 
7” to 2 degrees

  Narrow-Band Spectrometer
λ= 0.8542 µm        λ/Δλ = 1000
8° x 8° FOV           120” 
pixels 
• Use Fraunhofer lines to measure 
absolute Zodiacal intensity



Title HereNarrow-Band Spectrometer

NIST calibration data
I(photo) ~ 30 e-/s

Science Goal:
Measure Fraunhofer
Ca II 854.2 nm line
EW to 1 % absolute
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(seconds from launch)

Temperatures in Flight



Title HerePrecision Thermometry & Control of Focal Plane

Thermally 
induced dark 
currents
completely 
negligible at 
these levels



Title HereAttitude Control System Performance

± 2"

Gyro drift correction from
star tracker update (messes up)



Title HerePreliminary LRS Spectra

Airglow

Airglow

Known calibration errors

Large thermal emission
Stray light from hot skin

Very stable level
Expected sky brightness

150 km

200 km



Title HerePreliminary 0.9 µm Imager Data

Median photocurrent = 22 e-/s
Median read noise = 12.6 e-



Title Here

Nosecone!
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CIBER History

CIBER-I launched successfully February 25, 2009

First flight constituted a test flight of the instrument (similar to North American
test flights of CMB balloon experiments), but adequate science data!

Second flight this fall (date TBD; September 2009-January 2010)

CIBER-I first flight science papers now in preparation
(2 papers planned. One on EBL and one on zodi. CIBER is the first experiment to do a 
spectral study of the EBL and zodi between 0.6 and ~2 microns!)

CIBER-I will fly a total of 4 times. Last flight in fall/winter 2010 will be long 
duration with a launch from Alaska (payload in Pacific ocean, not recovered).

An upgraded CIBER-II with 2048x2048 arrays was recently proposed to 
NASA APRA for flights starting fall 2012.



Title HereBeyond CIBER: Exo-Zodiacal EBL Explorer?

Small instrument attached to an outer ( ≥ Jupiter) planets mission
 - support from planetary community
 - could be cheap/small/simple

  - upcoming Discovery program opportunity to Europa. 

Cooray et al. 2009, A New Era in Extragalactic Background Light Measurements, White paper to Astro2010 Decadal Survey, 
arXiv.org:0902.2372



 A search for sub-degree SZ fluctuations 
with multi-frequency BOOMERanG-2003 

CMB data

Marcella Veneziani, Alexandre Amblard, Paolo Serra, AC

& the BOOMERanG/Pol 03 Collaboration

arxiv:0904.4313   (in press ApJL)



SZ effects
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SZ effects:

 Thermal SZ

 Kinetic SZ

BOOMERanG frequency 
coverage
is well suited to 
measure Thermal SZ.



Where we are right now.
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a power spectrum :

Some clusters detected:

Still a bit of tension
between some data
and some models.

SZA: Sharp et al 09
CBI : Sievers et al 09
BIMA :Dawson et al 06
ACBAR : Reichardt et al 08

APEX-SZ/bullet clusterSZA



BOOMERanG 2003
Launch January 6th 2003 05:00 UT, terminated on January 21st 06:59 

311 hours of data spent on 3 fields :
75 hours on a shallow field
120 hours on a deep field
30 hours over the Galactic plane



BOOMERanG 2003

75 hours on ≈ 760 deg2 120 hours on ≈ 90 deg2



 Total number of detectors :
8 bolometers @ 145 GHz
4 bolometers @ 245 GHz
4 bolometers @ 345 GHz

 Removed 2 detectors 
previously known for high 
noise (Masi et al 06): 
245X and 345Z

 Removed 2 detectors, we 
found have higher noise: 
145Z2 and 345Y

7 bolometers @ 145 GHz
3 bolometers @ 245 GHz
2 bolometers @ 345 GHz



The Data Set

For the 3.4’ pixel deep region :

Calibration error 2, 8, 13 % @ 145, 245, 345 GHz

Beams allow to go up to l∼1200



BOOMERanG03 maps

145 GHz 245 GHz 345 GHz

Trace of CMB, dust and radio sources.



Isolating the SZ

Given a number of frequencies, one can use an internal linear combination to keep 
a specific source (Tegmark et al 96, Tegmark et al 03):

Combining the different frequencies with the “optimal” weights :

Minimize the total variance : signal + noise



More aggressive foregrounds
subtraction

We used only cross-spectra to minimize primarily the “foreground” 
residuals, not the noise and divided by s(υi) (Cooray et al 00): 

s(ν) : SZ frequency spectrum
bil : beam function
i,j : indices of the frequency
u,v : indices of the detector

145-145 GHz  : 21 pairs
145-245 GHz : 21 pairs
145-345 GHz : 14 pairs 
245-245 GHz: 3 pairs
245-345 GHz: 6 pairs
345-345 GHz: 1 pair



Sky
BOOMERanG03

italian pipeline - TOD
high-pass @ 0.2 Hz

BOOMERanG03
italian pipeline - 

Map-Making 

Build ai,ulmFill Cij
Compute
wi and Csz 

Analysis Roadmap

TOD

Maps



Preliminary Result

w145/s145 1.88 1.71 1.47

w245/s245 -1.94 -1.74 -1.39

w345/s345 0.35 0.22 0.03

Not all CMB is removed and 
other residuals might be there

+ no error estimate 
We Need Simulations



Simulations

We included the following emissions :

 CMB
 Noise
 Galactic dust
 Radio point sources
 FIRB

200 random Gaussian CMB & BOOMERanG
noise realizations

Planck Sky Model
(Leach et al. 08, Delabrouille et al 09)

model 8 of Finkbeiner et al 99

We used 1 set of simulations with the predictions from
these models.



Sky
BOOMERanG03

italian pipeline - TOD
high-pass @ 0.2 Hz

BOOMERanG03
italian pipeline - 

Map-Making 

Build ai,ulmFill Cij
Compute
wi and Csz 

TOD

Maps

Simulations

Simulation pipeline

Each simulation goes through the complete pipeline.



Fitting our “Foreground” templates

CMB=1.01±0.04

Dust= 4.6±0.8

FIRB <0.7

Radio PS =0.76±0.07
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Two more sets :  pcmb=1, pdust=4.6, pradio=0.76, pFIRB=0.7
 pcmb=1, pdust=4.6, pradio=0.76, pFIRB=0.0

Cldata=pcmb×Clcmb+pdust×Cldust+pradio×Clradio+pFIRB×ClFIRB



Dust at 345 GHz

before pipeline (sky) after pipeline (measured)



FIRB at  345 GHz

before pipeline (sky) after pipeline (measured)



Radio PS at 145 GHz

before pipeline (sky) after pipeline (measured)



SZ at 145 GHz
(from White 03*)

before pipeline (sky) after pipeline (measured)

*http://mwhite.berkeley.edu/tSZ/PlanckSZ/



SZ filtering

SZ variance 2-6 times larger than 
Gaussian CV

SZ transfer function for BOOMERanG 
scan-strategy and filtering

F0 = 0.5± 0.1     (20%)
F1  = 0.6 ±0.05 (8.3%)
F2 = 0.7 ±0.04 (5.7%)

Power spectra of 10 SZ simulations



Some data/simulations comparison









Results

The combined limit from BOOMERanG 
is < 234 μK2 at 2σ

BOOMERanG alone σ8(sz) < 1.14 at 95% 
confidence 

 

BOOMERANG Measurement of SZ Fluctuations 3

TABLE 1

SZ POWER SPECTRUM ESTIMATES
bin 1 bin 2 bin 3

!-range 250-450 450-700 700-1200

Optimal weights

w145GHz 0.9323 0.8514 0.7289

w245GHz 0.4193 0.3771 0.3002

w345GHz -0.3515 -0.2285 -0.0292

Raw SZ 236 164 538

Residuals (a)

CMB 53 36 70

Instr. noise 92 12 -95

Galactic dust 68 82 138

FIRB 44 81 195

Radio sources 3 7 58

Total residual 247 202 338

SZ Band Power Uncertainties (b)

Instr. noise 154 116 280

Foregrounds 37 79 145

Beam 3 5 44

Calibration 121 77 63

Transfer func. 2 3 11

Cosmic & NG Var (c) 7 6 4

Final SZ Band Power -11 ± 199 -38 ± 160 200 ± 325

NOTES.—The weights and Raw SZ designate the weight vectors for each
multipole bin and the SZ power spectrum respectively with both as measured
from data. Except in the case of weights w, the values are tabulated in units

of µK2 for the SZ angular power spectrum l2Cl/2π at the RJ end of the fre-
quency spectrum.
a: The residuals are the average spectra measured on our SZ-free simulations
and represent our bias. The total residual is different from the sum of the par-
tial residuals due to small (<10%) random correlation between components.
b: The uncertainties are the dispersion measured with our simulations. The
final SZ spectrum values are corrected for the noise and foreground bias with
the dispersion error from simulations.
c: Assuming the WMAP team’s SZ power spectrum with σ8 = 0.95, the
2σ upper limit we derived from all SZ data. The calculation for the Non-
Gaussian (NG) covariance makes use of the same halo model as used for this
power spectrum.

To do that we used 10 sky simulations of the SZ signal, ob-
tained from White (2003) with different normalizations and
initial conditions. These time-streams are then analyzed with
our pipeline and the resulting angular power spectrum is com-
pared to the power spectrum of the input sky signal to obtain
the window function. The 10 different simulations result in
slightly different window functions. The scatter in the win-
dow function is included in the final error estimate of the SZ
signal.

3. SIMULATIONS

Monte-Carlo simulations were used in order to estimate the
residual signal from correlated detector noise, primary CMB,
and foregrounds that is detected as an SZ signal at the end. In
fact, when we minimize the covariance in the data to extract
the SZ, the optimal combination does not remove perfectly the
other signals. This is particularly true with just three channels,
and is expected to improve with more channels. We also use
simulations to estimate final uncertainties in the SZ signal.
We generate 200 time-stream simulations for each one of

the 12 detectors with a combination of sky signal simulations
that were projected into a time-line using the BOOMERANG
pointing, and a random noise realization with variance con-

FIG. 2.— Angular power spectrum of SZ anisotropies at the RJ end of
the frequency spectrum. We show the 68% confidence upper limits from the
BOOMERANG data in hashed columns to the left and the reported upper
limit at the 65% confidence level from the SZA experiment to the right. The
data points from CBI, BIMA, and ACBAR experiments are also shown (see
text for details). We correct the ACBAR point to RJ end of the frequencies.
The lines show two theory predictions for SZ fluctuations: the dashed line is

a measurement from numerical simulations with σSZ
8
= 1 and the solid line is

the same model used by the WMAP team but scaled to σSZ
8
= 0.95, the 2 σ

upper limit from all SZ data. The limit from BOOMERANG SZ data alone

is σSZ
8

< 1.14 (95% c.l.).

sistent with data. As the covariance matrix Ci j of Eq. 1 is
built using the cross-spectra between different detectors, the
noise realizations include also correlated noise between dif-
ferent detectors. For 145 GHz the noise correlation spectra
are reported in Table 7 of Masi et al. (2006) and they are be-
low 3% for the detectors used in the analysis. For the 245 and
345 GHz we measured the noise correlation spectra removing
the optimal signal map from the time ordered data. The cor-
relations are at most 6% for the detectors used in the analysis.
In addition to 200 realizations of primary CMB, the sky sig-

nal simulations are computed with Galactic dust, far-Infrared
background (FIRB) sources, and radio point sources and
combined with BOOMERANG bands passes. The Galactic
dust for the observed field is described with model 8 from
Finkbeiner et al. (1999), while FIRB and point sources were
obtained from the Planck Sky Model (PSM) (Leach et al.
2008; Delabrouille et al. 2009, in preparation).
The amplitude of each component in the data was estimated

with a Monte-Carlo Markov Chain for the three frequencies
together. We compared the measured temperature angular
power spectrum with a linear combination of CMB, dust,
FIRB, and point sources and fitted the amplitude coefficients
pγ of each component γ such thatC totl =

∑
γ pγC

γ
l !Nl , where

Nl is detector noise. The CMB amplitude of the predicted
model is the same we find in the data with pCMB = 1.01±0.04.
We find pdust = 4.6± 0.8, larger than predicted by model 8
of Finkbeiner et al. (1999) and p radio = 0.76± 0.07 for radio
point sources, smaller than predicted by de Zotti et al. (2005)
counts used in PSM, but in agreement with Friedman et al.
(2009). The amplitude of the FIRB remains unconstrained
with 0< pFIRB < 0.7 (1σ).
To take the uncertainties in the amplitudes of foregrounds

into account, we ran three sets of 200 simulations. In the first
set we leave the level of foregrounds as the models predict
(pα = 1 for each of CMB, dust, FIRB and radio sources). In

Combined constrains give σ8(sz) < 0.95 at 95% confidence 



Asz: Conclusions
 We put a first limit of 234 μK2 (2σ) on SZ emission at sub-

degree scales between l of 250 and 1200. BOOMERanG is the 
only experiment that can constrain at these large angular scales

 Major uncertainty come from FIRB and high noise at 345 GHz

 Planck should be able to do better with more frequencies and 
improved sensitivity, but FIRB will be the dominant confusion for 
a high signal-to-noise detection with Planck alone. 

