CMB Overview: Cosmology with the CMB

Professor George F. Smoot Ewha University & Academy of Advanced Studies LBNL & Physics Department University of California at Berkeley Chair Blaise Pascal Universite de Paris

The Standard Big Bang Model: The Basic Framework

Dark Energy, Dark Matter & other Constituents Along with their equations of state (Lagrangian)

The Cosmic Microwave Background (CMB) is a wonderful and critical tool in modern cosmology A very significant fraction of all the information in cosmology over the last 10 to 15 years has come from it

 Has finally ushered us into an era of precision cosmology (but also deep mysteries)

The Cosmic Microwave Background

Discovered 1965 (Penzias & Wilson)

- 2.7 K blackbody
- Isotropic (<1%)</p>
- Relic of hot "big bang"
- 1970's and 1980's
- 3 mK dipole (local Doppler)
- $\delta T/T < 10^{-5}$ on arcminute scales

COBE 1992
 – Blackbody 2.728 K
 – ℓ < 30 : δT/T ≈ 10⁻⁵

Cosmic Microwave Background Radiation Overview

Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/0302496

Helio-seismology power spectrum

Spectral Analysis of CMB fluctuations

CMB Angular Power Spectrum

Peaks and Curvature

Courtesy Wayne Hu – http://background.uchicago.edu

Changing distance to z = 1100shifts peak pattern

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - <u>curvature of Universe (e.g.</u>
 <u>open, flat, closed</u>)
 - dark energy (e.g. cosmological constant)
 - amount of baryons (e.g. electrons & nucleons)
 - amount of matter (e.g. dark matter)

Peaks and Baryons

Courtesy Wayne Hu – http://background.uchicago.edu

Changing baryon loading changes odd/even peaks

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - curvature of Universe (e.g. open, flat, closed)
 - dark energy (e.g. cosmological constant)
 - <u>amount of baryons (e.g.</u>
 <u>electrons & nucleons</u>)
 - amount of matter (e.g. dark matter)

Peaks and Matter

Courtesy Wayne Hu – http://background.uchicago.edu

Changing dark matter density also changes peaks...

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - curvature of Universe (e.g. open, flat, closed)
 - dark energy (e.g. cosmological constant)
 - amount of baryons (e.g. electrons & nucleons)
 - <u>amount of matter (e.g. dark</u> <u>matter)</u>

Reionization

Late reionization reprocesses CMB photons

- Suppression of primary temperature anisotropies
 - as $exp(-\tau)$
 - degenerate with amplitude and tilt of spectrum
- Enhancement of polarization
 - low l modes E & B increased
- Second-order conversion of T into secondary anisotropy
 - not shown here
 - velocity modulated effects
 - high { modes

Courtesy Wayne Hu – http://background.uchicago.edu

CMB Checklist

Primary predictions from inflation-inspired models:

- acoustic oscillations below horizon scale
 - ✓ nearly harmonic series in sound horizon scale
 - ✓ signature of super-horizon fluctuations (horizon crossing starts clock)
 - ✓ even-odd peak heights baryon density controlled
 - ✓ a high third peak signature of dark matter at recombination
- nearly flat geometry
 - ✓ peak scales given by comoving distance to last scattering
- primordial plateau above horizon scale
 - ✓ signature of super-horizon potential fluctuations (Sachs-Wolfe)
 - ✓ nearly scale invariant with slight red tilt (n≈0.96) and small running
- damping of small-scale fluctuations
 - ✓ baryon-photon coupling plus delayed recombination (& reionization)

