

The IR (DIRBE/IRTS) Excess: Could Exotic Sources Produce it?

...but there are difficulties

Do not need large IRB to explain WMAP reionzation optical depth:

$$\begin{split} \tau_{e} &= 0.087 \text{ +/- } 0.017 \\ \text{-need } n_{\gamma} &= (1.5 \text{ to } 2) \text{ } C_{IGM} \left(\tau_{e} \text{ / } 0.09 \right) \left[\gamma \text{/baryon} \right] \\ \text{-while IRTS excess at H-band: } n_{\nu} &= f_{esc} \left(1 \text{+} z \right) u_{J} \text{ / } 0.7 \text{ } E_{a} \text{ } n_{b} \sim 2500 \text{ } f_{esc} \end{split}$$

Population III Stars

-Must convert 5-10 % of Baryons into Pop III stars High star formation fraction in collapsed structures Many recombinations to suppress Ly continuum

-Hard to avoid metal overproduction

Stars between 140 – 260 solar masses give PISN, eject half the star's mass in metals

Mini-Quasars

-Need 1/5000th the formation rate of Pop III stars, but Overproduce SXB unless very X-ray quiet Exceed current estimated black hole densities

Madau & Silk 2004

How can a rocket experiment compete with these?

Table 5.2 Comparison with Existing Instruments

Instrument	Bands	FOV	Sub-	Etendue
	[µm]		fields	
CIBER2	0.6, 0.9,	85' x 85'	1	1
	1.4, 2.1			
CIBER1	0.9, 1.6	120' x 120'	1	0.1
NICMOS	1.1, 1.6,	1' x 1'	9900	0.002
	2.1			
WFC3	0.6, 1.0,	2' x 2'	1500	0.01
	1.4, 1.6			
Akari	2.3, 3.2,	12' x 12'	50	0.02
	4.1			
Spitzer	3.6, 4.5	5' x 5'	270	0.01

Sub-fields = number of pointings to cover 2 sq. degrees

Features about	the Sounding Rocket Program
Flights are short Apogee Useful s	~ 320 km for Terrier Black-Brant science time ~ 300 s
May have longer flight 600 km and 600 12hr-24hr "orbit	s in the future s for Talso-Terrier-Nihka-Brant, no recovery al" sounding rocket being discussed
Unique Capabilities No atmosphere	, cold optics \rightarrow specialized instruments
Developed sub-system Custom Telemet Wide ra (4 sites	is provided attitude control system points to < 2" ry system provides 30 Mbps nge of available launch sites s in US+Alaska; Marshall Islands in South Pacific
Programs can be small CIBER NASA AI (With 2 1024 ² ar supports resear	I PRA proposal costs = \$1M in total nd 2 256 ² arrays, that's 45¢ per pixel) ch of 2 graduate students, 1.5 postdocs

CIBER History

CIBER-I launched successfully February 25, 2009

First flight constituted a test flight of the instrument (similar to North American test flights of CMB balloon experiments), but adequate science data!

Second flight this fall (date TBD; September 2009-January 2010)

CIBER-I first flight science papers now in preparation (2 papers planned. One on EBL and one on zodi. CIBER is the first experiment to do a spectral study of the EBL and zodi between 0.6 and ~2 microns!)

CIBER-I will fly a total of 4 times. Last flight in fall/winter 2010 will be long duration with a launch from Alaska (payload in Pacific ocean, not recovered).

An upgraded CIBER-II with 2048x2048 arrays was recently proposed to NASA APRA for flights starting fall 2012.