 Planck + Herschel (especially over the combined ~600-1000 
deg2 of Herschel-ATLAS will allow SZ and FIRB separation).
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Gaussianity (see review in Ref. [37]).
To connect with observable measurements, the asso-

ciated non-Gaussianity of the CMB can be described in
terms of the second-order correction to the curvature per-
turbations in position space with

Φ(x) = φL(x) + fNL

[

φ2
L(x) − 〈φL(x)〉2

]

, (1)

where the non-Gaussianity parameter fNL describes the
amplitude of the second-order correction. This form was
first suggested by Salopek & Bond [28, 38] to describe the
non-Gaussianity in primordial perturbations from infla-
tion and has been the subject of experimental constraints
using a variety of CMB and large-scale structure data in
recent years.

Instead of constraints on the non-Gaussianity param-
eter in the position space, recent studies make use of
the bispectrum involving a three-point correlation func-
tion in Fourier or multipole space. The configura-
tion dependence of the bispectrum B(k1, k2, k3) with
lengths (k1, k2, k3) that form a triangle in Fourier space
can be used to separate various mechanisms for non-
Gaussianities, depending on the effectiveness of of the
estimator used. To summarize the status of the non-
Gaussianity measurements, an analysis with WMAP 3-
year data first suggested a hint of a non-Gaussianity in
the local model with 27 < fNL < 147 (95% CL), far
above the value of fNL < 1 expected in simple, single
field, slow-roll inflation models [39]. The WMAP team’s
preferred measurement of non-Gaussianity parameter in
5-year V and W-band data is −9 < fNL < 111 (95%
CL) [12]. The most recent constraint on fNL comes from
studying the WMAP 5-year data with an optimal esti-
mator leading to −4 < fNL < 80 (95% CL) [40]. At the
68% confidence level, with a value of fNL = 38±21, there
is still some marginal evidence for a non-zero value of the
non-Gaussianity parameter. If such a result were to con-
tinue to hold with Planck, which increases the precision
of fNL measurement by a factor of 3 to 4, then our simple
inflationary picture would need to be revised to include
a more complex model.

In this paper, we will pursue a new measurement of
the primordial non-Gaussianity parameter with a new
estimator that preserves some angular dependence of
the bispectrum. On the contrary, the estimators em-
ployed by most CMB non-Gaussianity studies, including
those by the WAMP team [12], involves a measurement
that compresses all information of the bispectrum to a
single number called the cross-skewness computed with
two weighted maps. Such a drastic compression lim-
its the ability to study the angular dependence of the
non-Gaussian signal and to separate any confusing fore-
grounds from the primordial non-Gaussianity. In addi-
tion to Galactic foregrounds, non-Gaussianity measure-
ments could also be contaminated by unresolved point
sources, mainly radio and dusty galaxies, and Sunyaev-
Zel’dovich (SZ) clusters, among others [41]. Given the
increase in size of CMB data, especially with Planck, it

is also necessary to develop accurate measurement tech-
niques to extract fNL that are unbiased.

Our estimator for non-Gaussianity uses a weighted
version of the squared temperature-temperature angular
power spectrum [42, 43], which we refer to as the skew-
ness power spectrum. This power spectrum extracts in-
formation from the bispectrum as a function of the mul-
tipole of one triangle length in the harmonic space, while
summing all configurations given by the other two side
lengths. The difference in spatial dependence based on
how the maps are weighted provides ways to separate
primordial non-Gaussianity from that of the foregrounds.
Here, we account for both point source and lensing bis-
pectra with latter resulting from the correlation of the
lensing potential with secondary anisotropies [44, 45].

To summarize our main results, after marginalizing
over the normalizations of point source and lensing-
secondary bispectra, with the combination of V and W-
band maps we are able to constrain fNL = 11.0 ± 23.7
at the 68% confidence level or −36.4 < fNL < 58.4 at
the 95% confidence level. We find that fNL is never
incompatible with zero at 68% confidence when fNL is
estimated in independent bins of width 200 between
2 < l < 600. We find a significant contribution from un-
resolved point sources, but failed to detect the lensing-
secondary cross-correlations using the two statistics we
considered here.

In section §II we review the background theory and
in §III we review the estimator used and our simulation
procedure to compute the uncertainties. In §IV we dis-
cuss our methods for analyzing and simulating data. In
section §V we discuss our results. In section §VI we con-
clude with a summary of our results.

II. THEORY

To begin, we define multipole moments of the temper-
ature map through

alm =

∫

dn̂T (n̂)Y m
l

∗(n̂) . (2)

The angular power spectrum and bispectrum are defined
in the usual way such that

〈a∗
l1m1

al2m2
〉 = δD

l1l2δ
D
m1m2

Cl1 , (3)

〈al1m1
al2m2

al3m3
〉 =

(

l1 l2 l3
m1 m2 m3

)

Bl1l2l3 . (4)

Here the quantity in parentheses is the Wigner-3j sym-
bol. The orthonormality relation for Wigner-3j symbol
implies

Bl1l2l3 =
∑

m1m2m3

(

l1 l2 l3
m1 m2 m3

)

〈al1m1
al2m2

al3m3
〉 .(5)

The angular bispectrum, Bl1l2l3 , contains all the informa-
tion available from the three-point correlation function.
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Detection of primordial non-Gaussianity (fNL) in the WMAP 3-year data at above
99.5% confidence

Amit P. S. Yadav1 and Benjamin D. Wandelt1,2

1Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 and
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We present evidence for the detection of primordial non-Gaussianity of the local type (fNL), using
the temperature information of the Cosmic Microwave Background (CMB) from the WMAP 3-year
data. We employ the bispectrum estimator of non-Gaussianity described in [1] which allows us
to analyze the entirety of the WMAP data without an arbitrary cut-off in angular scale. Using
the combined information from WMAP’s two main science channels up to !max = 750 and the
conservative Kp0 foreground mask we find 27 < fNL < 147 at 95% C.L., with a central value of
fNL = 87. This corresponds to a rejection of fNL = 0 at more than 99.5% significance. We find that
this detection is robust to variations in lmax, frequency and masks, and that no known foreground,
instrument systematic, or secondary anisotropy explains our signal while passing our suite of tests.
We explore the impact of several analysis choices on the stated significance and find 2.5 σ for the
most conservative view. We conclude that the WMAP 3-year data disfavors canonical single field
slow-roll inflation.

PACS numbers:

It is now widely accepted that tests of primordial non-
Gaussianity, parameterized by the non-linearity param-
eter fNL, promise to be a unique probe of the early
Universe [2] beyond the two-point statistics. Although
the non-Gaussianity from the simplest inflation models
is very small, fNL ∼ 0.01 − 1 [3, 4, 5], there is a very
large class of more general models, e.g., models with mul-
tiple scalar fields, features in inflation potential, non-
adiabatic fluctuations, non-canonical kinetic terms, de-
viations from the Bunch-Davies vacuum, among others,
that predict substantially higher level of primordial non-
Gaussianity (see [6] for a review and detailed references).

Recent calculations of the perturbations arising in the
ekpyrotic or cyclic cosmological scenarios [7] have con-
cluded that these scenarios can predict fNL much larger
than single field slow-roll inflation [8]. Detailed calcu-
lations in these models are fraught with difficulties con-
nected to matching the perturbations through the cosmo-
logical singularity at the bounce. However, the current
calculations suggests that primordial non-Gaussianity of
the fNL type could be a powerful discriminant between
ekpyrotic models and standard slow-roll inflation. As
such, the search for primordial non-Gaussianity is com-
plementary to the search for the inflationary gravita-
tional wave background. We will argue in this letter that
the WMAP 3-year data already distinguishes fNL = 100
from fNL ∼ 0 at a statistically significant level.

Primordial non-Gaussianity can be described in terms
of the 3-point correlation function of Bardeen’s curvature
perturbations, Φ(k), in Fourier space:

〈Φ(k1)(k2)(k3)〉 = (2π)3δ3(k1 + k2 + k3)F (k1, k2, k3).(1)

Depending on the shape of the 3-point function, i.e.,
F (k1, k2, k3), non-Gaussianity can be broadly classified
into two classes [9]. First, the local, “squeezed,” non-

Gaussianity where F (k1, k2, k3) is large for the configura-
tions in which k1 % k2, k3. Second, the non-local, “equi-
lateral,” non-Gaussianity where F (k1, k2, k3) is large for
the configuration when k1 ∼ k2 ∼ k3.

The local form arises from a non-linear relation be-
tween inflaton and curvature perturbations [3, 4], curva-
ton models [10], or the ekpyrotic models [8]. The equilat-
eral form arises from non-canonical kinetic terms such as
the Dirac-Born-Infeld (DBI) action [11], the ghost con-
densation [12], or any other single-field models in which
the scalar field acquires a low speed of sound [13]. While
we focus on the local form in this letter, it is straightfor-
ward to repeat our analysis for the equilateral form.

The local form of non-Gaussianity may be
parametrized in real space as [2, 4, 14]:

Φ(r) = ΦL(r) + fNL

(

Φ2
L(r) − 〈Φ2

L(r)〉
)

(2)

where fNL characterizes the amplitude of primordial non-
Gaussianity. Note that the Newtonian potential has the
opposite sign of Bardeen’s curvature perturbation, Φ.

The first fast bispectrum based fNL estimator using
temperature anisotropies alone was introduced in [18]
(the KSW estimator). The idea of adding a linear term
to reduce excess variance due to noise inhomogeneity
was introduced in [19]. Applied to a combination of
the Q, V and W channels of the WMAP 3-year data
up to #max ∼ 400 this estimator has yielded the tightest
constraint on fNL so far: −36 < fNL < 100 (2σ) [16].
This estimator was generalized to utilize both the tem-
perature and E-polarization information in [1], where we
pointed out that the linear term had been incorrectly
implemented in Eq. 30 of [19]. The corrected estima-
tor enables us to analyze the entire WMAP data without
suffering from a blow-up in the variance at high #.

Our analysis. We assume a standard Lambda CDM
cosmology with following cosmological parameters: Ωb =
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2003; Hajian et al. 2005; Hajian & Souradeep 2006;
Prunet et al. 2005; Hansen et al. 2004; Hansen et al.
2004), many of which are related to the large-scale
features at l ! 20. We expect these features to be
present in the WMAP 5-year temperature map, as the
structure of CMB anisotropy in the WMAP data on
such large angular scales has not changed very much
since the 3-year data.

3.5.2. Analysis

The largest concern in measuring primordial non-
Gaussianity from the CMB data is the potential contami-
nation from the Galactic diffuse foreground emission. To
test how much the results would be affected by this, we
measure fNL parameters from the raw temperature maps
as well as from the foreground-reduced maps.

We shall mainly use the KQ75 mask, the new mask
that is recommended for tests of Gaussianity (Gold et al.
2008). The important difference between the new mask
and the previous Kp0 mask (Bennett et al. 2003c) is that
the new mask is defined by the difference between the K
band map and the Internal Linear Combination (ILC)
map, and that between the Q band and ILC. Therefore,
the CMB signal was absent when the mask was defined,
which removes any concerns regarding a potential bias in
the distribution of CMB on the masked sky.36

To carry out tests of Gaussianity, one should use the
KQ75 mask, which is slightly more conservative than
Kp0, as the KQ75 mask cuts slightly more sky: we retain
71.8% of the sky with KQ75, while 76.5% with Kp0. To
see how sensitive we are to the details of the mask, we
also tried Kp0 as well as the new mask that is recom-
mended for the power spectrum analysis, KQ85, which
retains 81.7% of the sky. The previous mask that corre-
sponds to KQ85 is the Kp2 mask, which retains 84.6%
of the sky.

In addition, we use the KQ75p1 mask, which replaces
the point source mask of KQ75 with the one that does
not mask the sources identified in the WMAP K-band
data. Our point source selection at K band removes more
sources and sky in regions with higher CMB flux. We
estimate the amplitude of this bias by using the KQ75p1
mask which does not use any WMAP data for the point
source identification. The small change in f local

NL shows
that this is a small bias.

The unresolved extra-galactic point sources also
contribute to the bispectrum (Refregier et al. 2000;
Komatsu & Spergel 2001; Argüeso et al. 2003;
Serra & Cooray 2008), and they can bias our esti-
mates of primordial non-Gaussianity parameters such
as f local

NL and f equil
NL . We estimate the bias by measuring

f local
NL and f equil

NL from Monte Carlo simulations of point

sources, and list them as ∆f local
NL and ∆f equil

NL in Table 5

36 Previously, the Kp0 mask was defined by the K band map,
which contains CMB as well as the foreground emission. By cutting
bright pixels in the K band map, it could be possible to cut also
the bright CMB pixels, introducing the negative skewness in the
distribution of CMB. Since we did not include isolated “islands”
on the high Galactic latitudes, some of which could be bright CMB
spots, in the final mask when we defined the Kp0 mask, the skew-
ness bias mentioned above should not be as large as one would
expect, if any. Nevertheless, with the new definition of mask, the
masked maps are free from this type of bias. For more details on
the definition of the mask, see Gold et al. (2008).