Planck: Predicted Power Spectrum

Polarization E/B No-Tensor/Tensor Sky with and without Tensor Modes

Tensor

http://www.astro.caltech.edu/~lgg/spider_front.htm

Current Status - 6/2009

CMB Checklist Continued

Polarization predictions from inflation-inspired models: CMB is polarized

- ✓ acoustic peaks in E-mode spectrum from velocity perturbations
- ✓ E-mode peaks 90° out-of-phase for adiabatic perturbations
- ✓ vanishing small-scale B-modes
- ✓ reionization enhanced low ℓ polarization
- **Gravitational Waves from Inflation**
- B-modes from gravity wave tensor fluctuations
- very nearly scale invariant with extremely small red tilt (n≈0.98)
- decay within horizon (*l*≈100)
- tensor/scalar ratio r from energy scale of inflation ~ $(E_{inf}/10^{16} GeV)^4$

Our inflationary hot Big-Bang theory is standing up well to the observations so far! Now for those gravity waves...

CMB Experiments at the South Pole

Club Med for CMB Experimentalists

Power, LHe, LN2, 80 GB/day, 3 square meals, and Wednesday Bingo Night.

Secondary Anisotropies

The CMB After Last Scattering...

Secondary Anisotropies from propagation and late-time effects

Gravitational Secondaries

Due to CMB photons passing through potential fluctuations (spatial and temporal)

Includes:

- Early ISW (decay, matterradiation transition at last scattering)
- Late ISW (decay, in open or lambda models)
- Rees-Sciama (growth, non linear structures)
- Tensors (gravity waves)
- Lensing (spatial distortions

Courtesy Wayne Hu – http://background.uchicago.edu

CMB Lensing

- Distorts the background temperature and polarization
- Converts E to B polarization
- Can reconstruct from T,E,B on arcminute scales
- Can probe clusters

Hu & Okamoto (2001)

CMB Lensing

- Distorts the background temperature and polarization
- Converts E to B polarization
- Can reconstruct from T,E,B on arcminute scales
- Can probe clusters

Scattering Secondaries

Due to variations in:

- Density
 - Linear = Vishniac effect
 - Clusters = thermal Sunyaev-Zeldovich effect
- Velocity (Doppler)
 - Clusters = kinetic
 SZE
- Ionization fraction
 - Coherent
 reionization
 suppression
 - "Patchy" reionization

Ostriker-Vishniac Effect

Reionization + Structure

- Linear regime
- Second order (not cancelled)
- Reionization supresses
 large angle fluctuations but
 generates small angle
 anisotropies

Courtesy Wayne Hu – http://background.uchicago.edu

Patchy Reionization

Structure in ionization

- Can distinguish
 between ionization
 histories
- Confusion, e.g.
 kSZ effect
- e.g. Santos et al (0305471)
- Effects similar
 - kSZ, OV, PRel
 - Different z's, use lensing?

Patchy Reionization

- Structure in ionization
 - Can distinguish between ionization histories
 - Confusion, e.g. kSZ effect
 - e.g. Santos et al. (0305471)
- Effects similar
 - kSZ, OV, PRel
 - Different z's, use lensing?

FIG. 5.— Patchy power spectra for the reionization models in Figure 3 (same line styles), together with other astrophysical contributions and expected measurement errors (see text). The solid (dashed) straight line is the the point source contribution at 217 GHz before (after) multi-frequency cleaning. The primary unlensed (dashed) and lensed (solid) CMB power spectra are also shown as is the thermal SZ power spectrum from White et al. (2002) (dotted) with its expected amplitude at lower frequencies. The thin line close to the solid one shows the patchy power spectrum for a model with $\tau = 0.11$ but large bias.

Sunyaev-Zeldovich Effect (SZE)

South Pole Telescope Blank Field Detections

- 4 detections published so far (Staniszewski etal.,astro-ph/0810.1578)
- Rumours that maybe~100morecandidatesbynow
- SZA does not seem to have found any as yet
- Currently believe SPT mass cut-off will be about $6\times10^{14}~M_{\odot}$ AMI much smaller fields,but could go to ${\sim}2\times10^{14}~M_{\odot}$

Damping Tail and CBI Excess

- Photon diffusion suppresses photon density fluctuations below ~ 3 Mpc at last scattering;
 80 Mpc width of last scattering surface further washes out projection to ΔT
- Predicted exponential decline seen by CBI (30 GHz) and ACBAR (150 GHz) but ...
 - CBI and BIMA see excess emission at I > 2000: interpreted as SZ gives $\sigma_8 \approx 1.0$

Damping Tail and CBI Excess - QUAD Results

- QUAD now disagrees with CBI Consistent with $\sigma_8=0.8$ rather than 1
- Is CBI estimated source correction underestimated?

