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Precision Cosmology:  
from “what” to “why”  

•  “Now that key cosmological parameters have been determined to 
within a few percent, we anticipate a generation of experiments that 
move beyond adding precision to measurements of what the 
universe is made of, but instead help us learn why the universe 
has the form we observe. […] observational cosmology will probe 
the detailed dynamics of the universe in the earliest instants after 
the Big Bang, and start to yield clues about the physical laws that 
governed that epoch. Future experiments will plausibly reveal the 
dynamics responsible both for the large-scale homogeneity and 
flatness of the universe, and for the primordial seeds of small-scale 
inhomogeneities, including our own galaxy.” (Baumann et al. 2008, 
CMBpol mission concept study)  



Inflation and Observational Cosmology: 
where do we stand? 

The determination of most of these parameters requires the 
combination of LSS and CMB data on both large and small scales. 



CMB: a Window to the Physics of 
the Early Universe 



Testable predictions of inflation 
 Cosmological aspects 

–  Critical density Universe 
–  Almost scale-invariant and nearly Gaussian, 

adiabatic density fluctuations 
–  Almost scale-invariant stochastic background of 

relic gravitational waves 

 Particle physics aspects 
–  Nature of the inflaton 
–  Inflation energy scale 



Why (non-) Gaussian? 

  collection of independent harmonic oscillators (no mode-mode 
coupling) 

  the motivation for Gaussian initial conditions (the standard 
assumption) ranges from mere simplicity to the use of the Central 
Limit Theorem (e.g. Bardeen et al. 1986), to the property of 
inflation produced seeds (… see below)   
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The view on Non-Gaussianity 
… circa 1990 



 Non-Gaussianity  

  Alternative structure formation models of the late eighties 
considered strongly non-Gaussian primordial fluctuations.  

  The increased accuracy in CMB and LSS observations has 
excluded this extreme possibility. 

  The present-day challenge is either detect or constrain mild or 
weak (~ 0.001%) deviations from primordial Gaussian initial 
conditions. 

  Deviations of this type are not only possible but are generically 
predicted in the standard perturbation generating mechanism 
provided by inflation.  



Simple-minded NG model 
  Many primordial (inflationary) models of non-Gaussianity can be 

represented in configuration space by the simple formula (Salopek & Bond 
1990; Gangui et al. 1994; Verde et al. 1999; Komatsu & Spergel 2001) 

                     Φ = φL + fNL * ( φL
2 - <φL

2>) + gNL * φL
3 + …  

   where Φ is the large-scale gravitational potential, φL its linear Gaussian 
contribution and fNL is the dimensionless non-linearity parameter (or more 
generally non-linearity function). The percent of non-Gaussianity in CMB 
data implied by this model is 

                     NG % ~ 10-5  |fNL| 

                               ~ 10-10 |gNL| 



NG as a Test on the Physics  
of the Early Universe 

•  The bispectrum (trispectrum, …) amplitude and shape measures 
deviations from standard inflation, perturbation generating processes 
after inflation, initial state before inflation, …. Going to small scales and 
exploiting E-mode polarization allows to reach very high sensitivity 
(small fNL). Inflation models which would yield the same predictions for 
scalar spectral index and tensor-to-scalar ratio might be 
distuinguishable in terms of NG features. Can we aim at 
“reconstructing” the inflationary action, starting from measurements of 
a few observables (like nS, r, nT, fNL, gNL, etc. …), just like in the 
nineties we were aiming at a reconstruction of the inflationary 
potential? 

•  The statistics of E and B modes, sensitive to CMB lensed by LSS, 
hence allowing to improve limits on primordial (GW induced) B modes. 
Non-Gaussian GW background (from pre-heating after inflation, 
curvaton mechanism, phase-transitions, secondary GW background).   



Inflation models and fNL 
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Flatten configuration 
M: cut-off scale 

fNL >> +1 

λϕ: inflaton coupling to  
the waterfall field χ  

  e.g. (5/6) λϕ (MPl/mχ) Inhomogeneous preheating 
And inhom. hybrid inflation   

N:n˚ of inflaton oscillations  e.g. (MPl/ϕ0) eNq/2 ~50 Preheating scenarios 

comments fNL(k1,k2) 

s 

s 
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Warm Inflation (II)  -15L(r )  < fNL < L(r ) L(r ) ≈ln(1+r/14); 
r=Γ/3H >>1 

Generalized slow-roll inflation 
 (higher-order kinetic terms) 

equilateral configuration 

Excited initial states+derivative 
interactions 

~(6.3 10-4 MPl/M)  
~(1-100) 