A search for sub-degree SZ fluctuations with multi-frequency BOOMERanG-2003 CMB data

Marcella Veneziani, Alexandre Amblard, Paolo Serra, AC

& the BOOMERanG/Pol 03 Collaboration

arxiv:0904.4313 (in press ApJL)

The Data Set

For the 3.4' pixel deep region :

B03 Instrument Summary

$\langle \nu \rangle$ GHz	$\frac{\rm MJy/sr}{\rm K_{CMB}}$	$ heta_{phys}$ FWHM	$ heta_{eff}{}^a$ FWHM	$\mathrm{NET}^b \ \mu \mathrm{K}_{ ext{cmb}} \sqrt{\mathrm{s}}$	$\sigma_{pix}{}^c$ $\mu { m K}_{ m CMB}$	$\mathrm{s}(u) = \mathrm{g}(u)/\mathrm{g}(u_{\mathrm{RJ}})$
$145 \\ 245 \\ 345$	$388 \\ 462 \\ 322$	9.95' 6.22' 6.90'	$11.5' \\ 8.5' \\ 9.1'$	$63 \\ 161 \\ 233$	18 50 72	0.5 -0.2 -1.0

Beams allow to go up to $I_{\sim}1200$

Calibration error 2, 8, 13 % @ 145, 245, 345 GHz

Isolating the SZ

Given a number of frequencies, one can use an internal linear combination to keep a specific source (Tegmark et al 96, Tegmark et al 03):

$$a_{\ell m} = \sum_{freq=i} w^i_{\ell} a^i_{\ell m} \qquad \mathbf{w}_{\ell} = \frac{\mathcal{C}^{-1} \mathbf{e}}{e^T \mathcal{C}^{-1} e}$$

Combining the different frequencies with the "optimal" weights :

$$\mathbf{C}_{\mathrm{SZ}} = \boldsymbol{w}^T \mathcal{C} \boldsymbol{w}$$

Minimize the total variance : signal + noise

More aggressive foregrounds subtraction

We used only cross-spectra to minimize primarily the "foreground" residuals, not the noise and divided by $s(U_i)$ (Cooray et al 00):

$$\mathbf{C}_{ij} = \sum_{l \in b,m} \sum_{u,v} \frac{\langle a_{lm}^{i,u} a_{lm}^{j,v^*} \rangle}{s(\nu_i) s(\nu_j) b_l^{i,u} b_l^{j,v}} \quad \text{with } u \neq v, \text{ if } i = j$$

	145-145 GHz :21 pairs
s(v) : SZ frequency spectrum	145-245 GHz : 21 pairs
b ⁱ l : beam function	145-345 GHz : 14 pairs
i,j : indices of the frequency	245-245 GHz: 3 pairs
u.v : indices of the detector	245-345 GHz: 6 pairs
-,	345-345 GHz: I pair

	S	Z Pov	VER SPECT	RUM EST	TIMATES		
			bin 1	,	bin 2	bin 3	
ℓ-rai	nge		250-45	50 45	50-700	700-1200	_
			Optimal [•]	weights			-
W145	W145GHz			3 0	.8514	0.7289	-
W245	W245GHz			3 0	.3771	0.3002	
W345	W345GHz			5 -().2285	-0.0292	
Raw	SZ		236		164	538	-
w 145/ S 145	1.88	1.71	1.47		Not a	all CMB is remo	oved and
w ₂₄₅ /s ₂₄₅	-1.94	-1.74	-1.39	\rightarrow	other residuals might be the the the the the the the the the th		
W345/S345	0.35	0.22	0.03		VVe	e Need Simula	ations

A_{sz}: Conclusions

*We put a first limit of 234 μ K² (2 σ) on SZ emission at subdegree scales between I of 250 and 1200. BOOMERanG is the only experiment that can constrain at these large angular scales

* Major uncertainty come from FIRB and high noise at 345 GHz

* Planck should be able to do better with more frequencies and improved sensitivity, but FIRB will be the dominant confusion for a high signal-to-noise detection with Planck alone.

* Planck + Herschel (especially over the combined \sim 600-1000 deg² of Herschel-ATLAS will allow SZ and FIRB separation).