TABLE 5
Clean-map estimates and the corresponding 68%

intervals of the local form of primordial
non-Gaussianity, f local

NL , the point source bispectrum
amplitude, bsrc (in units of 10−5 µK3 sr2), and

Monte-Carlo estimates of bias due to point sources,
∆f local

NL

Band Mask lmax f local
NL ∆f local

NL bsrc

V+W KQ85 400 50 ± 29 1 ± 2 0.26 ± 1.5
V+W KQ85 500 61 ± 26 2.5 ± 1.5 0.05 ± 0.50
V+W KQ85 600 68 ± 31 3 ± 2 0.53 ± 0.28
V+W KQ85 700 67 ± 31 3.5 ± 2 0.34 ± 0.20
V+W Kp0 500 61 ± 26 2.5 ± 1.5
V+W KQ75p1a 500 53 ± 28 4 ± 2
V+W KQ75 400 47 ± 32 3 ± 2 −0.50 ± 1.7
V+W KQ75 500 55 ± 30 4 ± 2 0.15 ± 0.51
V+W KQ75 600 61 ± 36 4 ± 2 0.53 ± 0.30
V+W KQ75 700 58 ± 36 5 ± 2 0.38 ± 0.21

aThis mask replaces the point-source mask in KQ75 with the
one that does not mask the sources identified in the WMAP

K-band data

TABLE 6
Null tests, frequency dependence, and
raw-map estimates of the local form of
primordial non-Gaussianity, f local

NL , for
lmax = 500

Band Foreground Mask f local
NL

Q−W Raw KQ75 −0.53 ± 0.22
V−W Raw KQ75 −0.31 ± 0.23
Q−W Clean KQ75 0.10 ± 0.22
V−W Clean KQ75 0.06 ± 0.23

Q Raw KQ75p1a −42 ± 45
V Raw KQ75p1 38 ± 34
W Raw KQ75p1 43 ± 33
Q Raw KQ75 −42 ± 48
V Raw KQ75 41 ± 35
W Raw KQ75 46 ± 35
Q Clean KQ75p1 9 ± 45
V Clean KQ75p1 47 ± 34
W Clean KQ75p1 60 ± 33
Q Clean KQ75 10 ± 48
V Clean KQ75 50 ± 35
W Clean KQ75 62 ± 35

V+W Raw KQ85 9 ± 26
V+W Raw Kp0 48 ± 26
V+W Raw KQ75p1 41 ± 28
V+W Raw KQ75 43 ± 30

aThis mask replaces the point-source mask in
KQ75 with the one that does not mask the sources
identified in the WMAP K-band data

and 7. As the errors in these estimates of the bias
are limited by the number of Monte Carlo realizations
(which is 300), one may obtain a better estimate of the
bias using more realizations.

We give a detailed description of our estimators for
f local

NL , f equil
NL , and bsrc, the amplitude of the point source

bispectrum, as well as of Monte Carlo simulations in Ap-
pendix A.

3.5.3. Results: Bispectrum

In Table 5 we show our measurement of f local
NL from

the template-cleaned V+W map (Gold et al. 2008) with
4 different masks, KQ85, Kp0, KQ75p1, and KQ75, in
the increasing order of the size of the mask. For KQ85
and KQ75 we show the results from different maximum

WMAP 3-year data:  87 +/- 30
(Yadav & Wandelt) 

WMAP 5-year data:  51 +/- 30
(Komatsu et al.)

more recent value: 38 +/- 21 
(Smith et al.) 

Why spend time on this? fNL seems to be marginally 
inconsistent with zero.  An independent check with 
a different statistic.
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fNL = 22±52 (1σ) with WMAP 3-year data. The form of
the skewness power spectrum as written exactly in equa-
tion (21) is not useful for a primordial non-Gaussianity
measurement. We describe how to filter data for a mea-
surement of primordial non-Gaussinity below.

A. Skewness Estimator

To obtain a more useful form, it is useful to review the
form of the skewness statistic employed by the WMAP
team, which is originating from Ref. [62]. The skewness
statistic makes use of two set of maps of the CMB sky as
a function of the radial distance r:

A(r, n̂) ≡
∑

lm

Ylm(n̂)Alm(r) (22)

B(r, n̂) ≡
∑

lm

Ylm(n̂)Blm(r) , (23)

where

Alm(r) ≡
αl(r)

Cl
blalm (24)

Blm(r) ≡
βl(r)

Cl
blalm . (25)

Here Cl ≡ Clb2
l +Nl where bl are the frequency dependent

beam transfer functions and Nl is the power spectrum
from associated simulated noise maps. We discuss both
these quantities later.

In A and B maps weights are such that they are are
constructed from the theoretical CMB power spectrum
Cl under the assumed cosmological model, the experi-
mental beam bl, and the primordial non-Gaussianity pro-
jection functions αl(r) and βl(r) where αl(r) and βl(r)
are defined in equations (8) and (9).

The WMAP team’s estimator [62] uses an integration
in the radial coordinate to obtain the skewness of the
product of the A and B2 maps

SAB2 ≡
∫

r2dr

∫

dn̂A(r, n̂)B2(r, n̂) . (26)

In practice this skewness is corrected by an additional lin-
ear term that corrects approximately the effects of partial
sky coverage associated with the mask and non-uniform
noise. This term is computed by combining observed map
with simulated maps that are Monte-Carlo averaged (see
Appendix A of Ref. [12]).

As is clear from above S3 involves a complete com-
pression of data to a single number. While in principle
different sources of non-Gaussianities contribute to S3

with a single number alone it is impossible to separate
out the primordial value from the non-Gaussianities gen-
erated by secondary anisotropies and other foregrounds.
To some extent the separation is aided by a different set
of maps that are weighted differently than the case of A
and B maps.

FIG. 4: Expected error for fNL calculated based on the Fisher
matrix approach for each of the three noise curves for the
WMAP in Q, V, and W-bands and with fsky = 0.718 when
using KQ75 mask. The Cramer-Rao bound ranges from about
∼ 21 in V-band to ∼ 23 in Q-band. This estimate assumes
that only the primordial non-Gaussianity signal is present in
the bispectrum and ignores the degeneracies between primor-
dial non-Gaussianity and other parameters, such as those re-
lated to unresolved point sources.

A map optimized for the non-Gaussianity of the form
generated by shot-noise from point sources is the E map:

E(n̂) ≡
∑

lm

Ylm(n̂)Elm(r) , (27)

where

Elm(r) ≡
bl

Cl
alm . (28)

Similar to SAB2 , one can also compute a skewness associ-
ated with E maps by taking SE3 =

∫

dn̂E3(n̂). WMAP
team used the latter to constrain the normalization of
the point source Poisson term with bps.

B. Revised Skewness Power Spectrum

In order to revise the previously discussed skewness
power spectrum, instead of simply integrating over the
A and B2 maps, we extract the multipole moments of
the B2 map and the product AB maps

(

B2
)

lm
(r) ≡

∫

dn̂B2(r, n̂)Ylm(n̂)

(AB)lm (r) ≡
∫

dn̂A(r, n̂)B(r, n̂)Ylm(n̂) . (29)
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out the primordial value from the non-Gaussianities gen-
erated by secondary anisotropies and other foregrounds.
To some extent the separation is aided by a different set
of maps that are weighted differently than the case of A
and B maps.

FIG. 4: Expected error for fNL calculated based on the Fisher
matrix approach for each of the three noise curves for the
WMAP in Q, V, and W-bands and with fsky = 0.718 when
using KQ75 mask. The Cramer-Rao bound ranges from about
∼ 21 in V-band to ∼ 23 in Q-band. This estimate assumes
that only the primordial non-Gaussianity signal is present in
the bispectrum and ignores the degeneracies between primor-
dial non-Gaussianity and other parameters, such as those re-
lated to unresolved point sources.

A map optimized for the non-Gaussianity of the form
generated by shot-noise from point sources is the E map:

E(n̂) ≡
∑

lm

Ylm(n̂)Elm(r) , (27)

where

Elm(r) ≡
bl

Cl
alm . (28)

Similar to SAB2 , one can also compute a skewness associ-
ated with E maps by taking SE3 =

∫

dn̂E3(n̂). WMAP
team used the latter to constrain the normalization of
the point source Poisson term with bps.

B. Revised Skewness Power Spectrum

In order to revise the previously discussed skewness
power spectrum, instead of simply integrating over the
A and B2 maps, we extract the multipole moments of
the B2 map and the product AB maps

(

B2
)

lm
(r) ≡

∫

dn̂B2(r, n̂)Ylm(n̂)

(AB)lm (r) ≡
∫

dn̂A(r, n̂)B(r, n̂)Ylm(n̂) . (29)
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FIG. 1: αl(r) and βl(r) with respect to l for r values defined as
followed: r = c(τ0−aτ ) where τ0 is the present day conformal
time and cτ = 235 Mpc. In these plots, a = 0.04, 0.4, 1.0 and
1.8.

For example, the skewness, the pseudo-collapsed three-
point function of Ref. [46] and the equilateral configura-
tion statistic of Ref. [47] can all be expressed as linear
combinations of the bispectrum terms (see Ref. [29] for
explicit expressions and Ref. [48] for an expression relat-
ing skewness in terms of the bispectrum).

A. Primordial Non-Gaussianity

Here we focus on the local form of the primordial non-
Gaussianity. Using the second order correction to the
curvature perturbations Φ in equation (1) and following
the derivation in Ref. [38], we write the angular bispec-
trum of temperature anisotropies as

BNG
l1l2l3 = 2Il1l2l3

∫ ∞

0

r2dr [αl1(r)βl2 (r)βl3 (r) + (Perm.)] ,

(6)

where

Il1l2l3 ≡
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(

l1 l1 l3
0 0 0

)

,

(7)

and r is the comoving radial coordinate.
The two functions in BNG

l1l2l3
are given by

αl(r) ≡
2

π

∫

k2dkgTl(k)jl(kr), (8)

βl(r) ≡
2

π

∫

k2dkPΦ(k)gTl(k)jl(kr) . (9)

Here, PΦ(k) ∝ kns−4 is the primordial power spectrum
of Bardeen’s curvature perturbations, and gTl(k) is the
radiation transfer function that gives the angular power
spectrum as Cl = (2/π)

∫

k2dkPΦ(k)g2
Tl(k). In Fig. 1, we

show four example cases of α(r) and β(r). We generate
them using a modified version of the CMBFAST code
[49] and for our fiducial cosmological parameter values,
consistent with WMAP 5-year best-fit model, as summa-
rized in Table I.

Parameter Value

H0 71.9 km/s/Mpc

Ωbh
2 0.02273

Ωch
2 0.1099

ns 0.963

τ 0.087

∆2
R 2.41 × 10−9

σ0 for Q 2.197 mK

σ0 for V 3.133 mK

σ0 for W 6.538 mK

fsky 0.718

TABLE I: Cosmological and noise parameters used in our
analysis. The first set is our fiducial cosmology model taken to
be consistent with WMAP 5-year best-fit cosmology [12]. The
second set of numbers is the normalization parameters related
to the instrumental noise in each of the three frequency bands
used for the analysis. fsky is the fraction of sky unmasked by
KQ75 mask.

B. Unresolved Point Sources

In addition to the primordial bispectrum, we also ac-
count for the non-Gaussianity generated by unresolved
radio point sources. If the sources are Poisson dis-
tributed, the bispectrum takes a simple from [38] with

BPS
l1l2l3 = Il1l2l3bps, (10)

where

bps = g3(x)

∫ Sc

0

S3 dn

dS
dS , (11)

where dn/dS is the number counts of sources and g(x)
maps flux density to thermodynamic temperature with
g(x) = c2(ex − 1)2/2kBν2x2ex with x = hν/kBTCMB ≈
ν/56.84GHz. This conversion can be simplified to g(x) =
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fNL = 22±52 (1σ) with WMAP 3-year data. The form of
the skewness power spectrum as written exactly in equa-
tion (21) is not useful for a primordial non-Gaussianity
measurement. We describe how to filter data for a mea-
surement of primordial non-Gaussinity below.

A. Skewness Estimator

To obtain a more useful form, it is useful to review the
form of the skewness statistic employed by the WMAP
team, which is originating from Ref. [62]. The skewness
statistic makes use of two set of maps of the CMB sky as
a function of the radial distance r:

A(r, n̂) ≡
∑

lm

Ylm(n̂)Alm(r) (22)

B(r, n̂) ≡
∑

lm

Ylm(n̂)Blm(r) , (23)

where

Alm(r) ≡
αl(r)

Cl
blalm (24)

Blm(r) ≡
βl(r)

Cl
blalm . (25)

Here Cl ≡ Clb2
l +Nl where bl are the frequency dependent

beam transfer functions and Nl is the power spectrum
from associated simulated noise maps. We discuss both
these quantities later.