Ekpyrotic models -50 < fNL < 200 
depends on the sharpness of 
conversion from isocurvature  
to curvature perturbations 

typically 10-1 Warm inflation 

Multi-DBI inflation fNL~ c−2 1/(1+T2
RS) both local and equil. shapes 



          O(ε,η) 
Slow-roll inflation 
 (including multiple fields)  

comments gNL(k1,k2) 

Ekpyrotric models |gNL| < 104 depends on the parameter 
choice 

ε,η : slow-roll parameters 

Curvaton scenario 
(9/4 r2) (g2 g’’’/g’3+3g g’’/g’2) + 
- (2/r) (1+ 3g g’’/g’2)  

g’’: deviation from a  
quadratic potential 

Inhomogeneous reheating (5/3) fNL+ (25/24) (Q’’’(x)/ Q’3(x)) 2 X=Γ/H at the end of 
 inflation 

Inflation Models and gNL 

DBI  inflation ~ 0.1 c－4 s C2 : sound speed s 



NG (and anisotropy) from  
non-Abelian vector fields 

•  Bartolo, Dimastrogiovanni, Matarrese & Riotto, 2009 

•  Possible realizations: vector curvaton / vector inflation 

•  NG can be large and anisotropic 



Isotropic contribution to the 
bispectrum 

Modulation dependent  
on the preferred directions   
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Non-Gaussianity in the initial conditions 



NG CMB simulated maps 

Liguori, Yadav, Hansen, Komatsu, Matarrese & Wandelt 2007 



Summary of NG from inflation 

  Quadratic non-linearity on large-scales (up to ISW and 2-nd order 
tensor modes). Standard slow-roll inflation yields aNL~ bNL~ 1 

  -cos 

  Cubic non-linearity on large-scales (up to ISW and 2-nd order tensor 
modes) 

additional contribution to trispectrum (together with fNL
2  terms): 

Bartolo, Matarrese & Riotto 2005; Boubeker, Creminelli, D’Amico, Noreña & Vernizzi 2009   

Include 
SW + 
ISW up 
to 3-rd 
order 

- cos(2ϑ) 



The shape of Non-Gaussianities 

Babich et al. 2005; Creminelli  
et al. 2005; LoVerde et al. 2007 

Different models for the generation of  
NG may lead to a different shape  
dependence of the bispectrum, which  
is very important for constraining NG 

                                                     LoVerde et al. 2007 

local 

DBI 

squeezed configurations dominant 

equilateral configurations  
approximately dominant 



WMAP 5-yr limits on local models 

€ 

−9 < fNL
loc <111 (95%)

- from the template-cleaned  
  V+W channel; 
- accounting for a bias from  
  unresolved point sources 
- for    

Komatsu et al. 2008 

✓ From an analysis of the bispectrum of CMB temperature anisotropies 

✓ See also Senatore et al. (2009) 

€ 

−4 < fNL
loc < 80 (95%)

✓ and claimed evidence from  
Yadav & Wandelt 08, WMAP3 

€ 

27 < fNL <147 (95%)



WMAP 5yr limits on equilateral models 

€ 

−151< fNL
equil < 253 (95%)

for  

€ 

lmax = 700

Komatsu et al. 2008 

See also Senatore et al. (2009) 

€ 

−125 < fNL
equil < 435 (95%)

From an analysis of the bispectrum of CMB temperature anisotropies 



Constraining Non-Gaussianity from Inflation 
with Planck vs. ideal experiment  

Searching for NG in Planck data will require accurate handling of residual 
NG from systematics (foreground, point sources, NG induced by map 
making). 

Yadav, Komatsu and Wandelt 2007 

Fast estimator extended to incomplete sky coverage in Yadav, Komatsu, Wandelt, 
Liguori, Hansen & Matarrese 2007: see also Creminelli, Nicolis, Senatore & Tegmark 
2006; covariance weighted KSW estimator used by Senatore, Smith & Zaldarriaga 2009 



Fast estimation of localized fNL values 

•  Using the needlet fNL estimator, one can divide the sky into several small pieces and 
obtain local estimates almost at the cost of one single full-sky fNL estimation 

•  Using local estimates one can detect the influence of foregrounds and other systematic 
effects in certain parts of the sky 

Local estimates (45 deg. disks) for WMAP V+W band 

In WMAP data we found exceptionally high values of fNL in local estimates close 
to galactic plane using Q-band, indicating foreground residuals with high 
significance. 

Rudjord et al. 2009 (arXiv 0906.3232) 



Latest theoretical developments 
    Assessment of NG induced by secondary  

(second-order) anisotropies: 

•  Pitrou et al. 2008 vs. Bartolo & Riotto 2009  undetectable 
•  Senatore, Tassev & Zaldarriaga 2009 vs. Khatri and Wandelt 

2008, 2009  undetectable? 
•  Nitta, Komatsu, Bartolo, Matarrese & Riotto 2009: no 

(previously unknown) 2nd order anisotropies (coming made of 
products of 1st x 1st  order terms) can contaminate (local) NG 
at detectable  level (good news!)  