CMB Checklist (continued)

Secondary predictions from inflation-inspired models:

- late-time dark energy domination
 - Iow & ISW bump correlated with large scale structure (potentials)
- late-time non-linear structure formation
 - ✓ gravitational lensing of CMB
 - Sunyaev-Zeldovich effect from deep potential wells (clusters)
- late-time reionization
 - overall supression and tilt of primary CMB spectrum
 - doppler and ionization modulation produces small-scale anisotropies
 - ✓ EE & TE low ℓ bump

CMB Checklist (finale)

Structure predictions from inflation-inspired models:

late-time non-linear structure formation (revisited)
 ✓ gravitational lensing of CMB

Sunyaev-Zeldovich effect from deep potential wells (clusters)

- growth of matter power spectrum
 - ✓ primordial power-law above current sound horizon
 - ✓ CMB acoustic peaks as baryon oscillations
- dark energy domination at late times

✓ correlation of galaxies with Late ISW in CMB

– cluster counts (SZ) reflect LCDM growth and volume factors

It appears our current Universe is dominated in energy density by a Dark Energy (Lambda) component!

Primordial Non-Gaussianity

Over two years has become clear to the wider CMB community that primordial non-Gaussianity is a powerful discriminant among competing theories of inflation - including 3=pt geometry Current focus is on the quantity f_{NL} defined for a curvature pertubations $\Phi(r)$ by

 $\Phi(r) = \Phi_L(r) + f_{NL} (\Phi_L^2(r) - \langle \Phi_L^2(r) \rangle)$

So gives the non-linear correction to an underlying linear field In single-field, slow roll inflation, expect $f_{NL} \sim 1$

This is very low (remember basic $\Phi(r)$ value ~ 10^{-5}) and corresponds to expectation that initial quantum states are like the ground state of a harmonic oscillator

The claims that caught everyones' attention were from Yadav & Wandelt (astro-ph/0712.1148v3) and gave 27 < fNL < 147 (95% confidence interval)

Thus would exclude the hypothesis of Gaussian fluctuations at 99.5% confidence level

The quadratic NG model

 Many primordial (inflationary) models of non-Gaussianity can be represented in configuration space by the general formula

$$\Phi = \phi_{\mathsf{L}} + f_{\mathsf{NL}} * (\phi_{\mathsf{L}}^2 - \langle \phi_{\mathsf{L}}^2 \rangle)$$

where Φ is the large-scale gravitational potential, ϕ_L its linear Gaussian contribution and f_{NL} is the dimensionless <u>non-linearity</u> <u>parameter</u> (or more generally non-linearity function). The percent of non-Gaussianity in CMB data implied by this model is

Reconstructed Primordial Perturbations

Positive f_{NL} - more cold spots Simulated temperature maps from $\Phi(x) = \Phi_G(x) + f_{NL} \Phi_G^2(x)$

Primordial Non-Gaussianty continued

- If real, this would be extremely significant, and favour non-standard forms of inflation, e.g. DBI (Dirac-Born-Infield), for which one expects $f_{NL} \sim 50$ or ekpyrotic scenarios
- However foregrounds are an issue!

FIG. 2: The various masks used for computing the $f_{\rm NL}$ in Table I. From left to right, and top to bottom we show Kp12, Kp2, Kp0, and Kp0+. The point source exclusion regions are identical to those in the WMAP. Enlarging the point source exclusions does not change our results appreciably.

