THE CONSTANT DM SURFACE DENSITY IN GALAXIES (THE DM DISTRIBUTION IN GALAXIES)

Paolo Salucci (SISSA)

Persic, M.; S. P., Stel, F. 1996 MNRAS, 281, 27 The universal rotation curve of spiral galaxies - I. The dark matter connection

Gentile, G.; S. P., Klein, U. 2004 MNRAS, 351, 903 The cored distribution of dark matter in spiral galaxies.

S.P + 2007 MNRAS

The universal rotation curve of spiral galaxies out the virial radius II S.P. ADS reviews

A constant dark matter halo surface density

Authors: <u>F. Donato</u>, <u>G. Gentile</u>, <u>P. Salucci</u>, <u>C. Frigerio Martins</u>, <u>M. I. Wilkinson</u>, <u>G. Gilmore</u>, <u>E. K. Grebel</u>, <u>A. Koch</u>, <u>R. Wyse</u>

: <u>F. Donato, G. Gentile, P. Salucci, C. Frigerio Martins, M. I. Wilkinson, G. Gilmore, E. K.</u> <u>Grebel, A. Koch, R. Wyse</u>

The Realm of Galaxies

15 mag range, 4 types, 16 mag arsec⁻².range

Stellar distribution $L(R/R_D)/L_T$ is independent of luminosity The light surface profile $I(r) = I_0 \exp(-R/R_D)$. A mass lenght-scale

Radial TF

Slope and scatter of the TF-relations:

$$M_{\rm B} = a_i + b_i \log V(x_i)$$

The slope increases from -4 to -8.

No change in slope \leftrightarrow no DM or a constant fraction of DM

Modelling the very inner circular velocities: light traces the mass RC trace the grav potential

The role of the slope of the RC

The URC concept

- @ fixed L and X=R/R_D, the Cosmic Variance of V(X,L) is one order of magnitude smaller than the variations that:
- in each galaxy, V(X) shows as X varies.
- V(X) shows, @ each X, in galaxies of different L

Phenomenology of spiral kinematics The rotation curves

3200 coadded

individual

2 samples: PSS 1000 Catinella et al 2200

Rotation curve modelling.

- : from I-band photometry
- from HI observations

dark halos with constant density cores dark halos with "cusps" (NFW, Moore)

HI-scaling

 \mathbf{i}

 $\mathbf{)}$

MOdified Newtonian Dynamics

NFW Halos

$$ho_{NFW}(r)=rac{
ho_s}{(r/r_s)(1+r/r_s)^2}$$

$$c_{vir} \equiv r_{vir}/r_s$$

 $M_{NFW}(r) = M_{vir} \ rac{A(r,r_s)}{A(c_{vir},r_s/r_s)}$
 $A(x_1,x_2) \equiv \ln(1+x_1/x_2) - (1+x_2/x_1)^{-1}$

Burkert Halos

$$ho_B(r) = rac{
ho_0}{(1+r/r_0)[1+(r/r_0)^2]}$$

The profile is characterized by a density–core of extension r_0 and value ρ_0 , resembles the NFW profile at large radii.

 $\mathbf{V}_{\mathbf{NFW}}$ fits uniquely a rotation curve

Virial halo masses

 $HMF(M_{h}) dM_{h}/ dM_{b} dM_{b} = BMF(M_{b}) dM_{b}$

Halo masses from weak lensing

With a density profile we model the tangential shear Obtain the structural free parameters.

Same results as those obtained from RCs. Burkert profile provides excellent fit, better than NFW.

Christiane Frigerio Martins

THE UNIVERSAL VELOCITY CURVE

Non-circular motions?

DM in early-types: weak+strong lensing 22 bright E/S0s at *z* ~ 0.2 (SLACS: Gavazzi et al. 2007)

Ellipticals as Spirals: M(r)=r T dlog n/dlog R

dSphs dispersion velocities analysis

$$V_{cir}^2(r) = -\frac{r}{\rho(r)}\frac{d}{dr}(\sigma^2(r)\rho(r)) - 2\beta\sigma^2(r)$$

Structral properties of dSph's

Dwarf Spheroidal Galaxies

A Universal Mass Profile Walker et al 09

The constant surface density $\rho_0 r_0$

Halo central density vs core radius $ho_0 = 10^{-23} (r_0/kpc)^{-1} g/cm^3$

The central stellar surface density

- CONSEQUENCES
- The mass of the particle (de Vega , Sanchez, 2009) keV scale The Nature of the particle Galaxy Scaling laws are important Alternative Gravity
- Additional proof for cored models

CONSTANT MASS ?

A way out? angular momentum exchange between baryons and DM Tonini Lapi Salucci

We can uniquely mass model a RC

disk-halo components, known surf phot, reliable V(R) and dV/dR, resolution ~ 0.3 R_D

\triangle CDM Universal Rotation Curve from NFW profile and MMW theory