In A and B maps weights are such that they are are
constructed from the theoretical CMB power spectrum
Cl under the assumed cosmological model, the experi-
mental beam bl, and the primordial non-Gaussianity pro-
jection functions αl(r) and βl(r) where αl(r) and βl(r)
are defined in equations (8) and (9).

The WMAP team’s estimator [62] uses an integration
in the radial coordinate to obtain the skewness of the
product of the A and B2 maps

SAB2 ≡
∫

r2dr

∫

dn̂A(r, n̂)B2(r, n̂) . (26)

In practice this skewness is corrected by an additional lin-
ear term that corrects approximately the effects of partial
sky coverage associated with the mask and non-uniform
noise. This term is computed by combining observed map
with simulated maps that are Monte-Carlo averaged (see
Appendix A of Ref. [12]).

As is clear from above S3 involves a complete com-
pression of data to a single number. While in principle
different sources of non-Gaussianities contribute to S3

with a single number alone it is impossible to separate
out the primordial value from the non-Gaussianities gen-
erated by secondary anisotropies and other foregrounds.
To some extent the separation is aided by a different set
of maps that are weighted differently than the case of A
and B maps.

FIG. 4: Expected error for fNL calculated based on the Fisher
matrix approach for each of the three noise curves for the
WMAP in Q, V, and W-bands and with fsky = 0.718 when
using KQ75 mask. The Cramer-Rao bound ranges from about
∼ 21 in V-band to ∼ 23 in Q-band. This estimate assumes
that only the primordial non-Gaussianity signal is present in
the bispectrum and ignores the degeneracies between primor-
dial non-Gaussianity and other parameters, such as those re-
lated to unresolved point sources.

A map optimized for the non-Gaussianity of the form
generated by shot-noise from point sources is the E map:

E(n̂) ≡
∑

lm

Ylm(n̂)Elm(r) , (27)

where

Elm(r) ≡
bl

Cl
alm . (28)

Similar to SAB2 , one can also compute a skewness associ-
ated with E maps by taking SE3 =

∫

dn̂E3(n̂). WMAP
team used the latter to constrain the normalization of
the point source Poisson term with bps.

B. Revised Skewness Power Spectrum

In order to revise the previously discussed skewness
power spectrum, instead of simply integrating over the
A and B2 maps, we extract the multipole moments of
the B2 map and the product AB maps

(

B2
)

lm
(r) ≡

∫

dn̂B2(r, n̂)Ylm(n̂)

(AB)lm (r) ≡
∫

dn̂A(r, n̂)B(r, n̂)Ylm(n̂) . (29)

KSW skewness (used by WMAP team) 

Bispectrum is compressed to skewness, a single number, effectively.
Lacks any angular scale information to separate contributions.
But, easy to compute from data, easy to simulate for error estimates.
If bispectrum was primordial only, this is adequate!
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µK/(99.27Jy sr−1)(ex−1)2/x4ex. When model fitting to
data, we will ignore the exact number counts of the un-
resolved sources and parameterize the uncertainty with
an overall normalization

bi
ps = Ai × 10−25 sr2 , (12)

where the index i is for the three bands from WMAP (Q,
V, and W) we use here.

Here, we only account for the shot-noise contribu-
tion from point sources, similar to the analysis of non-
Gaussianity measurements by the WMAP team. It is
likely that unresolved point sources are clustered on the
sky, though existing WMAP data with measurements at
the two-point function level only lead to an upper limit
on the clustering amplitude of point sources [50]. In fu-
ture, especially for non-Gaussianity measurement with
Planck, it may be necessary to include the bispectrum
generated by clustered point sources.

C. CMB Lensing-Secondary Correlation

The gravitational lensing effect of the CMB also gen-
erates a bispectrum through correlations of the lensing
potential with secondary anisotropies that are generated
at late times [44, 45].

To understand this signal, we note that the lensed tem-
perature fluctuation in a given direction is the sum of the
primary fluctuation in a different direction plus the sec-
ondary anisotropy

T (n̂) = T P(n̂ + ∇Θ) + T S(n̂) (13)

≈
∑

lm

[

(aP
lm + aS

lm)Y m
l (n̂) + aP

lm

×∇Θ(n̂) ·∇Y m
l (n̂)

]

,

or

alm = aP
lm + aS

lm +
∑

l′m′

aP
l′m′

×
∫

dn̂Y m
l

∗(n̂)∇Θ(n̂) ·∇Y m′

l′ (n̂) . (14)

Utilizing the definition of the bispectrum in Eq. (5), we
obtain

Blens−sec
l1l2l3

=
∑

m1m2m3

(

l1 l2 l3
m1 m2 m3

)

×
∫

dm̂

∫

dn̂Y m2

l2
∗(m̂)Y m3

l3
∗(n̂)Cl1

×∇Y m1

l1
∗(m̂) · 〈∇Θ(m̂)T S(n̂)〉 + Perm.(15)

where the extra five permutations are with respect to the
ordering of (l1, l2, l3).

Integrating by parts and simplifying further following
leads to a bispectrum of the form:

Blens−sec
l1l2l3

= −

(

l1 l2 l3
0 0 0

)
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×
[

l2(l2 + 1) − l1(l1 + 1) − l3(l3 + 1)

2
Cl1b

S
l3 + Perm.

]

.

(16)

When calculating the CMB lensing potential-
secondary anisotropy cross-correlation bS

l we will include
both the integrated Sachs-Wolfe (ISW) and the Sunyaev-
Zel’dovich (SZ) effects, with the latter modeled using the
halo approach [51–53]. We will take the sum of the two
effects such that bS

l = bISW
l + bSZ

l . The cross-correlation
between lensing potential and ISW is calculated in the
standard way [54, 55] for the fiducial ΛCDM cosmo-
logical model, using only the linear theory potential.
For the lensing-SZ correlation, the linear halo model
takes into account the SZ profile obtained analytically in
Ref. [56] combined with the halo mass function similar
to calculations of the SZ angular power spectrum. When
model fitting the data, we will parameterize the overall
uncertainty with a parameter ηi for each of the WMAP
bands such that Blens−sec

l1l2l3
∝ ηi.

While lensing modification to CMB bispectrum alone
is not expected to make a significant correction to the
non-Gaussianity measurement, analytical calculations of
the lensing effect on the CMB bispectrum suggest that
the lensing-secondary correlation will be the main con-
tamination to a reliable measurement of the primordial
non-Gaussianity parameter [41, 57–59]. This includes
the lensing-ISW effect since SZ can be “cleaned out” in
multi-frequency data such as those expected from Planck
[48, 60]. It is due to this reason that we include the
lensing-secondary correlation here.

III. ESTIMATORS OF fNL

We will now motivate a new estimator for measuring
fNL. For this we introduce the squared temperature-
temperature angular power spectrum and discuss its use
as a probe of the angular bispectrum. We motivate a
new estimator by revising the original form in Ref. [42].

Through the expansion of the temperature

T (n̂) =
∑

almY m
l (n̂), (17)

we can write

a2
lm =

∫

dn̂T 2(n̂)Y m
l

∗(n̂) . (18)

We emphasize here that a2
lm denotes the multipole mo-

ments of the temperature squared map and not the
square of the multipole moments of the temperature map.
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When calculating the CMB lensing potential-
secondary anisotropy cross-correlation bS

l we will include
both the integrated Sachs-Wolfe (ISW) and the Sunyaev-
Zel’dovich (SZ) effects, with the latter modeled using the
halo approach [51–53]. We will take the sum of the two
effects such that bS

l = bISW
l + bSZ

l . The cross-correlation
between lensing potential and ISW is calculated in the
standard way [54, 55] for the fiducial ΛCDM cosmo-
logical model, using only the linear theory potential.
For the lensing-SZ correlation, the linear halo model
takes into account the SZ profile obtained analytically in
Ref. [56] combined with the halo mass function similar
to calculations of the SZ angular power spectrum. When
model fitting the data, we will parameterize the overall
uncertainty with a parameter ηi for each of the WMAP
bands such that Blens−sec

l1l2l3
∝ ηi.

While lensing modification to CMB bispectrum alone
is not expected to make a significant correction to the
non-Gaussianity measurement, analytical calculations of
the lensing effect on the CMB bispectrum suggest that
the lensing-secondary correlation will be the main con-
tamination to a reliable measurement of the primordial
non-Gaussianity parameter [41, 57–59]. This includes
the lensing-ISW effect since SZ can be “cleaned out” in
multi-frequency data such as those expected from Planck
[48, 60]. It is due to this reason that we include the
lensing-secondary correlation here.

III. ESTIMATORS OF fNL

We will now motivate a new estimator for measuring
fNL. For this we introduce the squared temperature-
temperature angular power spectrum and discuss its use
as a probe of the angular bispectrum. We motivate a
new estimator by revising the original form in Ref. [42].

Through the expansion of the temperature

T (n̂) =
∑

almY m
l (n̂), (17)

we can write

a2
lm =

∫

dn̂T 2(n̂)Y m
l

∗(n̂) . (18)

We emphasize here that a2
lm denotes the multipole mo-

ments of the temperature squared map and not the
square of the multipole moments of the temperature map.
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FIG. 2: Contributions to C2−1
l expected from primordial non-

Gaussianity and unresolved point sources. We show the case
with fNL = 1 for primordial non-Gaussianity (top), shot-noise
from unresolved point sources with bi

ps = 1 (middle), and
lensing-secondary signal with ηi = 1 (bottom).

We can now construct the angular power spectrum of
squared temperature and temperature as

C2−1
l =

1

2l + 1

∑

m

a2
lma∗

lm . (19)

After some tedious, but straightforward algebra we can
write the relation between the bispectrum of the temper-
ature field and the angular power spectrum of squared
temperature and temperature as

C2−1
l =

1

2l + 1

∑

l1l2

Bl1l2l (20)

×

(

l1 l2 l

0 0 0

)
√

(2l1 + 1)(2l2 + 1)(2l + 1)

4π
.

Here, we have made use of the relation

∑

m1m2

(

l1 l2 l

m1 m2 m

)(

l1 l2 l′

m1 m2 m′

)

=
δD
ll′δ

D
mm′

2l + 1
.

(21)

FIG. 3: Contributions to E2−1
l expected from primordial non-

Gaussianity and unresolved point sources. We show the case
with fNL = 1 for primordial non-Gaussianity (top), shot-noise
from unresolved point sources with bi

ps = 1 (middle), and
lensing-secondary signal with ηi = 1 (bottom). Note the large
difference in the y-axis scale from top curve Involving primor-
dial non-Gaussianity to middle and bottom curves with point
sources. As is known, the skewness power spectrum associ-
ated with E maps is more sensitive to shot-noise bispectrum
from point sources.

As is clear C2−1
l sums up all triangle configurations of

the bispectrum at each of the side length l of the triangle
in multipolar space.

If a priori known that certain triangular configurations
contribute to the bispectrum significantly one can com-
pute this sum by appropriately weighting the multipole
coefficients. This is essentially what can be achieved with
the introduction of an appropriate weight or a window
function in equation (18). Though the analytical expres-
sion for the two-to-one angular power spectrum involves
a sum over the two sides of the angular bispectrum, the
experimental measurement is straightforward: one con-
struct the power spectrum by squaring the temperature
field, in real space, and using the Fourier transforms of
squared temperature values and the temperature field,
with any weighting as necessary.

This simple form of the skewness power spectrum has
already been used by Szapudi & Chen [61] to constrain
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experimental measurement is straightforward: one con-
struct the power spectrum by squaring the temperature
field, in real space, and using the Fourier transforms of
squared temperature values and the temperature field,
with any weighting as necessary.

This simple form of the skewness power spectrum has
already been used by Szapudi & Chen [61] to constrain

3

FIG. 1: αl(r) and βl(r) with respect to l for r values defined as
followed: r = c(τ0−aτ ) where τ0 is the present day conformal
time and cτ = 235 Mpc. In these plots, a = 0.04, 0.4, 1.0 and
1.8.

For example, the skewness, the pseudo-collapsed three-
point function of Ref. [46] and the equilateral configura-
tion statistic of Ref. [47] can all be expressed as linear
combinations of the bispectrum terms (see Ref. [29] for
explicit expressions and Ref. [48] for an expression relat-
ing skewness in terms of the bispectrum).

A. Primordial Non-Gaussianity

Here we focus on the local form of the primordial non-
Gaussianity. Using the second order correction to the
curvature perturbations Φ in equation (1) and following
the derivation in Ref. [38], we write the angular bispec-
trum of temperature anisotropies as

BNG
l1l2l3 = 2Il1l2l3

∫ ∞

0

r2dr [αl1(r)βl2 (r)βl3 (r) + (Perm.)] ,

(6)

where

Il1l2l3 ≡
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(

l1 l1 l3
0 0 0

)

,

(7)

and r is the comoving radial coordinate.
The two functions in BNG

l1l2l3
are given by

αl(r) ≡
2

π

∫

k2dkgTl(k)jl(kr), (8)

βl(r) ≡
2

π

∫

k2dkPΦ(k)gTl(k)jl(kr) . (9)

Here, PΦ(k) ∝ kns−4 is the primordial power spectrum
of Bardeen’s curvature perturbations, and gTl(k) is the
radiation transfer function that gives the angular power
spectrum as Cl = (2/π)

∫

k2dkPΦ(k)g2
Tl(k). In Fig. 1, we

show four example cases of α(r) and β(r). We generate
them using a modified version of the CMBFAST code
[49] and for our fiducial cosmological parameter values,
consistent with WMAP 5-year best-fit model, as summa-
rized in Table I.