$\ell_{\rm max}$	VW					QVW			
	Kp12	Kp2	Kp0	Kp0+	Kp0	Kp12	Kp2	Kp0	Kp0+
350	-1290	-27	35	19	1	-2384	-75	25	8
450	-1425	-16	68	65	-6	-2792	-80	55	65
550	-1510	-13	80	84	-11	-3136	-94	66	80
650	-1560	-22	79	81	-14	-3307	-94	63	77
750	-1575	-23	87	87	-20	-3368	-108	65	78
750^{\star}	$-1105\pm^{19}_{19}$	$-42\pm_{5}^{5}$	$-6\pm_{4}^{4}$	$-0.3\pm^{4}_{4}$				$-13\pm_{5}^{5}$	$1\pm_{6}^{6}$

TABLE I: Non-linear coupling parameter $f_{\rm NL}$ using the V+W, Q, and Q+V+W WMAP 3-year raw maps, as a function of maximum multipole used in the analysis ℓ_{max} and mask Kp12, Kp2, Kp0, and Kp0+ (corresponding f_{sky} is stated in the text and the masks are shown in Fig 2). The last row (750^{*}) shows the mean $f_{\rm NL}$ estimated from Gaussian simulations including the WMAP foreground model. Foreground contamination biases $f_{\rm NL}$ negatively by similar amounts in both the data and the model.

How to search for f_{NL} – a specific parameterization of non-Gaussianity

$$\boldsymbol{\Phi}(\boldsymbol{x}) = \boldsymbol{\Phi}_{G}(\boldsymbol{x}) + f_{NL} \boldsymbol{\Phi}_{G}^{2}(\boldsymbol{x})$$

Salopek & Bond 1990 Komatsu & Spergel 2001

Characterizes the amplitude of non-Gaussianity

Non-Gaussianity from Inflation $f_{NI} \sim 0.05$ canonical inflation (single field, couple of

derivatives) (Maldacena 2003, Acquaviva etal 2003)

 $f_{_{NL}} \sim 0.1$ --100 higher order derivatives

DBI inflation (Alishahiha, Silverstein and Tong 2004)

UV cutoff (Creminelli and Cosmol, 2003)

 $f_{_{NII}} > 10$ curvaton models (Lyth, Ungarelli and Wands, 2003)

 $f_{_{NI}} \sim 100$ ghost inflation (Arkani-Hamed et al., Cosmol, 2004)

f_{NI} Complication

Constraints on *f*_n

Constraints (95%CL)	Method	Experiment	Paper					
-18 < f _{ni} < +80	Wavelets	WMAP-5	AC et al. (2009)					
$-4 < f_{nl} < +80$	Bispectrum	WMAP-5	Smith et al. (2009)					
$-65 < f_{nl} < +70$	LSS	SDSS and others	Slosaretal. (2008)					
$-8 < f_{nl} < +111$	Wavelets	WMAP-5	AC et al. (2008)					
$-9 < f_{nl} < +111$	Bispectrum	WMAP-5	Komatsu et al.(2008)					
-36 < f _{ni} < +100	Bispectrum	WMAP-3	Creminelli et al (2003)					
$+27 < f_{nl} < +147$	Bispectrum	WMAP-3	Yadav & Wandelt (2008)					
-180 < f _n < +170	Local curvature & wavelets	WMAP-1	Cabella et al. (2005)					
-178 < <i>f_{nl}</i> < +64	Minkowski	WMAP-5	Komatsu et al. (2008)					
-101 < <i>f_{nl}</i> < +107	Minkowski	WMAP-3	Gott et al. (2007)					
-800< f _{ni} < +1050	Minkowski	BOOMERANG	De Troia et al. (2007)					
-920< f _{nl} < +1075	Minkowski	Archeops	AC et al. (2008)					
Andrés Curto								

Great Discovery Era Unfolds ...

COBE-DMR Resolution

Planck Surveyor Resolution

Planck: The next big thing in CMB!

But much else also coming!