A Measurement of Primordial Non-Gaussianity using WMAP 5-year Temperature Skewness Power Spectrum

Joseph Smidt, Alexandre Amblard, Paolo Serra, AC

arxiv:0907.4051 out today (PRD to be submitted)

Typ	be $f_{\rm NL}$ (PS -	+ lensing)	A_Q	A_V	A_W	η_Q	η_V	η_W	χ^2/dof
C_l^2	-1								
Q	21.1 ±	= 40.3	-80.2 ± 39.3			-11.7 ± 5.8			3.4
V	15.7 ±	38.9		8.7 ± 23.0			-3.7 ± 4.6		1.0
W	-13.5	± 39.8		10.0.1.00.0	39.7 ± 25.6			0.6 ± 4.4	1.2
V+	W 14.3 ±	= 37.6		18.2 ± 20.8	9.0 ± 22.0		-2.7 ± 4.1	-2.2 ± 4.0	1.3
E_l	100.0	119.6	0 E ± 6 0			6.6 ± 1.7			0.7
Q V	80.5 ±	107.8	0.0 ± 0.2	21 ± 26		0.0 ± 1.7	1.9 ± 1.1		0.7
V M	62.3 ±	107.0		2.1 ± 2.0	-0.2 ± 2.5		1.2 ± 1.1	0.9 ± 1.3	0.3
V+	W 72.0 +	103.1		1.9 ± 2.4	-0.5 ± 2.4		1.4 ± 1.1	1.3 ± 1.2	0.8
Fu	11				0.0 = 1.1				
Q	21.8 ±	29.6	24.0 ± 5.7			0.2 ± 1.2			3.3
V	16.7 ±	27.1		4.1 ± 2.4			0.2 ± 0.5		0.6
W	18.7 ±	27.2			0.5 ± 2.3			-0.3 ± 1.0	0.8
V+	W 11.0 ±	23.7		2.8 ± 2.2	-0.4 ± 2.2		1.0 ± 0.8	-0.6 ± 0.9	0.9
						400 350			
vpe f _{NL}	(with PSs)	$f_{\rm NL}$ (PS	s + lensing-s	secondary)		300- 250-			
2-1				67		Z 150			_
< 200 3	9.5 ± 45.6		5.5 ± 33.4			50-	•	ł	+
l < 300 3	5.3 ± 69.6		23.9 ± 87.3			-50	100 200	300	400
l < 400 4	9.6 ± 46.5		46.3 ± 64.5			350 300-			
l < 500 3	8.3 ± 65.6		15.5 ± 57.8			250- 200-			
< l < 600 19	2.0 ± 190.4		$164.1 \pm 162.$.9		Z 150	T	т	
Full						50-	i i	t	Ŧ
l < 200 - 9	2246 ± 44.6		4.2 ± 40.5			-50	100 300	200	1
l < 300 -	3.1 ± 101.4		18.0 ± 67.2			150			400
l < 400 6	4.5 ± 74.0		46.1 ± 65.8			100		I	
l < 500 6	8.3 ± 92.8		$-26.5 \pm 54.$	2		50.	T	•	т
< 1 < 600 = 10	3.6 ± 178.3		-5.6 ± 56.3	3		~ 아	† Ī	1	

Comparison with other results

Technique	$f_{\rm NL}$	Ref
WMAP 3-Year, Skewness	87 ± 30	[39]
WMAP 5-Year, Skewness	51 ± 30	[12]
WMAP 5-Year, Minkowski Functions	-57 ± 61	[12]
WMAP 5-year, Wavelets	31 ± 24.5	[66]
WMAP 5-year, Needlets	84 ± 40	[67]
WMAP 5-year, N-point PDF	30 ± 62	[68]
WMAP ISW-correlation	236 ± 127	[69]
Large-scale structure bias	20.5 ± 24.8	[70]
WMAP 5-Year, Optimal Estimator	38 ± 21	[40]
WMAP 5-year, Skew-power spectrum	$11.0 \pm 23.7(\pm 1.5)$	this paper

We find the primordial non-Gaussianity in the local model is fully consistent with zero. There is not even marginal evidence for a non-zero value. Our work involves an estimator that is suboptimal, however.

On going work:

- I. An optimal form accounting for mode-mode correlations (ie. implementing Smith et al. corrections) hope to complete in 3 to 4 months
- 2. Generalization for the equilateral model
- 3. Application to other bispectra, a paper related to lensing-SZ with WMAP soon