Parameter Value

H0 71.9 km/s/Mpc

Ωbh
2 0.02273

Ωch
2 0.1099

ns 0.963

τ 0.087

∆2
R 2.41 × 10−9

σ0 for Q 2.197 mK

σ0 for V 3.133 mK

σ0 for W 6.538 mK

fsky 0.718

TABLE I: Cosmological and noise parameters used in our
analysis. The first set is our fiducial cosmology model taken to
be consistent with WMAP 5-year best-fit cosmology [12]. The
second set of numbers is the normalization parameters related
to the instrumental noise in each of the three frequency bands
used for the analysis. fsky is the fraction of sky unmasked by
KQ75 mask.

B. Unresolved Point Sources

In addition to the primordial bispectrum, we also ac-
count for the non-Gaussianity generated by unresolved
radio point sources. If the sources are Poisson dis-
tributed, the bispectrum takes a simple from [38] with

BPS
l1l2l3 = Il1l2l3bps, (10)

where

bps = g3(x)

∫ Sc

0

S3 dn

dS
dS , (11)

where dn/dS is the number counts of sources and g(x)
maps flux density to thermodynamic temperature with
g(x) = c2(ex − 1)2/2kBν2x2ex with x = hν/kBTCMB ≈
ν/56.84GHz. This conversion can be simplified to g(x) =

Two-to-One Power Spectrum

Komatsu, Spergel, Wandelt 2005

Cooray 2001; used by Szapudi & Chen 2006 to get fNL=22 +/- 52 with WMAP 3-year data
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fNL = 22±52 (1σ) with WMAP 3-year data. The form of
the skewness power spectrum as written exactly in equa-
tion (21) is not useful for a primordial non-Gaussianity
measurement. We describe how to filter data for a mea-
surement of primordial non-Gaussinity below.

A. Skewness Estimator

To obtain a more useful form, it is useful to review the
form of the skewness statistic employed by the WMAP
team, which is originating from Ref. [62]. The skewness
statistic makes use of two set of maps of the CMB sky as
a function of the radial distance r:

A(r, n̂) ≡
∑

lm

Ylm(n̂)Alm(r) (22)

B(r, n̂) ≡
∑

lm

Ylm(n̂)Blm(r) , (23)

where

Alm(r) ≡
αl(r)

Cl
blalm (24)

Blm(r) ≡
βl(r)

Cl
blalm . (25)

Here Cl ≡ Clb2
l +Nl where bl are the frequency dependent

beam transfer functions and Nl is the power spectrum
from associated simulated noise maps. We discuss both
these quantities later.

In A and B maps weights are such that they are are
constructed from the theoretical CMB power spectrum
Cl under the assumed cosmological model, the experi-
mental beam bl, and the primordial non-Gaussianity pro-
jection functions αl(r) and βl(r) where αl(r) and βl(r)
are defined in equations (8) and (9).

The WMAP team’s estimator [62] uses an integration
in the radial coordinate to obtain the skewness of the
product of the A and B2 maps

SAB2 ≡
∫

r2dr

∫

dn̂A(r, n̂)B2(r, n̂) . (26)

In practice this skewness is corrected by an additional lin-
ear term that corrects approximately the effects of partial
sky coverage associated with the mask and non-uniform
noise. This term is computed by combining observed map
with simulated maps that are Monte-Carlo averaged (see
Appendix A of Ref. [12]).

As is clear from above S3 involves a complete com-
pression of data to a single number. While in principle
different sources of non-Gaussianities contribute to S3

with a single number alone it is impossible to separate
out the primordial value from the non-Gaussianities gen-
erated by secondary anisotropies and other foregrounds.
To some extent the separation is aided by a different set
of maps that are weighted differently than the case of A
and B maps.

FIG. 4: Expected error for fNL calculated based on the Fisher
matrix approach for each of the three noise curves for the
WMAP in Q, V, and W-bands and with fsky = 0.718 when
using KQ75 mask. The Cramer-Rao bound ranges from about
∼ 21 in V-band to ∼ 23 in Q-band. This estimate assumes
that only the primordial non-Gaussianity signal is present in
the bispectrum and ignores the degeneracies between primor-
dial non-Gaussianity and other parameters, such as those re-
lated to unresolved point sources.

A map optimized for the non-Gaussianity of the form
generated by shot-noise from point sources is the E map:

E(n̂) ≡
∑

lm

Ylm(n̂)Elm(r) , (27)

where

Elm(r) ≡
bl

Cl
alm . (28)

Similar to SAB2 , one can also compute a skewness associ-
ated with E maps by taking SE3 =

∫

dn̂E3(n̂). WMAP
team used the latter to constrain the normalization of
the point source Poisson term with bps.

B. Revised Skewness Power Spectrum

In order to revise the previously discussed skewness
power spectrum, instead of simply integrating over the
A and B2 maps, we extract the multipole moments of
the B2 map and the product AB maps

(

B2
)

lm
(r) ≡

∫

dn̂B2(r, n̂)Ylm(n̂)

(AB)lm (r) ≡
∫

dn̂A(r, n̂)B(r, n̂)Ylm(n̂) . (29)
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A map optimized for the non-Gaussianity of the form
generated by shot-noise from point sources is the E map:

E(n̂) ≡
∑

lm

Ylm(n̂)Elm(r) , (27)

where

Elm(r) ≡
bl

Cl
alm . (28)

Similar to SAB2 , one can also compute a skewness associ-
ated with E maps by taking SE3 =

∫

dn̂E3(n̂). WMAP
team used the latter to constrain the normalization of
the point source Poisson term with bps.

B. Revised Skewness Power Spectrum

In order to revise the previously discussed skewness
power spectrum, instead of simply integrating over the
A and B2 maps, we extract the multipole moments of
the B2 map and the product AB maps

(

B2
)

lm
(r) ≡

∫

dn̂B2(r, n̂)Ylm(n̂)

(AB)lm (r) ≡
∫

dn̂A(r, n̂)B(r, n̂)Ylm(n̂) . (29)
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µK/(99.27Jy sr−1)(ex−1)2/x4ex. When model fitting to
data, we will ignore the exact number counts of the un-
resolved sources and parameterize the uncertainty with
an overall normalization

bi
ps = Ai × 10−25 sr2 , (12)

where the index i is for the three bands from WMAP (Q,
V, and W) we use here.

Here, we only account for the shot-noise contribu-
tion from point sources, similar to the analysis of non-
Gaussianity measurements by the WMAP team. It is
likely that unresolved point sources are clustered on the
sky, though existing WMAP data with measurements at
the two-point function level only lead to an upper limit
on the clustering amplitude of point sources [50]. In fu-
ture, especially for non-Gaussianity measurement with
Planck, it may be necessary to include the bispectrum
generated by clustered point sources.

C. CMB Lensing-Secondary Correlation

The gravitational lensing effect of the CMB also gen-
erates a bispectrum through correlations of the lensing
potential with secondary anisotropies that are generated
at late times [44, 45].

To understand this signal, we note that the lensed tem-
perature fluctuation in a given direction is the sum of the
primary fluctuation in a different direction plus the sec-
ondary anisotropy

T (n̂) = T P(n̂ + ∇Θ) + T S(n̂) (13)

≈
∑

lm

[

(aP
lm + aS

lm)Y m
l (n̂) + aP

lm

×∇Θ(n̂) ·∇Y m
l (n̂)

]

,

or

alm = aP
lm + aS

lm +
∑

l′m′

aP
l′m′

×
∫

dn̂Y m
l

∗(n̂)∇Θ(n̂) ·∇Y m′

l′ (n̂) . (14)

Utilizing the definition of the bispectrum in Eq. (5), we
obtain

Blens−sec
l1l2l3

=
∑

m1m2m3

(

l1 l2 l3
m1 m2 m3

)

×
∫

dm̂

∫

dn̂Y m2

l2
∗(m̂)Y m3

l3
∗(n̂)Cl1

×∇Y m1

l1
∗(m̂) · 〈∇Θ(m̂)T S(n̂)〉 + Perm.(15)

where the extra five permutations are with respect to the
ordering of (l1, l2, l3).

Integrating by parts and simplifying further following
leads to a bispectrum of the form:

Blens−sec
l1l2l3

= −

(

l1 l2 l3
0 0 0

)
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×
[

l2(l2 + 1) − l1(l1 + 1) − l3(l3 + 1)

2
Cl1b

S
l3 + Perm.

]

.

(16)

When calculating the CMB lensing potential-
secondary anisotropy cross-correlation bS

l we will include
both the integrated Sachs-Wolfe (ISW) and the Sunyaev-
Zel’dovich (SZ) effects, with the latter modeled using the
halo approach [51–53]. We will take the sum of the two
effects such that bS

l = bISW
l + bSZ

l . The cross-correlation
between lensing potential and ISW is calculated in the
standard way [54, 55] for the fiducial ΛCDM cosmo-
logical model, using only the linear theory potential.
For the lensing-SZ correlation, the linear halo model
takes into account the SZ profile obtained analytically in
Ref. [56] combined with the halo mass function similar
to calculations of the SZ angular power spectrum. When
model fitting the data, we will parameterize the overall
uncertainty with a parameter ηi for each of the WMAP
bands such that Blens−sec

l1l2l3
∝ ηi.

While lensing modification to CMB bispectrum alone
is not expected to make a significant correction to the
non-Gaussianity measurement, analytical calculations of
the lensing effect on the CMB bispectrum suggest that
the lensing-secondary correlation will be the main con-
tamination to a reliable measurement of the primordial
non-Gaussianity parameter [41, 57–59]. This includes
the lensing-ISW effect since SZ can be “cleaned out” in
multi-frequency data such as those expected from Planck
[48, 60]. It is due to this reason that we include the
lensing-secondary correlation here.

III. ESTIMATORS OF fNL

We will now motivate a new estimator for measuring
fNL. For this we introduce the squared temperature-
temperature angular power spectrum and discuss its use
as a probe of the angular bispectrum. We motivate a
new estimator by revising the original form in Ref. [42].

Through the expansion of the temperature

T (n̂) =
∑

almY m
l (n̂), (17)

we can write

a2
lm =

∫

dn̂T 2(n̂)Y m
l

∗(n̂) . (18)

We emphasize here that a2
lm denotes the multipole mo-

ments of the temperature squared map and not the
square of the multipole moments of the temperature map.
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dn̂E3(n̂). WMAP
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B. Revised Skewness Power Spectrum

In order to revise the previously discussed skewness
power spectrum, instead of simply integrating over the
A and B2 maps, we extract the multipole moments of
the B2 map and the product AB maps
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B2
)

lm
(r) ≡

∫

dn̂B2(r, n̂)Ylm(n̂)

(AB)lm (r) ≡
∫

dn̂A(r, n̂)B(r, n̂)Ylm(n̂) . (29)
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These two multipole moments then allow us to write the
new skewness power spectrum appropriately weighted in
the same manner as the previous skewness estimator:

C2−1
l ≡ (CA,B2

l + 2CAB,B
l ) (30)

CA,B2

l ≡
1

2l + 1

∫

r2dr

[

∑

m

Real
{

Alm(r)
(

B2
)

lm
(r)

}

]

CB,AB
l ≡

1

2l + 1

∫

r2dr

[

∑

m

Real {Blm(r)(AB)lm(r)}

]

.

To see how C2−1
l probes the primordial bispectrum, we

can write the multipole moments of the squared B map
as

(

B2
)

lm
(r) = (31)

∑

l′m′

∑

l′′m′′

βl′(r)

Cl′

βl′′(r)

Cl′′

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

) (

l l′ l′′

m m′ m′′

)

a′
l′m′a′

l′′m′′ ,

where a′
lm are the beam times the observed multipole

moments (blalm). Note that the observed multipole mo-
ments relate to theory moments via another beam factor.

Similarly, the multipole moments of the (AB) product
map is

(AB)lm (r) = (32)

∑

l′m′

∑

l′′m′′

αl′(r)

Cl′

βl′′(r)

Cl′′

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

) (

l l′ l′′

m m′ m′′

)

a′
l′m′a′

l′′m′′ .

The CA,B2

l power spectrum is simply then

CA,B2

l =
1

2l + 1

∫

r2dr
∑

m

∑

l′m′

∑

l′′m′′

(33)

×
βl′(r)

Cl′

βl′′(r)

Cl′′

αl(r)

Cl

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

) (

l l′ l′′

m m′ m′′

)

a′
lma′

l′m′a′
l′′m′′ .