•  Largest signal: cross-correlation of lensing/ISW: equivalent 
to local fNL~10 (Mollerach & Matarrese 1997; Goldberg & 
Spergel 1999; Verde & Spergel 2002; Giovi et al. 2003; 
Smith & Zaldarriaga 2006; Serra & Cooray 2008; Hanson et 
al. 2009) lensing/RS (Mangilli & Verde 2009). We can 
subtract it (or use constrained N-body simulations to map it. 



Open issues 

•   How to get the “right” bispectrum shape? 
Can we do anything better than chosing a 
priori the NG shape and then constrain fNL? 

•  What is the optimal estimator of fNL if, e.g., 
cubic NG (gNL) is also there? 

•  Will we ever be able to improve our limits 
on fNL with CMB data only? 



Non-Gaussianity from initial conditions  
+ 

Non-Gaussianity from gravitational instability 



NG effects in LSS 



NG and LSS 
  NG in LSS (to make contact with the CMB definition) can be defined 

through a potential Φ  defined starting from the DM density fluctuation δ 
through Poisson’s equation (use comoving gauge for density fluctuation, 
Bardeen 1980)  

  Many primordial (inflationary) models of non-Gaussianity can be 
represented in configuration space by the simple formula (Salopek & Bond 
1990; Gangui et al. 1994; Verde et al. 1999; Komatsu & Spergel 2001)  

  Φ on sub-horizon scales reduces to minus the large-scale gravitational 
potential, φL its linear Gaussian contribution and fNL is a dimensionless non-
linearity parameter (or more generally non-linearity function). For |fNL| >> 1 
this definition is indentical to the CMB (up to a normalization factor ~ 1.3 
coming from DE driven evolution of the linear gravitational potential). 
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Grossi et al. 2007 



N-body simultions with Non-Gaussian initial data 

Grossi et al. 2007, Hikage et al. 2007 

matter transfer function 

growth suppression factor 



Fitting NG with log-normal PDF 
Grossi et al. 2008 

see also: Kamionkowski, Jimenez & Verde 2008 



Searching for non-Gaussianity 
with rare events 

o  Besides using standard statistical estimators, like bispectrum, trispectrum, three 
and four-point function,  skewness, etc. …, one can look at the tails of the 
distribution, i.e. at rare events.  

o  Rare events have the advantage that they often maximize deviations from what 
predicted by a Gaussian distribution, but have the obvious disadvantage of 
being rare! But remember that, according to Press-Schechter-like schemes, all 
collapsed DM halos correspond to (rare) peaks of the underlying density field.  

o  Matarrese, Verde & Jimenez (2000) and Verde, Jimenez, Kamionkowski & 
Matarrese showed that clusters at high redshift (z>1) can probe NG down to fNL 
~ 102 which is, however, not competitive with future CMB (Planck) constraints.   

o  Alternative approach by LoVerde et al. (2007).  Determination of mass function 
using stochastic approach (first-crossing probability of a diffusive barrier) 
Maggiore & Riotto 2009. Ellispsoidal collapse used by Lam & Sheth 2009. 

o  Excellent agreement of analytical formulae with N-body simulations found by 
Grossi et al. 2009 



DM halos in NG simulations 

Grossi et al. 2008  



DM halo mass function vs fNL 

Comparison with 
simulations in 
Desjacques et al. 
2008; Pillepich et 
al. 2008; Grossi 
et al. 2009 

Theoretical mass-function 
for quadratic NG field: 
Matarrese, Verde &  
Jimenez 2000, using a  
saddle-point technique; 
LoVerde et al. 2008, using  
Edgeworth expansion;  
Maggiore & Riotto 2009,  
using diffusing barrier; 
Lam & Sheth 2009 use  
Edgeworth exp. +  
ellipsoidal collapse  
barrier. Valageas 2009  

Grossi et al. 2009 



DM halo clustering  
as a constraint on NG 

Dalal, Dore’, Huterer & Shirokov 2007 Dalal et al. (2007) have shown that halo  
bias is sensitive to primordial non-
Gaussianity through a scale-dependent 
correction term  

                  Δb(k)/b  α  2 fNLδc / k2 

  This opens interesting prospects for  
  constraining or measuring NG in LSS but  
  demands for an accurate evaluation of the 
  effects of (general) NG on halo biasing. 