Using the definition of the angular bispectrum, we can
simplify to obtain

CA,B2

l =
1

2l + 1

∫

r2dr
∑

l′l′′

(34)

×
βl′(r)

Cl′

βl′′(r)

Cl′′

αl(r)

Cl

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

)

B̂′
ll′l′′blb

′
lb

′′
l , (35)

where B̂′
ll′l′′ is the bispectrum estimated from data un-

der beam smoothing. It relates to the theory bispectrum
Bll′l′′ as B̂′

ll′l′′ = Bll′l′′blb′lb
′′
l .

We can similarly simplify the term for CAB,B
l and

putting the two terms together, we find that the total
is

C2−1
l ≡ (CA,B2

l + 2CAB,B
l ) (36)

=
1

(2l + 1)

[

∑

l′l′′

{

BNG,fNL=1
ll′l′′ B̂′

ll′l′′blb′lb
′′
l

ClCl′Cl′′

}]

.

If we assume that the observed bispectrum is sim-
ply that of the primordial non-Gaussianity then B̂ll′l′′ =
f̂NLBNG

ll′l′′ and we can write an estimator for fNL as

f̂NL = (2l + 1)C2−1
l /FNG,NG(l) , (37)

where FNG,NG(l) is simply the Fisher matrix element for
the primordial bispectrum with fNL = 1:

Fi,j(l) =
∑

ll′′

{

Bi
ll′l′′B

j
ll′l′′

C′
lC′

l′C′
l′′

}

, (38)

where now we have redefined noise to be such that C′
l =

Cl+Nl/b2
l as the bispectra are no longer beam smoothed.

In reality C2−1
l includes contributions from secondary

anisotropies and foregrounds. Here, we include the non-
Gaussianities generated by point sources and the lensing-
secondary correlation. Thus, we write

(2l+1)Ĉ2−1
l = f̂NLFNG,NG(l)+ ÂFNG,PS+ η̂FNG,len−sec ,

(39)
and consider a joint estimation of the three unknown
parameters.

To help break degeneracies between the three param-
eters, we also estimate the skewness power spectrum of
the E map defined in equation (27) as

CE,E2

l ≡
1

2l + 1

[

∑

m

Real
{

Elm

(

E2
)

lm

}

]

. (40)

Similar to our derivation above one can simplify the mul-
tipole moments of the (E2)lm to show that this probes

E2−1
l ≡ CE,E2

l (41)

=
1

(2l + 1)

[

∑

l′l′′

{

B
PS,bps=1
ll′l′′ B̂′

ll′l′′blb′lb
′′
l

ClCl′Cl′′

}]

.

Thus, we write

(2l + 1)Ê2−1
l = f̂NLFPS,NG(l)+ ÂFPS,SN + η̂FPS,lens−sec .

(42)
The two equations (39) and (42) will form the main

set of equations that we will solve with our measure-
ments. While we have not explicitly stated so far, these
two quantities will be measured in 3 WMAP frequency
channels making use of Q, V, and W-band data. We al-
low for frequency dependence in A and η, but assume
fNL is the same independent of the frequency in all three
channels.
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∫

r2dr

[

∑

m

Real
{

Alm(r)
(

B2
)

lm
(r)

}

]

CB,AB
l ≡

1

2l + 1

∫

r2dr

[

∑

m

Real {Blm(r)(AB)lm(r)}

]

.

To see how C2−1
l probes the primordial bispectrum, we

can write the multipole moments of the squared B map
as

(

B2
)

lm
(r) = (31)

∑

l′m′

∑

l′′m′′

βl′(r)

Cl′

βl′′(r)

Cl′′

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

) (

l l′ l′′

m m′ m′′

)

a′
l′m′a′

l′′m′′ ,

where a′
lm are the beam times the observed multipole

moments (blalm). Note that the observed multipole mo-
ments relate to theory moments via another beam factor.

Similarly, the multipole moments of the (AB) product
map is

(AB)lm (r) = (32)

∑

l′m′

∑

l′′m′′

αl′(r)

Cl′

βl′′(r)

Cl′′

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

) (

l l′ l′′

m m′ m′′

)

a′
l′m′a′

l′′m′′ .

The CA,B2

l power spectrum is simply then

CA,B2

l =
1

2l + 1

∫

r2dr
∑

m

∑

l′m′

∑

l′′m′′

(33)

×
βl′(r)

Cl′

βl′′(r)

Cl′′

αl(r)

Cl

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

) (

l l′ l′′

m m′ m′′

)

a′
lma′

l′m′a′
l′′m′′ .

Using the definition of the angular bispectrum, we can
simplify to obtain

CA,B2

l =
1

2l + 1

∫

r2dr
∑

l′l′′

(34)

×
βl′(r)

Cl′

βl′′(r)

Cl′′

αl(r)

Cl

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

)

B̂′
ll′l′′blb

′
lb

′′
l , (35)

where B̂′
ll′l′′ is the bispectrum estimated from data un-

der beam smoothing. It relates to the theory bispectrum
Bll′l′′ as B̂′

ll′l′′ = Bll′l′′blb′lb
′′
l .

We can similarly simplify the term for CAB,B
l and

putting the two terms together, we find that the total
is

C2−1
l ≡ (CA,B2

l + 2CAB,B
l ) (36)

=
1

(2l + 1)

[

∑

l′l′′

{

BNG,fNL=1
ll′l′′ B̂′

ll′l′′blb′lb
′′
l

ClCl′Cl′′

}]

.

If we assume that the observed bispectrum is sim-
ply that of the primordial non-Gaussianity then B̂ll′l′′ =
f̂NLBNG

ll′l′′ and we can write an estimator for fNL as

f̂NL = (2l + 1)C2−1
l /FNG,NG(l) , (37)

where FNG,NG(l) is simply the Fisher matrix element for
the primordial bispectrum with fNL = 1:

Fi,j(l) =
∑

ll′′

{

Bi
ll′l′′B

j
ll′l′′

C′
lC′

l′C′
l′′

}

, (38)

where now we have redefined noise to be such that C′
l =

Cl+Nl/b2
l as the bispectra are no longer beam smoothed.

In reality C2−1
l includes contributions from secondary

anisotropies and foregrounds. Here, we include the non-
Gaussianities generated by point sources and the lensing-
secondary correlation. Thus, we write

(2l+1)Ĉ2−1
l = f̂NLFNG,NG(l)+ ÂFNG,PS+ η̂FNG,len−sec ,

(39)
and consider a joint estimation of the three unknown
parameters.

To help break degeneracies between the three param-
eters, we also estimate the skewness power spectrum of
the E map defined in equation (27) as

CE,E2

l ≡
1

2l + 1

[

∑

m

Real
{

Elm

(

E2
)

lm

}

]

. (40)

Similar to our derivation above one can simplify the mul-
tipole moments of the (E2)lm to show that this probes

E2−1
l ≡ CE,E2

l (41)

=
1

(2l + 1)

[

∑

l′l′′

{

B
PS,bps=1
ll′l′′ B̂′

ll′l′′blb′lb
′′
l

ClCl′Cl′′

}]

.

Thus, we write

(2l + 1)Ê2−1
l = f̂NLFPS,NG(l)+ ÂFPS,SN + η̂FPS,lens−sec .

(42)
The two equations (39) and (42) will form the main

set of equations that we will solve with our measure-
ments. While we have not explicitly stated so far, these
two quantities will be measured in 3 WMAP frequency
channels making use of Q, V, and W-band data. We al-
low for frequency dependence in A and η, but assume
fNL is the same independent of the frequency in all three
channels.
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fNL = 22±52 (1σ) with WMAP 3-year data. The form of
the skewness power spectrum as written exactly in equa-
tion (21) is not useful for a primordial non-Gaussianity
measurement. We describe how to filter data for a mea-
surement of primordial non-Gaussinity below.

A. Skewness Estimator

To obtain a more useful form, it is useful to review the
form of the skewness statistic employed by the WMAP
team, which is originating from Ref. [62]. The skewness
statistic makes use of two set of maps of the CMB sky as
a function of the radial distance r:

A(r, n̂) ≡
∑

lm

Ylm(n̂)Alm(r) (22)

B(r, n̂) ≡
∑

lm

Ylm(n̂)Blm(r) , (23)

where

Alm(r) ≡
αl(r)

Cl
blalm (24)

Blm(r) ≡
βl(r)

Cl
blalm . (25)

Here Cl ≡ Clb2
l +Nl where bl are the frequency dependent

beam transfer functions and Nl is the power spectrum
from associated simulated noise maps. We discuss both
these quantities later.

In A and B maps weights are such that they are are
constructed from the theoretical CMB power spectrum
Cl under the assumed cosmological model, the experi-
mental beam bl, and the primordial non-Gaussianity pro-
jection functions αl(r) and βl(r) where αl(r) and βl(r)
are defined in equations (8) and (9).

The WMAP team’s estimator [62] uses an integration
in the radial coordinate to obtain the skewness of the
product of the A and B2 maps

SAB2 ≡
∫

r2dr

∫

dn̂A(r, n̂)B2(r, n̂) . (26)

In practice this skewness is corrected by an additional lin-
ear term that corrects approximately the effects of partial
sky coverage associated with the mask and non-uniform
noise. This term is computed by combining observed map
with simulated maps that are Monte-Carlo averaged (see
Appendix A of Ref. [12]).

As is clear from above S3 involves a complete com-
pression of data to a single number. While in principle
different sources of non-Gaussianities contribute to S3

with a single number alone it is impossible to separate
out the primordial value from the non-Gaussianities gen-
erated by secondary anisotropies and other foregrounds.
To some extent the separation is aided by a different set
of maps that are weighted differently than the case of A
and B maps.

FIG. 4: Expected error for fNL calculated based on the Fisher
matrix approach for each of the three noise curves for the
WMAP in Q, V, and W-bands and with fsky = 0.718 when
using KQ75 mask. The Cramer-Rao bound ranges from about
∼ 21 in V-band to ∼ 23 in Q-band. This estimate assumes
that only the primordial non-Gaussianity signal is present in
the bispectrum and ignores the degeneracies between primor-
dial non-Gaussianity and other parameters, such as those re-
lated to unresolved point sources.

A map optimized for the non-Gaussianity of the form
generated by shot-noise from point sources is the E map:

E(n̂) ≡
∑

lm

Ylm(n̂)Elm(r) , (27)

where

Elm(r) ≡
bl

Cl
alm . (28)

Similar to SAB2 , one can also compute a skewness associ-
ated with E maps by taking SE3 =

∫

dn̂E3(n̂). WMAP
team used the latter to constrain the normalization of
the point source Poisson term with bps.

B. Revised Skewness Power Spectrum

In order to revise the previously discussed skewness
power spectrum, instead of simply integrating over the
A and B2 maps, we extract the multipole moments of
the B2 map and the product AB maps

(

B2
)

lm
(r) ≡

∫

dn̂B2(r, n̂)Ylm(n̂)

(AB)lm (r) ≡
∫

dn̂A(r, n̂)B(r, n̂)Ylm(n̂) . (29)
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These two multipole moments then allow us to write the
new skewness power spectrum appropriately weighted in
the same manner as the previous skewness estimator:

C2−1
l ≡ (CA,B2

l + 2CAB,B
l ) (30)

CA,B2

l ≡
1

2l + 1

∫

r2dr

[

∑

m

Real
{

Alm(r)
(

B2
)

lm
(r)

}

]

CB,AB
l ≡

1

2l + 1

∫

r2dr

[

∑

m

Real {Blm(r)(AB)lm(r)}

]

.

To see how C2−1
l probes the primordial bispectrum, we

can write the multipole moments of the squared B map
as

(

B2
)

lm
(r) = (31)

∑

l′m′

∑

l′′m′′

βl′(r)

Cl′

βl′′(r)

Cl′′

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

) (

l l′ l′′

m m′ m′′

)

a′
l′m′a′

l′′m′′ ,

where a′
lm are the beam times the observed multipole

moments (blalm). Note that the observed multipole mo-
ments relate to theory moments via another beam factor.

Similarly, the multipole moments of the (AB) product
map is

(AB)lm (r) = (32)

∑

l′m′

∑

l′′m′′

αl′(r)

Cl′

βl′′(r)

Cl′′

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

) (

l l′ l′′

m m′ m′′

)

a′
l′m′a′

l′′m′′ .

The CA,B2

l power spectrum is simply then

CA,B2

l =
1

2l + 1

∫

r2dr
∑

m

∑

l′m′

∑

l′′m′′

(33)

×
βl′(r)

Cl′

βl′′(r)

Cl′′

αl(r)

Cl

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

) (

l l′ l′′

m m′ m′′

)

a′
lma′

l′m′a′
l′′m′′ .

Using the definition of the angular bispectrum, we can
simplify to obtain

CA,B2

l =
1

2l + 1

∫

r2dr
∑

l′l′′

(34)

×
βl′(r)

Cl′

βl′′(r)

Cl′′

αl(r)

Cl

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

)

B̂′
ll′l′′blb

′
lb

′′
l , (35)

where B̂′
ll′l′′ is the bispectrum estimated from data un-

der beam smoothing. It relates to the theory bispectrum
Bll′l′′ as B̂′

ll′l′′ = Bll′l′′blb′lb
′′
l .

We can similarly simplify the term for CAB,B
l and

putting the two terms together, we find that the total
is

C2−1
l ≡ (CA,B2

l + 2CAB,B
l ) (36)

=
1

(2l + 1)

[

∑

l′l′′

{

BNG,fNL=1
ll′l′′ B̂′

ll′l′′blb′lb
′′
l

ClCl′Cl′′

}]

.

If we assume that the observed bispectrum is sim-
ply that of the primordial non-Gaussianity then B̂ll′l′′ =
f̂NLBNG

ll′l′′ and we can write an estimator for fNL as

f̂NL = (2l + 1)C2−1
l /FNG,NG(l) , (37)

where FNG,NG(l) is simply the Fisher matrix element for
the primordial bispectrum with fNL = 1:

Fi,j(l) =
∑

ll′′

{

Bi
ll′l′′B

j
ll′l′′

C′
lC′

l′C′
l′′

}

, (38)

where now we have redefined noise to be such that C′
l =

Cl+Nl/b2
l as the bispectra are no longer beam smoothed.

In reality C2−1
l includes contributions from secondary

anisotropies and foregrounds. Here, we include the non-
Gaussianities generated by point sources and the lensing-
secondary correlation. Thus, we write

(2l+1)Ĉ2−1
l = f̂NLFNG,NG(l)+ ÂFNG,PS+ η̂FNG,len−sec ,

(39)
and consider a joint estimation of the three unknown
parameters.

To help break degeneracies between the three param-
eters, we also estimate the skewness power spectrum of
the E map defined in equation (27) as

CE,E2

l ≡
1

2l + 1

[

∑

m

Real
{

Elm

(

E2
)

lm

}

]

. (40)

Similar to our derivation above one can simplify the mul-
tipole moments of the (E2)lm to show that this probes

E2−1
l ≡ CE,E2

l (41)

=
1

(2l + 1)

[

∑

l′l′′

{

B
PS,bps=1
ll′l′′ B̂′

ll′l′′blb′lb
′′
l

ClCl′Cl′′

}]

.

Thus, we write

(2l + 1)Ê2−1
l = f̂NLFPS,NG(l)+ ÂFPS,SN + η̂FPS,lens−sec .

(42)
The two equations (39) and (42) will form the main

set of equations that we will solve with our measure-
ments. While we have not explicitly stated so far, these
two quantities will be measured in 3 WMAP frequency
channels making use of Q, V, and W-band data. We al-
low for frequency dependence in A and η, but assume
fNL is the same independent of the frequency in all three
channels.
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ysis is sub-optimal. As discussed earlier, however, our
approach is not different from both the WMAP team’s
approach [12] and previous other estimates of fNL [39].
Moreover, our lmax is set at 600, while their analysis ex-
tends to 750.

To see if there is any scale dependence to non-
Gaussianity we bin fNL in widths of 200 and estimate
the value between 0 < l < 600. The results are shown
in Fig. 16 and tabulated in Table IV. Except in the
last bin for the case with point sources only between
400 < l < 600, our fNL values are fully consistent with
zero at the 1σ level and the last bin is consistent with
zero at the 2σ level. The last bin also has a large error
due to the increase of the instrumental noise. For the
same reason, we do not pursue a measurement of fNL

when l > 600.
It is also interesting to note how accurate our overall

error estimate is. As we compute our covariances with
250 simulations there is an inherent error of 1/

√
250 in

the error bars we obtained in this analysis. Because of
this, we note that a more accurate estimate of fNL should
be to consider it as 11.0±23.7(±1.5) where the extra error
within the bracket denotes an additional statistical error
associated with the finite number of simulations.

B. Cross-Skewness

Previous results for fNL from the WMAP 5-year team
compute fNL by compressing all information into a sin-
gle quantity called cross-skewness defined by equation 26.
To compare our measurement C2−1

l with their results we
calculate our own equivalent version of this cross skew-
ness statistic defined as

ŜAB2 =
∑

(2l + 1)C2−1,D
l (52)

where C2−1,D
l is the estimator obtained from data. We

also compute the skewness of the E map using E2−1,D
l in

above. We jointly fit ŜAB2 and ŜE3 with a combination
of fNL and Ai by effectively comparing the statistic from
data to prediction from theory with theory expectation
computed as, for example, SAB2 =

∑

(2l+1)C2−1,Th
l . In

order to determine the errors we also preform the same
cross-skewness analysis on all 250 simulations and cal-
culate the covariance of ŜAB2 and ŜE3 from these 250
numbers for each frequency. We find that fNL estimated
from each of the 250 Gaussian and noise simulations lead
to a Gaussian error distribution (Figure 17).

We tabulate our results for fNL after marginalizing
over Ai’s in Table VI. Here, when doing the summa-
tions we set lmax = 500 so we can compare directly with
WMAP 5-year published results [12]. We see that for all
three channels we have good agreement with the WMAP

team’s 5-year findings. Our best-fit value tends to be
bit more positive than quoted by the WMAP team (with
0.26σ, 0.25σ, 0.17σ in Q, V, and W respectively), but this
is a small difference when compared to the large error
bar. The errors quoted in the WMAP 5-year paper is
consistent with our measurements had we used the skew-
ness statistic. However, as we discussed earlier, fitting
to C2−1

l and E2−1
l leads to an improvement in the error

estimate of fNL since the shapes of the two skew spec-
tra allow us to break the degeneracies better. Comparing
our V+W result using the two spectra to skewness for the
same maps, we find that the improvement in the error is
roughly 20%.

VI. CONCLUSION

In this paper, we constrained the primordial non-
Gaussianity parameter of the local model fNL using the
skewness power spectrum associated with the two-to-
one cumulant correlator of cosmic microwave background
temperature anisotropies. This bispectrum-related skew-
ness power spectrum was constructed after weighting the
temperature maps with the appropriate window func-
tions to form an estimator that probes the multipolar
dependence of the underlying bispectrum associated with
primordial non-Gaussianity.

We also estimate a separate skewness power spectrum
more sensitive to unresolved point sources. When com-
pared to previous attempts at measuring the primordial
non-Gaussianity with WMAP data, our estimators have
the main advantage that we do not collapse information
to a single number. When model fitting two-to-one skew-
ness power spectrum we make use of bispectra generated
by primordial non-Gaussianity, radio point sources, and
lensing-secondary correlations. W

We analyze Q, V and W-band WMAP 5-year data us-
ing the KQ75 mask out to lmax = 600. Using V and
W-band data and marginalizing over model parameters
related to point sources, our overall and preferred con-
straint on fNL is 11.0 ±23.7 at the 68% confidence level
(−36.4 < fNL < 58.4 at 95% confidence). Despite pre-
vious claims, we find no evidence for a non-zero value of
fNL even marginally at the 1σ level.
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These two multipole moments then allow us to write the
new skewness power spectrum appropriately weighted in
the same manner as the previous skewness estimator:

C2−1
l ≡ (CA,B2

l + 2CAB,B
l ) (30)

CA,B2

l ≡
1

2l + 1

∫

r2dr

[

∑

m

Real
{

Alm(r)
(

B2
)

lm
(r)

}

]

CB,AB
l ≡

1

2l + 1

∫

r2dr

[

∑

m

Real {Blm(r)(AB)lm(r)}

]

.

To see how C2−1
l probes the primordial bispectrum, we

can write the multipole moments of the squared B map
as

(

B2
)

lm
(r) = (31)

∑

l′m′

∑

l′′m′′

βl′(r)

Cl′

βl′′(r)

Cl′′

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

) (

l l′ l′′

m m′ m′′

)

a′
l′m′a′

l′′m′′ ,

where a′
lm are the beam times the observed multipole

moments (blalm). Note that the observed multipole mo-
ments relate to theory moments via another beam factor.

Similarly, the multipole moments of the (AB) product
map is

(AB)lm (r) = (32)

∑

l′m′

∑

l′′m′′

αl′(r)

Cl′

βl′′(r)

Cl′′

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

) (

l l′ l′′

m m′ m′′

)

a′
l′m′a′

l′′m′′ .

The CA,B2

l power spectrum is simply then

CA,B2

l =
1

2l + 1

∫

r2dr
∑

m

∑

l′m′

∑

l′′m′′

(33)

×
βl′(r)

Cl′

βl′′(r)

Cl′′

αl(r)

Cl

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

) (

l l′ l′′

m m′ m′′

)

a′
lma′

l′m′a′
l′′m′′ .

Using the definition of the angular bispectrum, we can
simplify to obtain

CA,B2

l =
1

2l + 1

∫

r2dr
∑

l′l′′

(34)

×
βl′(r)

Cl′

βl′′(r)

Cl′′

αl(r)

Cl

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×

(

l l′ l′′

0 0 0

)

B̂′
ll′l′′blb

′
lb

′′
l , (35)

where B̂′
ll′l′′ is the bispectrum estimated from data un-

der beam smoothing. It relates to the theory bispectrum
Bll′l′′ as B̂′

ll′l′′ = Bll′l′′blb′lb
′′
l .

We can similarly simplify the term for CAB,B
l and

putting the two terms together, we find that the total
is

C2−1
l ≡ (CA,B2

l + 2CAB,B
l ) (36)

=
1

(2l + 1)

[

∑

l′l′′

{

BNG,fNL=1
ll′l′′ B̂′

ll′l′′blb′lb
′′
l

ClCl′Cl′′

}]

.

If we assume that the observed bispectrum is sim-
ply that of the primordial non-Gaussianity then B̂ll′l′′ =
f̂NLBNG

ll′l′′ and we can write an estimator for fNL as

f̂NL = (2l + 1)C2−1
l /FNG,NG(l) , (37)

where FNG,NG(l) is simply the Fisher matrix element for
the primordial bispectrum with fNL = 1:

Fi,j(l) =
∑

ll′′

{

Bi
ll′l′′B

j
ll′l′′

C′
lC′

l′C′
l′′

}

, (38)

where now we have redefined noise to be such that C′
l =

Cl+Nl/b2
l as the bispectra are no longer beam smoothed.

In reality C2−1
l includes contributions from secondary

anisotropies and foregrounds. Here, we include the non-
Gaussianities generated by point sources and the lensing-
secondary correlation. Thus, we write

(2l+1)Ĉ2−1
l = f̂NLFNG,NG(l)+ ÂFNG,PS+ η̂FNG,len−sec ,

(39)
and consider a joint estimation of the three unknown
parameters.

To help break degeneracies between the three param-
eters, we also estimate the skewness power spectrum of
the E map defined in equation (27) as

CE,E2

l ≡
1

2l + 1

[

∑

m

Real
{

Elm

(

E2
)

lm

}

]

. (40)

Similar to our derivation above one can simplify the mul-
tipole moments of the (E2)lm to show that this probes

E2−1
l ≡ CE,E2

l (41)

=
1

(2l + 1)

[

∑

l′l′′

{

B
PS,bps=1
ll′l′′ B̂′

ll′l′′blb′lb
′′
l

ClCl′Cl′′

}]

.

Thus, we write

(2l + 1)Ê2−1
l = f̂NLFPS,NG(l)+ ÂFPS,SN + η̂FPS,lens−sec .

(42)
The two equations (39) and (42) will form the main

set of equations that we will solve with our measure-
ments. While we have not explicitly stated so far, these
two quantities will be measured in 3 WMAP frequency
channels making use of Q, V, and W-band data. We al-
low for frequency dependence in A and η, but assume
fNL is the same independent of the frequency in all three
channels.

We use l < 600

WMAP KQ75 mask with fsky=0.718

We present results with “raw” maps. 

Our Cl/El fits with measurements using WMAP 
team’s “clean” maps have “bad” chi2 values for the 
best fits. 
We also think “cleaning”  as done by the WMAP 
team creates an artificial non-Gaussianity.

8

FIG. 5: A maps for V frequency band. From upper left hand corner moving clockwise: τ = 0.04, 0.4, 1.0, 1.8

C. Approximate corrections for partial sky

Before we move onto discuss data analysis and our sim-
ulations to compute the covariances, we note that we also
make a correction to both C2−1

l and E2−1
l to account for

partial sky coverage and inhomogeneous noise. This is
done in an approximate manner by making use of the
equivalent form of the linear terms of the skewness statis-
tic in the language of our skewness power spectrum. For
the case of C2−1

l estimator the correction is derived in
Ref. [43]:

C2−1
l =

1

fsky

{

CA,B2

l − 2C〈A,B〉B
l − CA,〈B2〉

l

}

+

2

fsky

{

CAB,B
l − C〈AB〉,B

l − CB〈A,B〉
l − CA〈B,B〉

l

}

(43)

where fsky is the sky fraction observed. The new terms
are defined as, for example,

CB〈A,B〉
l (r) =

1

N(2l + 1)

∑

i

∑

m

{

(BDAS)i
lm(r)(BS)i

lm(r)
}

,

(44)
where i runs over a set of N simulations and (BDAS)i

lm
are the coefficients of spherical harmonics for the map
produced by multiplying the ith simulated A map with
the B map derived from raw data.