 δhalo = b δmatter 



Start from results obtained in the 80’s by  

Grinstein & Wise 1986, ApJ, 310, 19 

Matarrese, Lucchin & Bonometto 1986, ApJ, 310, 
L21  

giving the general expression for the peak 2-point 
function as a function of N-point connected 
correlation functions of the background linear (i.e. 
Lagrangian) mass-density field  

(requires use of path-integral, cluster expansion, 
multinomial theorem and asymptotic expansion). 
The analysis of NG models was motivated by a 
paper by Vittorio, Juszkiewicz and Davis (1986) 
on bulk flows. 

Clustering of peaks (DM halos) of 
NG density field 



Peaks of NG random fields 
•  For a D-dimensional random field ε, filtered on scale R one defines a 

“peak operator”  

     where one considers only peaks with heigth ilarger than ν times the rms 
fluctuation (on scale R). Here the domain D is over all negative definite 
symmetric matrices. For high threshold ν one expect one peak for every 
up-crossing region. In such a case one can compute the N-point function 
of n>ν by standard QFT techniques (path-integral + cluster expansion) 
finding the N-point joint up-corssing probability (Matarrese, Lucchin & 
Bonometto 1986) 

    with                                                  and                   

€ 

n>ν (x,R) = dω
D
∫ (−1)D detω ΘH (εR (x) −νσR )δ

(D )(∂iεR (x))δ
(D(D+1)/ 2)(∂i∂ jεR (x) −ω ij )



Halo bias in NG models 
•  Matarrese & Verde 2008 have applied this relation to the case of 

local NG of the gravitational potential, obtaining the power-spectrum 
of dark matter halos modeled as high “peaks” (up-crossing regions) 
of height ν=δc/σR of the underlying mass density field (Kaiser’s 
model). Here δc(z) is the critical overdensity for collapse (at redshift 
a) and σR is the rms mass fluctuation on scale R (M ~ R3) 

•  Next, account for motion of peaks (going from Lagrangian to 
Eulerian space), which implies (Catelan et al. 1998)  

                   1+ δh(xEulerian) = (1+δh(xLagrangian))(1+δR(xEulerian)) 

   and (to linear order) b=1+bL (Mo & White 1996) to get the scale-
dependent halo bias in the presence of NG initial conditions. 

•  Similar formulae apply to the correlation of CMB hot & cold spots 
(Heavens, Liguori, Matarrese, Tojeiro & Verde, in prep.) 

•  Alternative approach (based on 1-loop calculations by Taruya et al. 
(2008) 



Halo bias in NG models 
Matarrese & Verde 2008 

form factor: 

factor connecting the smoothed linear overdensity with the primordial potential: 

transfer function: 
window function defining the radius R of a  
proto-halo of mass M(R): 

power-spectrum of a Gaussian 
gravitational potential  



Halo bias in NG models 
•  Extension to general (scale and configuration 

dependent) NG is straightforward 

•  In full generality write the φ bispectrum as Bφ(k1,k2,k3). 
The relative NG correction to the halo bias is  

•  It also applies to non-local (e.g. “equilateral”) NG (DBI, 
ghost inflation, etc.. ) and universal NG term!! 

€ 

×
1

MR (k)



Calibration on simulations 

Local non-Gaussianity  

Grossi, Verde, Dolag, Branchini, Carbone, Iannuzzi, Matarrese & Moscardini 2009 



Observational prospects 
On these large scales only the “two halo” term counts 

Fisher matrix approach (Carbone, Verde & Matarrese 08): 

From the P(k) shape 

ISW is found to be less powerful. See Afshordi & Tolley 08 for S/N 



Observational status 

Local-type only, 2 σ errors 



Observational prospects 

The bispectrum sees the “shape”, halo bias does not! 



           fNL = 100                                 fNL = 0                                  fNL = - 100 

GAS distribution in a slice of 3 Mpc/h (comoving) at z=3 (the voids have 
less and more matter compared to the standard case) – this in turn can be  
seen in the flux PDF 

Non-Gaussianities in the IGM 
Viel, Dolag, Branchini, Grossi, Matarrese & Moscardini 2008 

Very first NG  
hydro simulations 

NG/G 

NG initial conditions: 



Conclusions 

 Contrary to earlier naive expectations, some level of non-
Gaussianity is generically present in all inflation models. The 
level of non-Gaussianity predicted in the simplest (single-field, 
slow-roll) inflation is slightly below the minimum value detectable 
by Planck and at reach of future galaxy surveys.  

 Constraining/detecting non-Gaussianity is a powerful tool to 
discriminate among competing scenarios for perturbation 
generation (standard slow-roll inflation, curvaton, modulated-
reheating, DBI, ghost inflation, multi-field, etc. …) some of which 
imply large non-Gaussianity. Non-Gaussianity will soon become 
the smoking-gun for non-standard inflation models. 

 The Planck mission (in combination with future galaxy surveys) 
will open a new window to the physics of the early Universe.    