Similarly, for E2−1
l we find

E2−1
l =

1

fsky

{

CE,E2

l − CE,〈E2〉
l − 2C〈E,E〉E

l

}

, (45)

where terms such as CE,〈E2〉
l can be written similar to

equation (44) above with the replacement of E maps in-
stead of A and B maps.

D. Theoretical expectation

In Figure 2 and Figure 3 we show the theoretical expec-
tations for C2−1

l and E2−1
l , respectively. We plot these

for the Q, V and W band by making use of the beam func-
tions bl and noise power spectrum estimate Nl that are
described in Section IVB1. Here, we show the cases of
primordial non-Gaussianity with fNL = 1, point sources
with Ai = 1 and lensing-secondary cross-correlation with
bS
l calculated for the sum of ISW and SZ effects with

ηi = 1.
As is clear from Fig. 2, the primordial non-Gaussianity

signal is expected to be degenerate with foreground non-
Gaussianities. The shape of C2−1

l alone is not enough to
clearly separate primordial non-Gaussianity signal from
point source and lensing non-Gaussianities. Fortunately,

Practical issues:

cut-sky due to mask
(we correct with linear terms
in the same manner KSW skewness
is corrected. Corrections
are only significant at l < 20)



WMAP 5-year analysis

Practical issues:

Error analysis

We simulate Gaussian CMB + noise
maps

250 simulations per WMAP band

(Computing Blm2, (AB)lm, Elm2 is the 
most time consuming for us; it 
takes us ~ 5 days for 250x3x2 
simulations with 56 processors 
@ 3 GHz/each)

At the end, we compute the full
covariance matrix:

Cov(li,lj,νi,νj,Cl,El)



Theory Expectation vs. Data Expectation 

Primordial

Point sources

Lensing-ISW/SZ

Cl2-1



Theory Expectation vs. Data Expectation 

El2-1
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Type fNL (no PSs) fNL (w/PSs) AQ AV AW χ2/dof

C2−1
l

Q −61.6 ± 32.2 −10.5 ± 33.6 62.0 ± 12.1 1.6

V 5.4 ± 30.4 36.5 ± 32.9 22.1 ± 9.0 0.6

W 5.5 ± 30.0 31.8 ± 33.3 18.6 ± 10.1 0.6

V+W 4.8 ± 27.7 39.0 ± 30.7 18.5 ± 8.2 25.3 ± 9.2 1.0

E2−1
l

Q 426.4 ± 100.5 191.5 ± 115.4 57.0 ± 13.8 1.3

V 159.1 ± 98.0 94.2 ± 106.6 13.8 ± 8.9 0.3

W 90.4 ± 102.6 49.2 ± 112.4 9.6 ± 10.7 0.3

V+W 133.1 ± 140.9 69.8 ± 100.6 16.2 ± 8.6 9.4 ± 10.3 0.8

Full

Q −23.1 ± 29.4 −22.0 ± 29.4 24.2 ± 5.0 3.2

V 13.1 ± 26.8 16.3 ± 26.8 4.2 ± 2.1 0.6

W 19.5 ± 26.9 19.5 ± 27.0 0.4 ± 2.3 0.6

V+W 11.4 ± 23.6 11.5 ± 23.6 5.0 ± 1.8 −1.8 ± 2.0 0.9

TABLE II: Parameter estimates with C2−1
l (top), E2−1

l (middle), and the combination of the two (bottom) with Q, V, W and
V+W maps for the case where we ignore point sources and including point sources. The point source amplitudes are listed
under columns for Ai’s. The Q-band point source amplitude of (24.2±5.0)×10−25 sr2, equivalent to (4.9±1.0)×10−5 µK3-sr2

is consistent with the WMAP team’s preferred value of (4.3 ± 1.3) × 10−5 µK3-sr2. The value of fNL with the amplitude of
point sources marginalized over 11.5 ± 23.6.

Type fNL (PS + lensing) AQ AV AW ηQ ηV ηW χ2/dof

C2−1
l

Q 21.1 ± 40.3 −80.2 ± 39.3 −11.7 ± 5.8 3.4

V 15.7 ± 38.9 8.7 ± 23.0 −3.7 ± 4.6 1.0

W −13.5 ± 39.8 39.7 ± 25.6 0.6 ± 4.4 1.2

V+W 14.3 ± 37.6 18.2 ± 20.8 9.0 ± 22.0 −2.7 ± 4.1 −2.2 ± 4.0 1.3

E2−1
l

Q 122.2 ± 118.6 8.5 ± 6.2 6.6 ± 1.7 0.7

V 80.5 ± 107.8 2.1 ± 2.6 1.2 ± 1.1 0.3

W 62.3 ± 113.2 −0.2 ± 2.5 0.9 ± 1.3 0.3

V+W 72.0 ± 103.1 1.9 ± 2.4 −0.5 ± 2.4 1.4 ± 1.1 1.3 ± 1.2 0.8

Full

Q 21.8 ± 29.6 24.0 ± 5.7 0.2 ± 1.2 3.3

V 16.7 ± 27.1 4.1 ± 2.4 0.2 ± 0.5 0.6

W 18.7 ± 27.2 0.5 ± 2.3 −0.3 ± 1.0 0.8

V+W 11.0 ± 23.7 2.8 ± 2.2 −0.4 ± 2.2 1.0 ± 0.8 −0.6 ± 0.9 0.9

TABLE III: Parameter estimates with C2−1
l (top), E2−1

l (middle), and the combination of the two (bottom) with Q, V, W
and V+W maps for the case where we account for both point sources and the amplitude of lensing-secondary bispectrum. The
point source amplitudes are listed under columns for Ai’s, while the amplitude of lensing-secondary signal is tabulated under
ηi’s. Our preferred value of fNL with the amplitude of point sources and the lensing-secondary signal marginalized over using
V and W maps in combination is 11.0 ± 23.7.
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ysis is sub-optimal. As discussed earlier, however, our
approach is not different from both the WMAP team’s
approach [12] and previous other estimates of fNL [39].
Moreover, our lmax is set at 600, while their analysis ex-
tends to 750.

To see if there is any scale dependence to non-
Gaussianity we bin fNL in widths of 200 and estimate
the value between 0 < l < 600. The results are shown
in Fig. 16 and tabulated in Table IV. Except in the
last bin for the case with point sources only between
400 < l < 600, our fNL values are fully consistent with
zero at the 1σ level and the last bin is consistent with
zero at the 2σ level. The last bin also has a large error
due to the increase of the instrumental noise. For the
same reason, we do not pursue a measurement of fNL

when l > 600.
It is also interesting to note how accurate our overall

error estimate is. As we compute our covariances with
250 simulations there is an inherent error of 1/

√
250 in

the error bars we obtained in this analysis. Because of
this, we note that a more accurate estimate of fNL should
be to consider it as 11.0±23.7(±1.5) where the extra error
within the bracket denotes an additional statistical error
associated with the finite number of simulations.

B. Cross-Skewness

Previous results for fNL from the WMAP 5-year team
compute fNL by compressing all information into a sin-
gle quantity called cross-skewness defined by equation 26.
To compare our measurement C2−1

l with their results we
calculate our own equivalent version of this cross skew-
ness statistic defined as

ŜAB2 =
∑

(2l + 1)C2−1,D
l (52)

where C2−1,D
l is the estimator obtained from data. We

also compute the skewness of the E map using E2−1,D
l in

above. We jointly fit ŜAB2 and ŜE3 with a combination
of fNL and Ai by effectively comparing the statistic from
data to prediction from theory with theory expectation
computed as, for example, SAB2 =

∑

(2l+1)C2−1,Th
l . In

order to determine the errors we also preform the same
cross-skewness analysis on all 250 simulations and cal-
culate the covariance of ŜAB2 and ŜE3 from these 250
numbers for each frequency. We find that fNL estimated
from each of the 250 Gaussian and noise simulations lead
to a Gaussian error distribution (Figure 17).

We tabulate our results for fNL after marginalizing
over Ai’s in Table VI. Here, when doing the summa-
tions we set lmax = 500 so we can compare directly with
WMAP 5-year published results [12]. We see that for all
three channels we have good agreement with the WMAP

team’s 5-year findings. Our best-fit value tends to be
bit more positive than quoted by the WMAP team (with
0.26σ, 0.25σ, 0.17σ in Q, V, and W respectively), but this
is a small difference when compared to the large error
bar. The errors quoted in the WMAP 5-year paper is
consistent with our measurements had we used the skew-
ness statistic. However, as we discussed earlier, fitting
to C2−1

l and E2−1
l leads to an improvement in the error

estimate of fNL since the shapes of the two skew spec-
tra allow us to break the degeneracies better. Comparing
our V+W result using the two spectra to skewness for the
same maps, we find that the improvement in the error is
roughly 20%.

VI. CONCLUSION

In this paper, we constrained the primordial non-
Gaussianity parameter of the local model fNL using the
skewness power spectrum associated with the two-to-
one cumulant correlator of cosmic microwave background
temperature anisotropies. This bispectrum-related skew-
ness power spectrum was constructed after weighting the
temperature maps with the appropriate window func-
tions to form an estimator that probes the multipolar
dependence of the underlying bispectrum associated with
primordial non-Gaussianity.

We also estimate a separate skewness power spectrum
more sensitive to unresolved point sources. When com-
pared to previous attempts at measuring the primordial
non-Gaussianity with WMAP data, our estimators have
the main advantage that we do not collapse information
to a single number. When model fitting two-to-one skew-
ness power spectrum we make use of bispectra generated
by primordial non-Gaussianity, radio point sources, and
lensing-secondary correlations. W

We analyze Q, V and W-band WMAP 5-year data us-
ing the KQ75 mask out to lmax = 600. Using V and
W-band data and marginalizing over model parameters
related to point sources, our overall and preferred con-
straint on fNL is 11.0 ±23.7 at the 68% confidence level
(−36.4 < fNL < 58.4 at 95% confidence). Despite pre-
vious claims, we find no evidence for a non-zero value of
fNL even marginally at the 1σ level.
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Comparison to WMAP 5-year Paper

Also our best-fit point source
amplitude (including Q band)
is exactly what the WMAP team found.

best-fit higher by 0.25σ

WMAP overall 51 +/- 30 (V+W)
Our overall 11.0 +/- 23.7
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Type fNL (with PSs) fNL (PSs + lensing-secondary)

C2−1
l

2 < l < 200 39.5 ± 45.6 5.5 ± 33.4

100 < l < 300 35.3 ± 69.6 23.9 ± 87.3

200 < l < 400 49.6 ± 46.5 46.3 ± 64.5

300 < l < 500 38.3 ± 65.6 15.5 ± 57.8

400 < l < 600 192.0 ± 190.4 164.1 ± 162.9

Full

2 < l < 200 −9.2246 ± 44.6 4.2 ± 40.5

100 < l < 300 −6.1 ± 101.4 18.0 ± 67.2

200 < l < 400 64.5 ± 74.0 46.1 ± 65.8

300 < l < 500 68.3 ± 92.8 −26.5 ± 54.2

400 < l < 600 103.6 ± 178.3 −5.6 ± 56.3

TABLE IV: Independent estimates of fNL in bins of δl = 200 between 2 < l < 600.

Technique fNL Ref

WMAP 3-Year, Skewness 87 ± 30 [39]

WMAP 5-Year, Skewness 51 ± 30 [12]

WMAP 5-Year, Minkowski Functions −57 ± 61 [12]

WMAP 5-year, Wavelets 31 ± 24.5 [66]

WMAP 5-year, Needlets 84 ± 40 [67]

WMAP 5-year, N-point PDF 30 ± 62 [68]

WMAP ISW-correlation 236 ± 127 [69]

Large-scale structure bias 20.5 ± 24.8 [70]

WMAP 5-Year, Optimal Estimator 38 ± 21 [40]

WMAP 5-year, Skew-power spectrum 11.0 ± 23.7(±1.5) this paper

TABLE V: Summary of recent results on fNL measurements. Compared to the expectation from Cramer-Rao bound using the
Fisher matrix estimate, our measurement is sub-optimal, but compared to the previous best estimate for fNL of 38 ± 21, our
estimate is fully consistent with zero at the 1σ confidence level.

Band fNL WMAP 5-year

Q −27.3 ± 50.8 −42 ± 48

V 52.0 ± 35.2 41 ± 35

W 50.5 ± 37.3 46 ± 35

TABLE VI: Summary of results using the skewness where
S =

P

(2l + 1)C2−1
l . Here we tabulate the values found in

our analysis and the ones reported by the WMAP team [12].
We set lmax = 500 here.
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Comparison with other results

We find the primordial non-Gaussianity in the local model is fully consistent with 
zero. There is not even marginal evidence for a non-zero value.
Our work involves an estimator that is suboptimal, however. 

On going work:

1.  An optimal form accounting for mode-mode correlations (ie. implementing
Smith et al. corrections) - hope to complete in 3 to 4 months

2. Generalization for the equilateral model
3.  Application to other bispectra, a paper related to lensing-SZ with WMAP soon 


